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Applying random matrix theory to quantum transport in chaotic cavities, we develop a powerful method for
computing the moments of the conductance and shot-noise �including their joint moments� of arbitrary order
and at any number of open channels. Our approach is based on the Selberg integral theory combined with the
theory of symmetric functions and is applicable equally well for systems with and without time-reversal
symmetry. We also compute higher-order cumulants and perform their detailed analysis. In particular, we
establish an explicit form of the leading asymptotic of the cumulants in the limit of the large channel numbers.
We derive further a general Pfaffian representation for the corresponding distribution functions. The Edgeworth
expansion based on the first four cumulants is found to reproduce fairly accurately the distribution functions in
the bulk even for a small number of channels. As the latter increases, the distributions become Gaussian-like
in the bulk but are always characterized by a power-law dependence near their edges of support. Such
asymptotics are determined exactly up to linear order in distances from the edges, including the corresponding
constants.
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I. INTRODUCTION

Quantum transport in mesoscopic systems has been a sub-
ject of an intense study during the last decade.1,2 Tradition-
ally, the focus of interest has been on statistical properties of
the conductance, g, and shot-noise, p. For noninteracting
electrons in a two-terminal conductor at zero temperature,
the Landauer-Büttiker scattering formalism3 relates these
quantities �expressed in their natural units� to the so-called
transmission eigenvalues Ti of the conductor

g = �
i=1

n

Ti, p = �
i=1

n

Ti�1 − Ti� . �1�

Here, n�min�N1 ,N2�, where N1,2 are the number of propa-
gating modes �channels� in the two attached leads. The Ti are
the eigenvalues of the matrix tt†, with t being N1�N2 matrix
of transmission amplitudes from the entrance to exit chan-
nels. They are mutually correlated random numbers, 0�Ti
�1, whose distribution depends on the type of the conductor.

Below, we consider chaotic cavities �open quantum dots�.
In this case, random matrix theory �RMT� has proved to be
successful in describing universal fluctuations in transport
through such systems.1,4 Within this RMT approach, the joint
probability density function �JPDF�, P��T�, of the transmis-
sion eigenvalues is induced by the random scattering matrix
drawn from one of Dyson’s circular ensembles,5 according to
the global symmetries present in the system. The exact ex-
pression for this JPDF is known1,6,7 to have the following
simple form:

P��T� = N�
−1���T����

i=1

n

Ti
�−1, �2�

where �= �
2 ��N1−N2�+1� and ��T�=�i�j�Ti−Tj� denotes the

Vandermonde determinant. The Dyson’s symmetry index �
depends on the presence ��=1� or absence ��=2� of time-

reversal symmetry or that of spin-flip symmetry ��=4� in the
system, thus distinguishing between the three canonical
RMT ensembles �orthogonal, unitary, or symplectic,
respectively�.5 The normalization constant N� is given by

N� = �
j=0

n−1 ��1 +
�

2
�1 + j���	� +

�

2
j
�	1 +

�

2
j


�	1 +
�

2

��1 + � +

�

2
�n + j − 1�� �3�

and assures that expression �2� is a probability density. It is
known generally for discrete positive n and continuous � and
� as the Selberg integral.5

Presently, there is a substantial progress in the understand-
ing of statistics of various transport observables in chaotic
cavities that is due to the recent developments of new ana-
lytical methods in the theory. Among them, the Selberg inte-
gral theory plays a special and important role, see the recent
review8 for its current status. In the present context, it has
been initially applied by two of us9 to find the average value
of shot-noise and hence the Fano factor exactly. This ap-
proach has then been developed further to study full counting
statistics of charge transfer10 as well as to obtain exact ex-
plicit expressions for the shot-noise variance and for the
skewness and kurtosis of the charge and conductance
distributions11,12 �see also Refs. 13–21 for other RMT results
on the relevant statistics in chaotic cavities�. Since � enters
the Selberg integral as a continuous parameter, this method
allows us to treat all the three ensembles on equal footing,
thus giving a powerful alternative to diagrammatic13,18 or
orthogonal polynomial14,21 approaches, especially when the
channel numbers are small.

A completely alternative treatment has been recently un-
dertaken within the semiclassical approach22,23 which repre-
sents quantum transport in terms of classical trajectories con-
necting the leads. By constructing asymptotic semiclassical
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expansions for transport observables, this approach success-
fully accounts for both system-specific and universal �RMT�
features �see Ref. 24 for a review�.

The case of �=2 �broken time-reversal symmetry� is
known for several reasons to be the special one in RMT.
For the problem in question, further progress in this case
has been made very recently along the following two direc-
tions. Novaes25 combined the Selberg integral with facts
from the theory of symmetric functions to compute nonper-
turbatively moments of both the transmitted charge and con-
ductance but not those of shot-noise. Alternatively, Osipov
and Kanzieper26 combined the theory of integrable systems
with RMT, as given by Eq. �2�, bringing out an effective
formalism for calculating the joint cumulants of the conduc-
tance and shot-noise.27 However, the relevant consideration
for the systems with preserved time-reversal symmetry, �
=1, is still lacking.

The distribution functions of the conductance and shot-
noise are also studied quite intensively on their own. How-
ever, no explicit expressions have been reported so far except
for a few cases, namely, for the conductance distribution at
N1,2=1 ,2 �Refs. 6, 7, 15, and 28� and for the shot-noise
distribution at N1,2=1.18,29 Asymptotic analysis of the both
distributions at N1,2	1 has been performed very recently in
Ref. 30 �see also Ref. 26�. To the best of our knowledge, no
general results valid at arbitrary N1,2 and ��2 are available
thus far. Meanwhile, the conductance distribution with
dephasing31 has been directly measured in open quantum
dots32 and in microwave billiards.33 The shot-noise power in
chaotic cavities has been recently studied experimentally.34

Counting electrons in quantum dots is also experimentally
accessible.35 All this provides an additional motivation for
the present study.

In this work we explore further the direction along the
lines of Novaes’s work25 and develop a systematic approach
for computing the moments of linear statistics in transmis-
sion eigenvalues for the systems with both preserved and
broken time-reversal symmetry. This approach yields the
moments of the conductance and shot-noise of arbitrary or-
der, including their joint moments and cumulants. In the next
section we present the detailed exposition of the method
used, including the relevant facts from the theory of symmet-
ric functions. This method is then applied in Sec. III to de-
rive expressions for the moments and cumulants of the con-
ductance and shot-noise in a closed form. Sections IV and V
complement this study by investigating the corresponding
distribution functions and their asymptotic behavior. Our
main findings are summarized and discussed in the conclud-
ing Sec. VI.

II. THE METHOD

The method is based on expanding powers of the conduc-
tance or shot-noise �or any other linear statistic� in Schur
functions s
�T�. These functions are symmetric polynomials
in the transmission eigenvalues T= �T1 , . . . ,Tn� indexed by
partitions 
. In the group representation theory the Schur
functions are the irreducible characters of the unitary group
and hence are orthogonal. This orthogonality is quite useful

since it means that the coefficients in Schur function expan-
sions are just “Fourier coefficients” and, hence, can be found
by integration over the unitary group. It gives an efficient
way of calculating the expansion coefficients explicitly, the
fact that we exploit in our approach. The Schur functions can
be then averaged over the JPDF �2�,


s
� =� d�T�s
�T�P��T�, d�T� � �
i=1

n

dTi, �4�

with the help of integration formulas due to Hua.36 The
Schur function expansions and Hua’s integration formulas
provide us with the necessary ingredients to compute all mo-
ments �or cumulants� of the conductance and/or shot-noise
�see Sec. III for the detailed analysis�.

In this section, we first give a brief summary of the re-
quired facts about partitions and Schur functions,37 then de-
velop the systematic way of performing the expansion over
Schur functions and finally determine Schur function aver-
ages.

A. Partitions and Schur functions

A partition is a finite sequence 
= �
1 ,
2 , . . . ,
m� of
non-negative integers �called parts� in decreasing order 
1
�
2� . . . �
m�0. The weight of a partition, �
�, is the
sum of its parts, �
�=� j
 j, and the length, l�
�, is the
number of its nonzero parts. No distinction is made between
partitions which differ only by the number of zero parts.
Different partitions of weight m represent different ways to
write m as the sum of positive integers and can be graphi-
cally visualized through the Young diagrams. For example,
one has only one partition 
= �1� in the trivial case of
m=1, two partitions 
= �2,0� , �1,1� for m=2, three parti-
tions 
= �3,0 ,0� , �2,1 ,0� , �1,1 ,1� for m=3, etc.

For any partition 
 of length l�
��n, one can define a
symmetric polynomial s
 in n variables x1 , . . . ,xn as follows:

s
�x1, . . . ,xn� =
det�xi


j+n−j�i,j=1
n

det�xi
n−j�i,j=1

n . �5�

The denominator here is nothing else but the Vandermonde
determinant ��x�=�i�j�xi−xj�. It divides the corresponding
factor in the nominator, leaving the quotient as a homoge-
neous polynomial in the xj’s of degree m= �
�. These polyno-
mials s
 are called the Schur functions. For one-part parti-
tions, 
= �r�, Schur functions are just the complete
symmetric functions, s�r��x�=hr, while for partitions which
have no parts other than zero or one, 
= �1, . . . ,1���1r�, the
Schur functions s�1r� are the elementary symmetric functions
er�x�. This can be verified directly from Eq. �5�. It should be
noted that the Schur functions corresponding to the partitions
of m form a basis in the space of homogeneous symmetric
polynomials of degree m, so that any homogeneous symmet-
ric polynomial can be written as a linear combination of
Schur functions.

The Schur functions of matrix argument that we shall use
below are defined by the right-hand side �rhs� in Eq. �5�
evaluated at the eigenvalues of the matrix. Taking as an ex-
ample the n�n matrix T= tt† of transmission probabilities,
one has

KHORUZHENKO, SAVIN, AND SOMMERS PHYSICAL REVIEW B 80, 125301 �2009�

125301-2



s
�T� = s
�T1, . . . ,Tn�

where T1 , . . . ,Tn are exactly the transmission eigenvalues
that appear in Eq. �2�. Although not apparent from this defi-
nition, the Schur functions of matrix argument are polyno-
mials in the matrix entries38 and, obviously, s
�T�
=s
�XTX−1� for any nondegenerate matrix X.

B. Schur function expansions

In order to determine the moments of the conductance and
shot-noise along the lines explained above, one needs to ex-
pand the powers of these quantities in Schur functions. To
this end, it is more convenient to work with the correspond-
ing generating functions et�Tj or et�Tj�1−Tj�. These functions
belong to the general class of multiplicative symmetric func-
tions, where the coefficients of the Schur function expansion

F�x� � �
j

f�xj� = �



c

�f�s
�x� �6�

can be determined explicitly provided that the function f is
analytic in a neighborhood of �x�=1 in the complex x-plane
�see, e.g., Appendix in Ref. 39�. Indeed, thinking of the xj’s
as of the eigenvalues of a unitary matrix U, one can write

F�U� = �



c

�f�s
�U� . �7�

The main advantage of going unitary is the orthogonality of
Schur functions �d��U� is the normalized Haar measure�:

�
U�n�

d��U�s
�U�s�
� �U� = 

,�, �8�

which is a fact from the theory of group representations. One
now recognizes a “Fourier series” in Eq. �7� and, hence,

c

�f� = �

U�n�
d��U�F�U�s


��U� . �9�

The integral on the rhs in Eq. �9� is a standard one in
RMT. To evaluate it, one first transforms it to the eigenvalues
ei�1 , . . . ,ei�n of the unitary matrix U. The corresponding
Jacobian is ���ei���2, canceling the denominator in the Schur
function s


��ei��. The resulting integral can then be evaluated
with the help of the Gram-Andreief identity,40 yielding

c

�f� = det��

0

2� d�

2�
f�ei��e−i��
k−k+l��

k,l=1

n

. �10�

In view of the analyticity one can abandon the restriction
�x�=1. Writing f�x�=� j� jx

j, one brings the Schur function
expansion �6� and �10� to the following general form:

�
i=1

n 	 �
j=−�

+�

� jxi
j
 = �




c
���s
�x� , �11a�

c
��� � det��
k−k+l�k,l=1
n . �11b�

The summation here is over all partitions 
 of length n or
less, including empty partition �0� for which s
=1. Expan-

sion �10� was also obtained by Balantekin41 by algebraic
manipulations.

C. Schur function averages

Hua in his book36 evaluated many useful matrix integrals.
The following two are relevant in the context of our work:


s
��=2 = �
j=1

n
��j + 1���
 j + n − j + ��

��
 j + 2n − j + �� �
1�i�j�n

�
i − 
 j − i + j�

�12�

and


s
��=1 =
2nn ! �1�i�j�n�
i − 
 j − i + j�

�1�i�j�n�
i + 
 j + 2n + 2� − i − j�
, �13�

where the average 
s
�� is over the JPDF �2�, as in Eq. �4�. If

= �0� then s
=1 and both integrals follow from the Selberg
integral.5 It should be noted that the rhs in Eq. �12� is exactly
Selberg’s expression and the rhs in Eq. �13� can be manipu-
lated to the one obtained by Selberg with the help of the
duplication formula for the Gamma function. For nonempty
partitions 
, the integral in Eq. �12� is a particular case of the
Kadell-Kaneko-Yan generalization42–44 of the Selberg inte-
gral. However, the integral in Eq. �13� is different, as the
Kadell-Kaneko-Yan generalization of the Selberg integral for
�=1 involves zonal polynomials.

Hua’s identities are valid for arbitrary continuous ��0.
Specifying further to our case of �= �

2 ��N1−N2�+1� and N
�N1+N2, we arrive after a simple algebra at


s
��=2 = c
�
j=1

l�
�
�
 j + N1 − j�!

�N1 − j�!
�
 j + N2 − j�!

�N2 − j�!
�N − j�!

�
 j + N − j�!
,

�14�

where we have introduced the coefficient45

c
 =
�1�i�j�l�
��
i − i − 
 j + j�

� j=1
l�
��l�
� + 
 j − j�!

, �15�

and


s
��=1 = c
�
j=1

l�
�
�
 j + N2 − j�!

�N2 − j�!

� �
1�i�j�N2

	 N + 1 − i − j

N + 1 + 
i + 
 j − i − j

 . �16�

The symmetry between N1 and N2 is not apparent in Eq.
�16�. One can rearrange the terms in the second product on
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the rhs in Eq. �16� to make this symmetry apparent


s
��=1 = c
�
j=1

l�
�
�
 j + N1 − j�!

�N1 − j�!
�
 j + N2 − j�!

�N2 − j�!

� �
1�i�j�l�
�

N + 1 − i − j

N + 1 + 
i + 
 j − i − j

� �
i=1

l�
�
�N − l�
� − i�!

�
i + N − l�
� − i�!
. �17�

We note that the obtained expressions for 
s
� in terms of N1
and N2 yield zero if the length of the partition 
 is greater
than n=min�N1 ,N2� so when averaging Schur function ex-
pansions one need not bother about the restriction l�
��n.

The Schur function average for �=2 in terms of the chan-
nel numbers N1 and N2, Eq. �14�, has a simple structure,
being a ratio of polynomials


s
��=2 = c
�
j=1

�
�
�N1 − aj��N2 − aj�

�N − aj�
�18a�

where the aj’s are integers. Expression �17� for 
s
��=1 is less
revealing. We found it useful to have the Schur function
averages tabulated, see Table I for averages corresponding to
partitions of m, m=1, . . . ,5. This table suggests46 that


s
��=1 = c
�
j=1

�
�
�N1 − aj��N2 − aj�

�N − bj�
, �18b�

where the aj are the same as in Eq. �18a� and bj’s are also
integers. It would be generally desirable to understand the
nature of the cancellations in Eq. �17� and to find a rule
relating bj to 
.

III. MOMENTS AND CUMULANTS OF THE
CONDUCTANCE AND SHOT-NOISE

We now apply the results obtained in the previous two
sections to calculate the moments of the conductance and
shot-noise in a closed form. The final expressions involve
summation over all partitions of r in the case of conductance
and 2r in the case of shot-noise, with r being the order of the
moment. The cumulants �r can be obtained from the mo-
ments �r with the help of the well-known recursion

�r = �r − �
j=1

r−1 	r − 1

r − j

�r−j� j . �19�

This method is well suited for analytic computations of
lower order cumulants and also can be straightforwardly
implemented in a computer algebra system for computations
of higher-order cumulants symbolically. Since a number of
the partitions of the given r grows �exp���2r /3� / �4r�3�
only asymptotically at r→� �i.e., slower than pure exponen-
tial�, our method is very efficient for computing the cumu-
lants up to reasonably large orders, as discussed below.

A. Conductance

The moments of the conductance can be obtained from
the generating function

Fg�t� = 
et�iTi� . �20�

The desired Schur function expansion for the exponential
function e�iTi can be read from Eq. �11� by choosing � j
=1 / j! there. Throughout this paper we use the convention
that 1 / j ! =0 for j�0. The factorial determinant in Eq. �11�
can be evaluated by elementary transformations on its rows
or columns and the answer turns out to be exactly the coef-
ficient c
 introduced in Eq. �15�. Recalling that the Schur
functions are homogeneous, thus s
�tT�= t�
�s
�T�, one turns
the Schur function expansion of the moment generating
function into the following series in powers of t:

Fg�t� = �
r=0

�

tr �
�
�=r

c

s
� . �21�

The second sum on the right is over all partitions of r, �
�
=� j
 j =r. From Eq. �21� one easily obtains all moments of
the conductance:


gr� = r ! �
�
�=r

c

s
�, r = 1,2, . . . , . �22�

For �=2 this expression together with Eqs. �14� and �15�
reproduces the recent result of Novaes.25 It is also worth
noting here that the corresponding exact results for the
charge cumulants �related to the moments 
T1

r��, which were
obtained in this paper at �=2, can be straightforwardly gen-
eralized to the case of �=1 by making use of Eq. �17� found
above.

With Eq. �22� in hand, one can obtain cumulants by ap-
plying recursion �19�. On this way we have successfully re-
produced the first four cumulants which have been obtained
before �exactly for any ��. For the reference purpose, we
state explicitly the conductance variance13

var�g�

g�

= �
2�N1 + 1��N2 + 1�
N�N + 1��N + 3�

, � = 1

N1N2

�N − 1�N�N + 1�
, � = 2� , �23�

with 
g�=N1N2 / �N+ 2
� −1� being the conductance average,

and the third cumulant12



g3��
var�g�

= �
4�1 − �N1 − N2�2�

�N − 1��N + 1��N + 5�
, � = 1

−
2�N1 − N2�2

�N − 2�N�N + 2�
, � = 2� , �24�

which is a measure of the skewness of the probability distri-
bution. An explicit expression for the fourth cumulant is
quite lengthy for arbitrary N1,2 and the corresponding large N
expansion can be found in Ref. 12 �see also below�. How-
ever, in the particular case of N1=N2=n, it can be simplified
further to the following compact form:
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g4��
var�g�

= �−
3�4n4 + 20n3 + 43n2 + 53n + 24�

�n + 1��2n − 1��2n + 1�2�2n + 3��2n + 5��2n + 7�
, � = 1

3

2�2n − 3��2n − 1��2n + 1��2n + 3�
, � = 2� . �25�

TABLE I. Schur function expansion 
��Tj�m��=m !�c

s
�� for �=1,2.

m Partition 
 
s
��=2

s
��=1


s
��=2
c


1 �1�
N1N2

N

N

N+1
1

2
�2,0�

N1�N1+1�N2�N2+1�
2N�N+1�

N+1

N+3

1

2

�1,1�
N1�N1−1�N2�N2−1�

2N�N−1�
N−1

N+1

1

2

3
�3,0,0�

N1�N1+1��N1+2�N2�N2+1��N2+2�
6N�N+1��N+2�

N+2

N+5

1

6

�2,1,0�
�N1−1�N1�N1+1��N2−1�N2�N2+1�

3�N−1�N�N+1�
N

N+3

1

3

�1,1,1�
�N1−2��N1−1�N1�N2−2��N2−1�N2

6�N−2��N−1�N
N−2

N+1

1

6

4
�4,0,0,0�

N1�N1+1��N1+2��N1+3�N2�N2+1��N2+2��N2+3�
24N�N+1��N+2��N+3�

N+3

N+7

1

24

�3,1,0,0�
�N1−1�N1�N1+1��N1+2��N2−1�N2�N2+1��N2+2�

8�N−1�N�N+1��N+2�
N+1

N+5

1

8

�2,2,0,0�
�N1−1�N1

2�N1+1��N2−1�N2
2�N2+1�

12�N−1�N2�N+1�
�N−1�N2

�N−2��N+2��N+3�
1

12

�2,1,1,0�
�N1−2��N1−1�N1�N1+1��N2−2��N2−1�N2�N2+1�

8�N−2��N−1�N�N+1�
N−1

N+3

1

8

�1,1,1,1�
�N1−3��N1−2��N1−1�N1�N2−3��N2−2��N2−1�N2

24�N−3��N−2��N−1�N
N−3

N+1

1

24

5
�5,0,0,0,0�

N1�N1+1��N1+2��N1+3��N1+4�N2�N2+1��N2+2��N2+3��N2+4�
120N�N+1��N+2��N+3��N+4�

N+4

N+9

1

120

�4,1,0,0,0�
�N1−1�N1�N1+1��N1+2��N1+3��N2−1�N2�N2+1��N2+2��N2+3�

30�N−1�N�N+1��N+2��N+3�
N+2

N+7

1

30

�3,2,0,0,0�
�N1−1�N1

2�N1+1��N1+2��N2−1�N2
2�N2+1��N2+2�

24�N−1�N2�N+1��N+2�
�N−1�N�N+2�

�N−2��N+3��N+5�
1

24

�3,1,1,0,0�
�N1−2��N1−1�N1�N1+1��N1+2��N2−2��N2−1�N2�N2+1��N2+2�

20�N−2��N−1�N�N+1��N+2�
N

N+5

1

20

�2,2,1,0,0�
�N1−2��N1−1�N1

2�N1+1��N2−2��N2−1�N2
2�N2+1�

24�N−2��N−1�N2�N+1�
�N−2��N−1�N

�N−3��N+2��N+3�
1

24

�2,1,1,1,0�
�N1−3��N1−2��N1−1�N1�N1+1��N2−3��N2−2��N2−1�N2�N2+1�

30�N−3��N−2��N−1�N�N+1�
N−2

N+3

1

30

�1,1,1,1,1�
�N1−4��N1−3��N1−2��N1−1�N1�N2−4��N2−3��N2−2��N2−1�N2

120�N−4��N−3��N−2��N−1�N
N−4

N+1

1

120
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Let us now discuss higher cumulants of the conductance,


gr��. Their explicit expressions are cumbersome and we
consider mainly the physically interesting cases of the small
or large channel numbers. In the quantum regime of a few
open channels, we have found that these cumulants do not
show a pronounced decay with increasing r �see Fig. 1�. In
this case, the distribution function is strongly non-Gaussian.
However, as the number of channels in the both leads in-
creases, the system approaches the semiclassical �“metallic”�
regime where one should expect47 the following dependence
of the cumulants on the total number of channels, N=N1
+N2:



gr�� � 
g�2−r � N2−r. �26�

The same scaling is generally applicable to any linear statis-
tic on transmission eigenvalues �e.g., shot-noise�, implying a
Gaussian distribution in the limit N→� �Refs. 48 and 49�
�see, however, the next section for discussion�.

We have performed the asymptotic analysis of our exact
RMT expressions in the limit when both N1,2	1. To this
end, we have employed symbolic computations of conduc-
tance cumulants in Mathematica and found that the leading-
order term in the 1 /N expansion of the r-th cumulant, r�3,
has the following general structure:



gr��

g�

�
�r − 1�!
��/2�r−1

N1N2�N1 − N2�2

N3�r−1� G2�r−3�, �27�

where Gm�N1 ,N2� is an independent of � homogeneous sym-
metric polynomial of order m, �see Table II for the first four
ones�. Equation �27� has been verified for the first eight cu-
mulants and we are putting forward the conjecture that it
holds generally for all r�3. The expression on the rhs in Eq.
�27� is of the order of N1−r, being in agreement with the
above estimate �26� obtained within a different approach

�weak localization diagrammatics�. The next-to-leading-
order term in the 1 /N expansion of 

gr�� / 
g�, the so-called
weak localization correction, is of the order of N−r. It van-
ishes for systems with broken time-reversal symmetry ��
=2�. Further terms in this 1 /N expansion can be easily com-
puted as well if necessary.

In the special case of symmetric cavities, N1=N2=n, the
leading term �27� in the 1 /N expansion of the cumulants
vanishes for all r�3 and so does the next-to-leading term of
the expansion of any odd cummulant �independently of �, it
contains a factor �N1−N2�2 explicitly�. This indicates that the
Gaussian distribution is approached in this case much faster
as compared to Eqs. �26� and �27�.

Generally, we note that in the symmetric case all odd
cumulants at �=2 must vanish identically, as it follows by
the simple symmetry argument12 �indeed, the joint distribu-
tion �2� becomes then symmetric under the change of all Tj
→1−Tj implying the symmetry of the conductance distribu-
tion about its mean n

2 �. It has been recently checked25 that
representation �22� at �=2 satisfies this property. For the
even cumulants, the 1 /n expansion of our exact expressions
gives the following leading term at n	1 �k�2�:



g2k���=2 �
�2k − 1�!
4�4n�2k �28�

that agrees with the recent result by Osipov and Kanzieper26

obtained by a completely different method. In the case of
�=1, we have found with the help of symbolic computations
in Mathematica that



gr���=1 �
�r − 1�!
4�2n�r � � 1, odd r

− 2n�r − 3� ! !

r ! !
, even r � . �29�

for r=3,4 , . . . ,16. Correspondingly, we put forward the con-
jecture that Eq. �29� holds for all r�3.

B. Shot-noise

Having an aim to find also the joint moments of the con-
ductance and shot-noise, we consider the generating function
for the moments of ag+ p

F�t,a� � 
et�ag+p�� =��
i=1

n

et�a+1�Ti−tTi
2� . �30�

The moment generating function of shot-noise is then simply
given by Fp�t�=F�t ,0� whereas that of the conductance fol-
lows as Fg�t�=lima→�F�t /a ,a�. At finite a, the quantity ag

0.015

0.01

0.005

0

0.005

0.01

0.015

−
−

− (1,3)

(1,2)

(3,3)

(2,2)
(1,1)

β = 1
<<

g
>>

r

r

0.0075

0.005

0.0025

0

0.0025

0.005

0.0075

3 4 5 6 7 8 9 10

(1,3)

(1,2)

(3,3)

(2,2)
(1,1)

β = 2

−

<<
g

>>r

−

−

FIG. 1. The third to tenth cumulants of the conductance for
chaotic cavities with a few open channels in the case of preserved
��=1� or broken ��=2� time-reversal symmetry. The corresponding
values �N1 ,N2� of the channel numbers are as indicated in the
legend.

TABLE II. The first four polynomial Gm�N1 ,N2�, Eq. �27�.

r G2�r−3��N1 ,N2�

3 1

4 N1
2−4N1N2+N2

2

5 N1
4−10N1

3N2+22N1
2N2

2−10N1N2
3+N2

4

6 N1
6−18N1

5N2+88N1
4N2

2−150N1
3N2

3+ �N1�N2�
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+ p has a physical meaning of the total noise including both
thermal and shot-noise contributions, with a being then the
known function of the temperature and applied voltage.2

The exponential function in Eq. �30� can be expanded in
Schur functions s
�T� with the help of the general identity
�10�. On multiplying two exponential series, one obtains

F�t,a� = �



c
�t,a�
s
� , �31a�

c
�t,a� = det��
i−i+j�t,a��i,j=1
n , �31b�

where �r�t ,a� are polynomials in t and �a+1�,

�r�t,a� = �
k=0

�r/2�
�− 1�k�a + 1�r−2ktr−k

k ! �r − 2k�!
. �32�

In order to extract from this the moments of ag+ p one
needs to expand the coefficients c
�t ,a� in powers of t. After
some algebra �see Appendix A for details� one arrives at the
desired expansion

F�t,a� = �
r=0

�

tr�
m=0

r

�− 1�m�1 + a�r−m �
�
�=r+m

f
,m
s
� , �33�

where

f
,m = �
k1+. . .+kl�
�=m

det� 1

ki ! �
i − i + j − 2ki�!
� . �34�

The determinant on the rhs �34� can be evaluated in terms of
the partition 
 leading to an explicit expression for the coef-
ficients f
,m �see Eq. �A2��. In the particular case of m=0,
f
,0 is just the coefficient c
 given by Eq. �15�. We note that

f
,m depend only on 
 and m and not on n. The summation
indices kj in Eq. �34� run over all integers from 0 to m and
are not subject to any ordering. From expansion �33�, one
easily finds that the r-th moment of the total noise reads as
follows:


�ag + p�r� = r ! �
m=0

r

�− 1�m�1 + a�r−m �
�
�=r+m

f
,m
s
� , �35�

where the second sum is over all partitions of r+m. The joint
moment 
gkpr−k� of the conductance and shot-noise is then
given by Eq. �35�, with �1+a�r−m being replaced by the bi-
nomial coefficient � r−m

k �. Equation �35� is generally valid at
any � and complements the relevant recent results for the
joint cumulants of the conductance and shot-noise at �=2
first obtained within a different approach in Ref. 27 It is
interesting to note that by setting a=−1, one also obtains the
moments of the sum of squares of the transmission coeffi-
cients:

�	�
i

Ti
2
r� = r ! �

�
�=2r

f
,r
s
� .

To the best of our knowledge the above formulas have not
been reported in the literature before.

We now focus on the analysis of the shot-noise cumu-
lants. Expansion �35� successfully reproduces the general �
results for the shot-noise average9


p� = N1N2
�

2

var�g�

g�

�36�

and for the shot-noise variance.12 The explicit expression for
the later is rather lengthy �see Ref. 12 for the corresponding
large N expansion� but turns out to be quite compact in the
particular case of N1=N2=n:

var�p�

p�

= �
�8n5 + 60n4 + 142n3 + 91n2 − 49n − 36

2�n + 1��2n − 1��2n + 1��2n + 3��2n + 5��2n + 7�
, � = 1,

4n4 − 9n2 + 3

4n�2n − 3��2n − 1��2n + 1��2n + 3�
, � = 2 � . �37�

Higher cumulants of shot-noise, 

pr��, similarly to those
of the conductance, are nonvanishing when the number of
channels is small, implying a strongly non-Gaussian distri-
bution also in this case. In the opposite limit of the large
number of channels, N1,2	1, we have found the leading
term of the 1 /N expansion to have the following structure
�r�3�:



pr��

p�

=
�r − 1�!
��/2�r−1

�N1 − N2�2

N5�r−1� �N1
2 − 4N1N2 + N2

2�3P4�r−3�,

�38�

with Pm�N1 ,N2� being an independent of � homogeneous
polynomial of order m �see Table III�. This results has been
verified in Mathematica for the first six cumulants and is

conjectured by us to hold for all r�3. The next order term of
the expansion has been found to have similar structure to that
of the conductance �explicit expressions being, of course,
different�, thus the same conclusions apply for this term, too.

We consider now the particular case of N1=N2=n. In con-
trast to the conductance, both even and odd cumulants of
shot-noise are nonvanishing at finite n, even for systems with
broken time-reversal symmetry ��=2�. In the limit of n	1,
the 1 /n expansion of our exact expressions suggests the fol-
lowing asymptotic behavior of the r-th cumulant of the shot-
noise �r�3�:



pr���=2 �
�r − 1�!
4�8n�r �39�

and
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pr���=1 �
�r − 1�!
8�4n�r � � 1, odd r

− 4n�r − 3� ! !

r ! !
, even r � . �40�

Equation �39� agrees with the very recent result27 obtained
by a different method. We have been able to verify by sym-
bolic computations in Mathematica that Eq. �40� holds up to
the 8-th cumulant and, thus, conjecture it to hold for any r
�3.

IV. DISTRIBUTION FUNCTIONS

We consider now the distribution function of the conduc-
tance, Pg

����x�= 

�x−g��, and that of shot-noise, Pp
����x�

= 

�x− p��, with g and p being defined in Eq. �1�. Explicit
expressions for the conductance distribution can be found in
the particular cases of n=1,2. At N1=1 and N2=K�1, Eq.
�2� readily gives Pg,n=1

��� �g�= ��K /2�g�K/2−1 for 0�g�1, and
zero otherwise. In the case of N1=2 and arbitrary N2=K
�2, the conductance distribution can also be found by per-
forming integrations that feature in the definition �see �B4� in
Appendix B�, with the final result being

Pg,n=2
��� �g� = Kg�K−1�X1 − �− 1���K−1�/2X2��g − 1�

� �
j=0

� 	�

j

B1−g� �

2 �K − 1� + j,1 − �K�� �41�

for 0�g�2 and zero otherwise �see Fig. 2�. Here Bz�a ,b� is
the incomplete beta function, ��x� stands for the Heaviside
step function, and the constants X1,2 are given by X1

= ����K+1�/2+1����K/2�
���/2����K� and X2= ����K+1�/2+1�

��������K−1�/2� . Expression �41�
holds for arbitrary positive integer �. In the particular case of
�=1, it can be simplified further, yielding Pg,n=2

�1� �g�= 1
2K�K

+1��� g
2 �K−1− �g−1��K−1�/2��g−1��, in agreement with Ref.

28.
It is possible to find explicit expressions for the distribu-

tion function of the conductance beyond the cases discussed
above. However, the final answers become more cumber-
some as the channel numbers grow, thus being almost of
little practical use. For the shot-noise distribution, the situa-
tion is not satisfactory even for small channel numbers: we
are not aware of explicit results for the shot-noise distribu-
tion except for the simplest case of N1,2=1.29 One practical

way to solve this problem is to construct approximations to
the distribution functions in terms of cumulants by making
use of the Edgeworth expansion.51 It turns out that such ap-
proximations are fairly accurate in the bulk of distribution
even for small channel numbers.

In the limit N1,2	1 the conductance and shot-noise dis-
tributions follow the Gaussian law

�0�x� =
1

�2��2
e−�x − ��2/2�2

�42�

where � and �2 are the corresponding mean value and vari-
ance, respectively. The Edgeworth expansion is a 1 /N expan-
sion around the Gaussian law. Denoting the r-th cumulant by
�r, the first correction to the Gaussian law is given by
�1�x�=− 1

3!�3�
3�0�x� and the next one is given by �2�x�

= � 1
4!�4�

4+ 10
6! �3

2�6��0�x�. Higher-order corrections involve
higher-order cumulants.52 Restricting ourselves to the first
four cumulants, we get the following approximation to the
distribution functions of interest:

Pg,p
����x� � �

k=0

2

�k�x� . �43�

The advantage of the Edgworth expansion is that it is a true
asymptotic series, with the controlled error �e.g., in our case
the error of approximation �43� is estimated to be on the
order of 1

N3 �. With the higher-order cumulants being readily
available from Eqs. �22�, �35�, and �19�, one can easily im-
prove the accuracy of the approximation by adding higher-
order corrections if needed.

We found it instructive to compare the above approxima-
tion �43� with the exact results which are available for the
conductance distribution. To our surprise, we found the
Edgeworth approximation to be fairly accurate already for
N1=2 and N2�4 �see Fig. 3�. The agreement between the
approximate and exact distributions gets even better for
N1,2�3.

The Edgeworth approximation fails near the edges and
also if the distribution has strong singularities. Therefore, it
is tempting to look for an alternative and exact representation
for the distribution functions of the conductance and shot-
noise. We note that at any finite number of channels each of
these distributions has a finite support, namely, 0�g�n

TABLE III. The first four polynomial Pm�N1 ,N2�, Eq. �38�.

r P4�r−3��N1 ,N2�

3 1

4 N1
4−16N1

3N2+34N1
2N2

2−16N1N2
3+N2

4

5 N1
8−38N1

7N2+385N1
6N2

2−1344N1
5N2

3+2008N1
4N2

4

+�N1�N2�
6 N1

12−66N1
11N2+1345N1

10N2
2−11680N1

9N2
3

+49699N1
8N2

4

−114598N1
7N2

5+150662N1
6N2

6+ �N1�N2�
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FIG. 2. The conductance distribution �41� for chaotic cavities

with preserved ��=1� or broken ��=2� time-reversal symmetry.
The number of channels is fixed to N1=2 in one lead and varied in
the other, N2=2, 3, 4, or 5 �solid, dashed, dotted or dash-dotted
lines, respectively�. Nonanalyticity of the distribution �a cusp point
at g=1� becomes less pronounced as N2 increases.
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� Ig and 0� p�
n
4 � Ip, being identically zero outside this

region. It is, therefore, natural to represent the distribution
functions in the following form �henceforth, variable and in-
dex x=g , p�:

Px
����x� = �

m=1

�
2

Ix
sin	m�x

Ix

Cx

����m� , �44�

as the Fourier series over the interval of support, cf. Schur
function expansion �7�.

We now show that the Fourier coefficients are given by
Pfaffians50 as follows:

Cx
����m� =

n!

N�

Im Pfaff�Ax
����m�� . �45�

Before establishing explicit forms of the antisymmetric ma-
trices Ax

����m�, it is useful to note the following. The Fourier
coefficients turn out to decay generally as Cx

����m��m−�x as
m→�, where exponent �x�1 depends on the case consid-
ered. This readily leads to the observation that the every-
where continuous distribution function �44� contains �rather
weak� singularities at integer points of division of the sup-
port interval �0, Ix�, as certain derivatives become discontinu-
ous at these points �see further Ref. 11 for an alternative
geometric interpretation of these singularities�. Such a
nonanalyticity is expected to become less and less pro-
nounced when the number of channels grows, as the bulk of
the distribution is described then by a Gaussian law. How-
ever, the asymptotic behavior near the edges of support is
always characterized by a power law.11 Consequently, even
at n	1 the distribution remains to be weakly singular at the
junction of Gaussian and power-law regimes30 �see also Ref.
26�.

We start the derivation of Eq. �45� with the simplest case
of unitary symmetry, �=2, and consider first the conduc-
tance distribution

Pg
�2��g� =

1

N2
� d�T��

j=1

n

Tj
�−1��T�2
	g − �

i=1

n

Ti
 .

Writing ��T�=det�Tj
i−1�, with i , j=1, . . . ,n, and substituting

the Fourier representation of the 
-function, 
�g−�iTi�
=� d�

2�e−i�g+i��iTi, one can interchange the order of integra-
tions and then apply the Gram-Andreief identity to perform
the integrations over Tj’s. This readily yields

Pg
�2��g� =

n!

N2
�

−�

� d�

2�
e−i�g det�Ag

�2����� , �46a�

�Ag
�2�����kl = �

0

1

dTT�+k+l−3ei�T. �46b�

Since we know that the conductance distribution has a sup-
port only in �0,n� it is actually more convenient to expand
Pg

�2��g� in functions �2 /n sin�m�g /n�, with m=1,2 , . . .,
which form a complete and orthonormalized set on this in-
terval. Furthermore, due to factorization of the exponential
function, one has to express first everything in terms of
exp�im�Tj /n� and then take the imaginary part. As a result,
we arrive at the final answer cast in the form of Eq. �45�,
where

Pfaff�Ag
�2��m�� � det�Ãg

�2��m�� �47�

and Ãg
�2��m��Ag

�2�� m�
n � is the discrete analog of Eq. �46b�.

In the case of orthogonal symmetry, �=1, the derivation
goes along the same lines but has to be done separately for
even or odd n. In the case of even n, we first consider the Tj’s
in a special order T1�T2� . . . �Tn �hence n!�. Then it is
useful to represent the Vandermonde determinant as a Gauss-
ian integral over two kinds of Grassmann variables and inte-
grate out further one set of them using the method of alter-
nating variables,5 see also Ref. 53 for relevant details. The
resulting expression acquires then the symplectic �antisym-
metric� structure automatically and the remaining average
yields Eqs. �44� and �45�, with

�Ag
�1��m��kl

even n = �
0

1

dT1�
0

1

dT2 sign�T2 − T1�T1
�+k−2

� T2
�+l−2ei�m�/n��T1+T2�. �48�

In the case of odd n, one has to increase artificially the num-
ber of the Grasmannians by one and proceed as before, with
the final result being

�Ag
�1��m��kl

odd n = � Ãkl
�1� Bk,n+1

− Bn+1,l 0
� . �49�

Here the n�n matrix Ã�1� is given by Eq. �48�, and the
n-dimensional vector B is

Bk,n+1 = �
0

1

dTT�+k−2ei�m�/n�T = Bn+1,k. �50�

For the sake of completeness, we also state the result in
the case of symplectic symmetry, �=4:

�Ag
�4��m��kl = �l − k��

0

1

dTT�+k+l−4ei�m�/n�T, �51�

where now k , l=1, . . . ,2n. It can be obtained by reducing the
fourth power of the Vandermonde determinant to the calcu-
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FIG. 3. �Color online� Comparison of the exact conductance

distribution �41� �black solid lines� with the Edgeworth approxima-
tion �43� �red dashed lines� for chaotic cavities with preserved ��
=1� or broken ��=2� time-reversal symmetry. The number of chan-
nels is fixed to N1=2 in one lead and varied in the other, N2=3, 4,
5, and 7 �lines from left to right, respectively�. The purely Gaussian
approximation would produce much stronger systematic deviations,
thus being not sufficient at small channel numbers at all.
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lation of a Vandermonde determinant with the doubled di-
mension 2n subject to the additional 
-function constraints
for the corresponding pairs of eigenvalues. The rest is as in
the orthogonal case above.

We note that it turns out to be possible to find explicit
expressions for the conductance distribution in the case of
n=3 and 4 by evaluating the above Pfaffians analytically and
performing the corresponding Fourier transformation exactly.

The expressions derived in this section are also well
suited for numerical calculations. It is important to note in
this respect that, as the Pfaffian is defined as an analytic
square root of the determinant of an antisymmetric matrix A,
special care has to be taken to decide for the complex deter-
minant which sign has to be chosen. To overcome this diffi-
culty, we outline the following general procedure. First, we
multiply the matrix A with the symplectic unit Z�diag�
−i�2 , . . . ,−i�2�, �2 being the Pauli matrix. Then we note that
the matrix ZA is self-dual, ZA=AZ, implying that its eigen-
values come in pairs. Taking the product of all eigenvalues of
ZA only once �this is exactly the quaternion determinant of
ZA�, we obtain finally the Pfaffian of A. As an illustration of
this procedure, let us consider the simplest example of cal-
culating the Pfaffian of � 0 a

−a 0 �= i�2a which is equal to a. The
matrix �−i�2��i�2a�=diag�a ,a� has obviously eigenvalues
�a ,a�, so that taking a once yields the Pfaffian a. This is
exactly the way how Pfaffians can be easily computed nu-
merically.

Generally, one can derive the distribution function of any
linear statistic on T, x=� j fx�Tj� with a given fx�T�, in com-
plete analogy with the above lines. It yields representation
�44�, where matrices Ax

����m� are given by the above expres-
sions �47�–�51� in which all the factors exp�i�m� /n�T� have
to be obviously substituted with exp�i�m� / Ix�fx�T��, with Ix
being the length of the corresponding support interval. In
particular, for the case of shot-noise it amounts to substitut-
ing there with exp�i�4m� /n�T�1−T��.

V. ASYMPTOTICS

The asymptotic behavior of the distribution functions near
the edges is characterized by a power-law dependence

Px
����x� � � Lxx

�x, x → 0

Rx�Ix − x�rx, x → Ix
� , �52�

where both the exponents and the prefactors can be deter-
mined exactly at arbitrary N1,2 and any �, as shown below.

In the case of the conductance, the exponents �g and rg
have been already reported previously,11 being given by

�g = �n +
�

2
�n − 1�n − 1.

rg = �n − 1�	1 +
�

2
n
 �53�

To determine the constant Lg, we consider Pg�g� at g�1. In
this case, the upper limit of the integrations over Ti’s in
Pg�g�= 

�g−�iTi�� may be replaced with g �due to the 

function�. Scaling further all Ti→gTi and calculating the

powers of g there, one readily gets Pg�g�=Lgg�g, with Lg
= 

�1−�Ti��. It is worth emphasizing that this is the exact
expression of the conductance distribution at 0�g�1.11,15

The integral for Lg can be then calculated by the standard
RMT methods �see Appendix B� and is given by

Lg =
1

���g + 1��j=0

n−1
��1 + � + �

2 �n + j − 1��
��1 + �

2 j� . �54�

The behavior of the distribution near the right edge can be
analyzed in a similar way, yielding Eq. �52� with

Rg =
1

��rg + 1��j=0

n−1
��1 + � + �

2 �n + j − 1��
��� + �

2 j� . �55�

In the case of shot-noise, the corresponding exponents are
found to be as follows:

�p = �n +
�

4
��n − 1�2 − �� − 1,

rp =
n

2
+

�

4
�n − 1�n − 1, �56�

where �=1 or 0 for n even or odd, respectively. The above
expression for rg was already known11 whereas that for �p is
new, being in agreement with the recent large n result.30 The
corresponding constants can also be found exactly. We refer
to Appendix B for further details, including the discussion of
correction factors to the leading asymptotics given above.

As an illustration of the obtained results, Fig. 4 shows a
comparison between the exact and asymptotic behavior of
the conductance and shot-noise distributions in the case of
chaotic cavities with N1=2 and N2=4 channels.

VI. CONCLUSIONS

In this work, we have presented a systematic study of
statistics of the conductance and shot-noise in chaotic cavi-
ties. Our approach is based on expanding symmetric func-
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P (p)p
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FIG. 4. The distribution of the conductance �Pg�g�, left� and that
of shot-noise �Pp�p�, right� for chaotic cavities with preserved ��
=1� or broken ��=2� time-reversal symmetry. The number of chan-
nels are N1=2 and N2=4. Dashed lines correspond to the exact
distributions whereas solid lines show the corresponding asymptotic
behavior near the edges, see the text for details.
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tions in the transmission eigenvalues, of which the conduc-
tance and shot-noise are two examples, in Schur functions
and then applying a generalization of Selberg’s integral due
to Hua to evaluate the averages. This leads to explicit formu-
las for the conductance and shot-noise cumulants in terms of
the channel numbers for chaotic cavities with preserved ��
=1� or broken ��=2� time-reversal symmetry.

For lower order cumulants our formulas reproduce the
previously known exact results. We have performed an
asymptotic analysis of the cumulants in the regime when the
number of channels in both leads increases. It suggests that,
generically, the r-th cumulant decays as N2−r for r�3 with
the leading term containing �N1−N2�2 as a factor; see Eqs.
�27� and �38�. This implies that the convergence to the lim-
iting Gaussian law is faster in the case of symmetric cavities,
N1=N2=n. In this case, we have been able to analyze the
first 16 cumulants of the conductance and the first 8 cumu-
lants of shot-noise in the limit n	1, obtaining the leading-
order term in the 1 /n expansion explicitly in terms of the
cumulant order, r, and the channel number, n. For the sys-
tems with broken time-reversal symmetry, the r-th cumulant
decays as 1 /nr for both conductance and shot-noise, with all
the odd cumulants of the conductance being identically zero.
Our results in this case, Eqs. �28� and �39�, agree with those
of Osipov and Kanzieper26,27 obtained recently by a com-
pletely different method. For systems with preserved time-
reversal symmetry, we have found that the r-th cumulant
decays as 1 /nr for odd r and 1 /nr−1 for even r, r�3, for both
the conductance and shot-noise. This staircase effect in the
rate of the cumulant decay seems to be a feature which has
not been reported in the literature before. One of its apparent
consequences is that the convergence to the limiting Gauss-
ian law is slower for systems with preserved time-reversal
symmetry. We have also put forward our explicit formulas
�29� and �40� for the higher-order cumulants in the whole

range of r�3 as a conjecture. Proving this conjecture seems
to us an interesting and challenging open problem.

As mentioned above, in the limit when the number of
open channels in both leads increases, the conductance and
shot-noise distributions are described by the Gaussian law.
With higher-order cumulants in hand, one can easily obtain
next order corrections to the Gaussian law by making use of
the Edgeworth expansion. We have found that such approxi-
mations to the distribution function are fairly accurate in the
bulk even for small channel numbers. We have also obtained
an alternative and exact representation for the distribution
functions, in terms of Pfaffians, which is suitable in the
whole range of support, including the edges where the dis-
tributions have a power-law dependence. Such an asymptotic
behavior have been investigated in detail, the powers and
corresponding prefactors being determined exactly at any �
and N1,2.
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APPENDIX A: SCHUR FUNCTION EXPANSION, EQ. (30)

In this Appendix we expand the coefficients c
�t ,a�
=det��
i−i+j�t ,a�� in powers of t. From Eq. �32� and the defi-
nition of determinant,

det��
i−i+j�t,a�� = �
��Sn

�− 1�����
i=1

n

�
ki

�− 1�ki�1 + a�
i−i+��i�−2kit
i−i+��i�−ki

ki ! �
i − i + ��i� − 2ki�!

= �
��Sn

�− 1���� �
k1,. . .,kn

�− 1�K�1 + a��
�−2Kt�
�−K�
i=1

n
1

ki ! �
i − i + ��i� − 2ki�!
,

where K=�iki and the first sum is over all permutations � in
the symmetric group Sn. Changing the order of summations
again, one can fold the sum over permutations into a deter-
minant again. This yields

c
�t,a� = �
m=0

��
�/2�
�− 1�m�1 + a��
�−2mt�
�−m

� �
k1+. . .+kn=m

det� 1

ki ! �
i − i + j − 2ki�!
�

i,j=1

n

. �A1�

The second sum here is exactly the coefficient f
,m that ap-
pears in Eq. �30�. The determinant in Eq. �A1� can be evalu-

ated by elementary transformations on its rows and columns,

det� 1

ki ! �
i − i + j − 2ki�!
�

i,j=1

n

=
�1�i�j�n�
i − i − 
 j + j − 2ki + 2kj�

� j=1
n kj ! �n + 
 j − j − 2kj�!

.

Note that for any n� l�
�, where l�
� is the length of 
, one
can safely replace n in the above expressions by l�
�. Hence,
the sum over the n tuples �k1 , . . . ,kn� of integers in Eq. �A1�
can be replaced by the sum over the l�
�-tuples �k1 , . . . ,kl�
��,
yielding
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f
,m = �
k1+. . .+kl�
�=m

�1�i�j�l�
��
i − i − 
 j + j − 2ki + 2kj�

� j=1
l�
�kj ! �l�
� + 
 j − j − 2kj�!

.

�A2�

We now substitute the obtained expression for c
�t ,a� back
in Eq. �31� to obtain

F�t,a� = �
r=0

�

�
m=0

�r/2�
�− 1�m�1 + a�r−2mtr−m �

�
�=r

f
,m
s
��,

hence the desired Schur function expansion �33� follows af-
ter changing the order of summations.

APPENDIX B: ASYMPTOTIC CONSTANTS AND
CORRECTION FACTORS

Conductance, left edge: to calculate Lg= 

�1−� jTj��,
we use the following result due to Mehta5 �see p. 361�:

�
0

�

¯�
0

�

�
j=1

n

dxjxj
�−1���x���

��1 − �ixi�
�1 − �ixi�1−�

=
����

��� + �n + �
2 n�n − 1���i=1

n
��� + �

2 �n − i����1 + �
2 i�

��1 + �
2 � .

�B1�

Making use of the known identity lim�→0+��1−x��−1��1
−x���x�=
�1−x� and noting that �����=��1+��→1 at �
→0, one can readily get from Eq. �B1� the following result
�valid at any ��0�:

�
0

1

¯�
0

1

d�T��
j=1

n

Tj
�−1���T���
�1 − �i

Ti�

=
1

���n + �
2 n�n − 1���j=0

n−1
��� + �

2 j���1 + �
2 �j + 1��

��1 + �
2 � . �B2�

After dividing Eq. �B2� with the normalization constant �3�,
this yields Eq. �54� of the main text.

Conductance, right edge: for considering the limit g
→n from below, we make a transformation Ti→1−Ti in the
integral for Pg

����g�=N�
−1�d�T�� j�1−Tj��−1���T���
�n−g

−�iTi� and then consider Ti small. Now one sees that in the
region n�g�n−1 the upper bound of the integral can be
replaced by n−g. Further rescaling Ti→ �n−g�Ti yields

Pg
����g� � Rg�n − g��n−1��1+ �

2
n�e−��−1��n−g�, �B3�

where Rg is then given by Eq. �55� �use result Eq. �B2� at
�=1 and divide it by N��. The correction factor e−��−1��n−g�

comes from expanding �i�1− �n−g�Ti��−1 linearly in the ex-
ponent. Thus we have systematically expanded the log of the
positive quantity Pg

����g� for small �n−g� including the term
of order �n−g�. Corrections are of relative order �n−g�2.

Conductance, 1�g�2: since we know Pg
����g� in the

interval 0�g�1 exactly, one can consider asymptotics in
the interval 1�g�2 for g→1. To this end, we first arrange
the integration variables as T1�T2� ¯ �Tn, then rescale
Tk→TnTk for k=1,2 , . . . ,n−1, and finally perform the Tn
integration. As a result, one arrives at the following exact
representation of the conductance distribution at 0�g�2:

Pg
����g� = g�n+ �

2
�n−1�n−1�Lg − P̃�g�� , �B4�

where P̃�g�= �n /N���d�T����T����i=1
n−1Ti

�−1�1−Ti���1
+�i=1

n−1Ti�−n�−n�n−1��/2��g−1−�i=1
n−1Ti�. In the particular case

of n=2, this integral is one-dimensional and can be easily

evaluated explicitly, resulting in Eq. �41�. At any n�2, P̃�g�
can be handled with the same methods as before, yielding the
following asymptotic behavior at small g−1:

P̃�g� � ��g − 1�H�g − 1���n−1�+ �
2

�n−2��n−1�e−J�g−1�, �B5�

where the constants H and J are given by

H =
n�� + �

2 �n − 1��
��1 + ��n − 1� + �

2 �n − 2��n − 1���j=1

n−1
��1 + � + �

2 �n + j − 1��
��1 + �

2 �j + 1�� �B6�

and J= �n−1���+�n−2��/2���n+�+�n−1�n�/2�
1+��n−1�+�n−2��n−1��/2 . These are the expres-

sions used to make plots on Fig. 4.
Shot-noise, right edge: shifting all Ti→ 1

2 +Ti gives
Pp

����p�=N�
−1�d�T�� j�

1
2 +Tj��−1���T���
� n

4 − p−�iTi
2�, where

the integration is now over the n-dimensional cube centered
at origin: − 1

2 �Ti�
1
2 . Considering the right edge of the sup-

port of Pp
����p�, thus n

4 − p→0, one can then rescale Ti

→Ti
�n

4 − p and obtain

Pp
����p� � Rp�n/4 − p�n/2+n�n−1��/4−1e−�n/4−p�Y , �B7�

where Rp= �2�1−��n /N���−�
�
¯�−�

� d�T����T���
�1−�iTi
2�.

This integral can be further reduced to a Gaussian-type inte-
gral found in Mehta5 �see p. 354�. After some algebra, we
finally arrive at
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Rp =
�n/2

2��−1�n+��n−1�n/4��rp + 1��j=0

n−1
��1 + � + �

2 �n + j − 1��
��1 + �

2 j���� + �
2 j� ,

�B8�

where rp is given by Eq. �56�. The correction factor e−�n/4−p�Y,
with Y =2��−1�−2��−1�2 / �1+ �

2 �n−1��, is found as before
by expanding the rest in powers of n

4 − p and retaining the
linear part in the exponent.

Shot-noise, left edge: for p→0, one gets positive contri-
butions to Pp

����p� from all 2n corners of the integration cube.
As function T�1−T� is not monotonous, it is more conve-
nient to treat the contributions from all the corners sepa-
rately. To this end, we make for �n−m� variables Tk the
transformation Tk→ �1−Tk� and then let all Ti run from 0 to
1
2 . This gives

Pp
����p� =

1

N�
�
m=0

n 	 n

m

�

0

1/2

d�T��
i=1

m

�
k=m+1

n

Ti
�−1�1 − Tk��−1�1

− Ti − Tk�� �
1�i�j�m

�Ti − Tj�� �
m+1�k�l�n

�Tk − Tl��
	p

− �
i

Ti�1 − Ti�
 .

The factor � n
m � appears since one has � n

m � equivalent corners,
and 2n=�m=0

n � n
m �. Scaling Ti→pTi yields

Pp
����p� � �

m=0

n 	 n

m

Q�m�p��m�−1epE�m�, �B9�

with ��m�=n+m��−1�+ �
2 �m�m−1�+ �n−m��n−m−1�� and

Q�m� =
1

����m���j=0

n−1
��1 + � + �

2 �n + j − 1��
��� + j �

2 � �
j=0

m−1
��� + j �

2 ���1 + �
2 �j + 1��

��1 + �
2 �n − m + j����1 + �

2 �n − m + j + 1�� , �B10�

E�m� = 3 − � + ��n − 2m − 1� +
2m

��m�
�� − 1 + ��2m − n���� +

�

2
�m − 1�� . �B11�

For the given even n=2k or odd n=2k+1, k�1, the function ��m� has a minimum at m=k that gives the leading exponent
�p=��k�−1 stated in Eq. �56�, and Lp= � n

k �Q�k�.

1 C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 �1997�.
2 Ya. M. Blanter and M. Büttiker, Phys. Rep. 336, 1 �2000�.
3 R. Landauer, IBM J. Res. Dev. 1, 223 �1957�; V. A. Khlus, Sov.

Phys. JETP 66, 1243 �1987�; G. B. Lesovik, JETP Lett. 49, 592
�1987�; M. Büttiker, Phys. Rev. Lett. 65, 2901 �1990�.

4 Y. Alhassid, Rev. Mod. Phys. 72, 895 �2000�.
5 M. L. Mehta, Random Matrices, 2nd ed. �Academic Press, New

York, 1991�.
6 H. U. Baranger and P. A. Mello, Phys. Rev. Lett. 73, 142 �1994�.
7 R. A. Jalabert, J.-L. Pichard, and C. W. J. Beenakker, EPL 27,

255 �1994�.
8 P. J. Forrester and S. O. Warnaar, Bull. Am. Math. Soc. 45, 489

�2008�.
9 D. V. Savin and H.-J. Sommers, Phys. Rev. B 73, 081307�R�

�2006�.
10 M. Novaes, Phys. Rev. B 75, 073304 �2007�.
11 H.-J. Sommers, W. Wieczorek, and D. V. Savin, Acta Phys. Pol.

A 112, 691 �2007�.
12 D. V. Savin, H.-J. Sommers, and W. Wieczorek, Phys. Rev. B

77, 125332 �2008�.
13 P. W. Brouwer and C. W. J. Beenakker, J. Math. Phys. 37, 4904

�1996�.
14 J. E. F. Araújo and A. M. S. Macêdo, Phys. Rev. B 58, R13379

�1998�.
15 P. A. Mello and H. U. Baranger, Waves Random Media 9, 105

�1999�.

16 Ya. M. Blanter, H. Schomerus, and C. W. J. Beenakker, Physica
E �Amsterdam� 11, 1 �2001�.

17 O. M. Bulashenko, J. Stat. Mech.: Theory Exp. 2005, P08013.
18 E. N. Bulgakov, V. A. Gopar, P. A. Mello, and I. Rotter, Phys.

Rev. B 73, 155302 �2006�.
19 V. A. Gopar, S. Rotter, and H. Schomerus, Phys. Rev. B 73,

165308 �2006�.
20 B. Béri and J. Cserti, Phys. Rev. B 75, 041308�R� �2007�.
21 P. Vivo and E. Vivo, J. Phys. A 41, 122004 �2008�.
22 K. Richter and M. Sieber, Phys. Rev. Lett. 89, 206801 �2002�.
23 P. Braun, S. Heusler, S. Müller, and F. Haake, J. Phys. A 39,

L159 �2006�.
24 S. Müller, S. Heusler, P. Braun, and F. Haake, New J. Phys. 9,

12 �2007�.
25 M. Novaes, Phys. Rev. B 78, 035337 �2008�.
26 V. A. Osipov and E. Kanzieper, Phys. Rev. Lett. 101, 176804

�2008�.
27 V. A. Osipov and E. Kanzieper, arXiv:0902.3069 �unpublished�.
28 A. García-Martín and J. J. Sáenz, Phys. Rev. Lett. 87, 116603

�2001�.
29 M. H. Pedersen, S. A. van Langen, and M. Büttiker, Phys. Rev.

B 57, 1838 �1998�.
30 P. Vivo, S. N. Majumdar, and O. Bohigas, Phys. Rev. Lett. 101,

216809 �2008�.
31 P. W. Brouwer and C. W. J. Beenakker, Phys. Rev. B 55, 4695

�1997�.

SYSTEMATIC APPROACH TO STATISTICS OF… PHYSICAL REVIEW B 80, 125301 �2009�

125301-13



32 A. G. Huibers, S. R. Patel, C. M. Marcus, P. W. Brouwer, C. I.
Duruöz, and J. S. Harris, Phys. Rev. Lett. 81, 1917 �1998�.

33 S. Hemmady, J. Hart, X. Zheng, T. M. Antonsen, E. Ott, and S.
M. Anlage, Phys. Rev. B 74, 195326 �2006�.

34 S. Oberholzer, E. V. Sukhorukov, C. Strunk, C. Schonenberger,
T. Heinzel, and M. Holland, Phys. Rev. Lett. 86, 2114 �2001�; S.
Oberholzer, E. V. Sukhorukov, and C. Schönenberger, Nature
�London� 415, 765 �2002�.

35 S. Gustavsson, R. Leturcq, M. Studer, I. Shorubalko, T. Ihn, K.
Ensslin, D. C. Driscoll, and A. C. Gossard, Surf. Sci. Rep. 64,
191 �2009�.

36 L. K. Hua, Harmonic Analysis of Functions of Several Complex
Variables in the Classical Domains �American Mathematical
Society, Providence, RI, 1963�.

37 I. G. MacDonald, Symmetric Functions and Hall Polynomials
�Oxford University Press, Oxford, 1998�.

38 This follows from the Jacobi-Trudi identity expressing the Schur
functions through elementary symmetric functions, the latter be-
ing polynomials in matrix entries when evaluated at the eigen-
values.

39 Y. V. Fyodorov and B. A. Khoruzhenko, J. Phys. A 40, 669
�2007�.

40 For example, see problem 68 in Part Two in the textbook by G.
Pólya and G. Szegö, Problems and Theorems in Analysis. Vol-
ume I: Series, Integral Calculus, Theory of Functions �Springer,
New York, 1976�.

41 A. B. Balantekin, Phys. Rev. D 62, 085017 �2000�.
42 K. W. J. Kadell, Adv. Math. 130, 33 �1997�.

43 J. Kaneko, SIAM J. Math. Anal. 24, 1086 �1993�.
44 Z. M. Yan, Can. J. Math. 44, 1317 �1992�.
45 In the mathematical literature the inverse of c
 is known as the

product of all hook lengths of the partition 
.
46 The structure of Eq. �18b� has been verified by symbolical com-

putation of Eq. �17� in Mathematica, however, its exact analyti-
cal proof is still lacking. Our analysis suggests that for those
partitions which have all the aj’s distinct, the corresponding bj’s
are given by bj =aj −
 j�2 /�−1�. In the general case, finding
similar relation between these two objects is an interesting open
problem.

47 B. L. Altshuler, V. E. Kravtsov, and I. V. Lerner, Zh. Eksp. Teor.
Fiz. 91, 2276 �1986� �Sov. Phys. JETP 64, 1352 �1986��.

48 H. D. Politzer, Phys. Rev. B 40, 11917 �1989�.
49 C. W. J. Beenakker, Phys. Rev. Lett. 70, 1155 �1993�.
50 Pfaffian, or quaternion determinant, of an antisymmetric matrix

A is defined as follows: �Ref. 5� Pfaff�A�=�det�A�. It is impor-
tant to note that a Pfaffian is analytic in the matrix entries. Also,
in the particular case of unitary symmetry, �=2, one generally
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