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We develop a field theoretical approach to the classical two-dimensional �2D� models, particularly to 2D
Ising model �2DIM� and XYZ model, which is simple to apply for calculation of various correlation functions.
We calculate the partition function of 2DIM and XY model within the developed framework. Determinant
representation of spin-spin correlation functions is derived using fermionic realization for the Boltzmann
weights. The approach also allows formulation of the partition function of 2DIM in the presence of an external
magnetic field.
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I. INTRODUCTION

Two-dimensional Ising model1 �2DIM� is one of the most
attractive models in physics of low dimensions that describe
physical properties of real materials and admit exact
solution.2–11 Originally, 2DIM was solved by Onsager3 in
1944, and, subsequently, had attracted a steady interest of
field theorists and mathematical physicists. Many effective
and interesting approaches were developed to calculate the
free energy, magnetization, and correlation functions of the
model at large distances and all temperatures. Behavior of
the model at the critical point is governed by the conformal
symmetry, and thus, can be well described by the conformal
field theory, which was developed in the seminal article by
Belavin et al.12 All the critical indices of 2DIM were calcu-
lated within the conformal field theory approach, in full
agreement with the original lattice calculations.3,8

Although various physical characteristics of 2DIM have
been derived using different approaches, still there are open
questions that need to be answered. Some of the most impor-
tant characteristics of 2DIM include lattice correlation func-
tions and form factors.13–15 These quantities attract consider-
able interest in connection with the condensed-matter
problems,16–20 as well as with the problems in string
theory.21 Importance of form factors becomes especially vis-
ible when one switches on the magnetic field.15,22 Then the
system exhibits the phenomenon, known in particle physics
as quark confinement,22 observed also in spin-1/2 Heisenberg
chain with frustration and dimerization.18,23,24

One of the effective approaches to 2DIM is based on its
equivalence to the theory of two-dimensional free fermions
�see Ref. 11 and references therein� due to the presence of
Kac-Word sign-factor6 in the path-integral representation of
the partition function. Though many works have been dedi-
cated to the investigation of the 2DIM problem by means of
the fermionic �Grassmann� variables, none of them had
linked fermionic representation with vertex R-matrix formu-
lation and possible extensions to other integrable models.

One of the motivations of the present work is to fill this
gap and present a systematically developed field theoretical
approach �action formulation of the partition function� to the
2D Ising and XYZ models on a square lattice, which is based
on the Grassmann fields. The developed theory utilizes the

graded R operator formalism25–29 and allows the generaliza-
tion to other integrable models, which is demonstrated in this
work by operating with rather general R operator.

The paper is organized as follows. In Sec. II first we in-
troduce the partition function of the 2DIM on the square
lattice and demonstrate that the R matrices, constructed via
Boltzmann weights, satisfy Yang-Baxter equations. Then in
Sec. III the description of fermionic realization for the R
matrices is followed, with particular cases of the eight-vertex
model, which is equivalent to the one-dimensional �1D�
quantum XYZ model and 2DIM: the case of finite magnetic
fields is also considered. In Sec. IV the partition function is
written in the coherent-state basis in terms of scalar fermi-
ons. It is represented as a continual integral over the fermi-
onic fields with quadratic action for the 2DIM, when mag-
netic field vanishes, and for the free-fermionic limit of the
eight-vertex model �XY model�. The nonlocal fermionic ac-
tion is obtained in Sec. IV A for the case with nonzero mag-
netic field. Continuum limit of the action is derived in Sec.
IV C. In Sec. IV D the classical results for the free energy
and the thermal capacity are re-obtained within the devel-
oped theory.

In Sec. V we present the technique for fermionic repre-
sentation of correlation functions �with details included in
the Appendix�. In particular, the two-point correlation func-
tions in 2DIM are considered on the lattice and their expres-
sions are written in the Fourier coordinate basis. In the limit
of infinite lattice, large distance spin-spin correlation func-
tions can be presented as a determinant �Sec. V�, which co-
incides with the Toeplitz determinant, studied in Ref. 8. Sec-
tion VI is devoted to the investigation of the spectrum of
one-dimensional quantum chain problem, which is equiva-
lent to the classical 2DIM. The work is supplemented with
an appendix with rather detailed description of the Jordan-
Wigner spin-fermion transformation on 2D lattice, which we
have used in the course of the calculations.

II. BOLTZMANN WEIGHTS AND YANG-BAXTER
EQUATION

�1� Boltzmann weights. Classical two-dimensional Ising
model on the square lattice can be defined via its local Bolt-
zmann weights

PHYSICAL REVIEW B 80, 125128 �2009�

1098-0121/2009/80�12�/125128�19� ©2009 The American Physical Society125128-1

http://dx.doi.org/10.1103/PhysRevB.80.125128


W��
���� = eJ1��̄��̄��+�̄��̄���+J2��̄��̄�+�̄���̄���,

�,�,��,�� = 0,1, �2.1�

where the two state spin variables �̄�= ��1� are assigned to
the vertices of the lattice. The partition function

Z�J1,J2� = �
��,��

� W��
���� �2.2�

is a sum over spin configurations of products of the Boltz-

mann weights W��
����, each associated with the elementary

square plaquette with vertices �, �, ��, and �� and arranged
in a checkerboard pattern �dashed squares in Fig. 1�. There
are imposed periodic boundary conditions on the spin vari-
ables.

Boltzmann weight W��
���� in Eq. �2.1� can be regarded as a

matrix,

W =�
e2�J1+J2� 1 1 e2�−J1+J2�

1 e2�J1−J2� e−2�J1+J2� 1

1 e−2�J1+J2� e2�J1−J2� 1

e2�−J1+J2� 1 1 e2�J1+J2�
� ,

�2.3�

acting as a linear operator on the direct product of two two-
dimensional linear vector spaces,

	�
	�
, �,� = 0,1; ���	���	W	�
	�
 = W��
����, �2.4�

where 	0
 and 	1
 are orthonormalized vectors � 0
1 � and � 1

0 �.
Matrix �2.3� can be represented as a tensor product of spin
operators,

W =
e2�J1+J2�

2
�1̂ � 1̂ + �z � �z� +

e2�J1−J2�

2
�1̂ � 1̂ − �z � �z�

+
e2�−J1+J2�

2
��1 � �1 − �2 � �2� +

e−2�J1+J2�

2
��1 � �1

+ �2 � �2� + �1̂ � �1 + �1 � 1̂� , �2.5�

where ����=1,2 ,z� are Pauli matrices and 1̂ is the two-
dimensional identity operator.

By use of a unitary transformation, one can represent the
matrix W in the form of the R matrix, corresponding to
the eight-vertex model. Let us define the unitary matrix U
= 1

�2
� 1 −1

1 1 �, such that U�zU
−1=�1, U�1U−1=�z, and U�2U−1

=−�2. Then the action of these unitary transformations on
the linear spaces, which are assigned to every site of the
two-dimensional square lattice �Fig. 1�, yields

R = �U−1
� U−1�W�U � U�

=
e2�J1+J2�

2
�1̂ � 1̂ + �1 � �1� +

e2�J1−J2�

2
�1̂ � 1̂ − �1 � �1�

+
e2�J2−J1�

2
��z � �z − �2 � �2� +

e−2�J1+J2�

2
��z � �z + �2

� �2� + �1̂ � �z + �z � 1̂� . �2.6�

Partition function �2.2� of the model can be expressed via
new weights Eq. �2.6��, as

Z = �
��,��

� R��
����, �2.7�

where R operator has the following matrix form:

R = 2�
cosh2J1�cosh2J2� + 1 0 0 cosh2J1�sinh2J2�

0 sinh2J1�cosh2J2� sinh2J1�sinh2J2� 0

0 sinh2J1�sinh2J2� sinh2J1�cosh2J2� 0

cosh2J1�sinh2J2� 0 0 cosh2J1�cosh2J2� − 1
� . �2.8�
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FIG. 1. �Color online� A fragment of the lattice of 2DIM: spin
variables correspond to vertices, local Boltzmann weights corre-
spond to dashed squares.
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From Eq. �2.8� it is apparent that R��
���� has the form of R

matrix corresponding to the XY model. It fulfills the “free-
fermionic” condition of the XY model,

R00
00R11

11 − R00
11R11

00 = R01
01R10

10 − R01
10R10

01. �2.9�

�2� Yang-Baxter equations. In this section we examine
whether matrix �2.8� is a solution of Yang-Baxter equations.
We shall verify this by using Baxter’s transformation,9

e�2J2 = cniu,k� � isniu,k� ,

e�2J1 = i�dniu,k� � 1�/�ksniu,k�� . �2.10�

It has been proven in Ref. 9 that for fixed k parameter, two
transfer matrices with different parameters u commute. The
case of k=1 corresponds to the point of phase transition.

Now we rewrite R matrix �2.8� in terms of functions
�2.10�,

R�u,k� =�
1 + i

cniu,k�dniu,k�
ksniu,k�

0 0
dniu,k�

k

0 i
cniu,k�
ksniu,k�

1

k
0

0
1

k
i

cniu,k�
ksniu,k�

0

dniu,k�
k

0 0 − 1 + i
cniu,k�dniu,k�

ksniu,k�

� . �2.11�

Let us multiply matrix �2.11� by −iksn�iu ,k� and define the
matrix r�u ,k� as

r�u,k� = − iksniu,k�R�u,k� . �2.12�

It is straightforward to verify that r�0,k�= I, where I=1̂ � 1̂ is
the identity matrix. Importantly, it takes place the relation

r�− u,k� = r−1�u,k� . �2.13�

Using the properties of the Jacobi elliptic functions, one can
verify that r�u ,k� satisfies the Yang-Baxter equation

�
�1,�2,�2�

r�1�2

�1�2�u − v,k�r�2�3

�2��3�u,k�r
�1�2�
�1�2�v,k�

= �
�2,�2�,�3

r�2�3

�2�3�v,k�r�1�2

�1�2��u,k�r
�2��3

�2�3�u − v,k� .

�2.14�

Note that there is also another R matrix corresponding to
2DIM. It is known, that the classical 2DIM is a special case
of the eight-vertex model.9 In general, the R matrix of the
eight-vertex �or XYZ� model can be parameterized by two
model parameters, k and �, as

rxyz =�
sn�i

� − u

2
,k�

sni�,k�
0 0 − ksn�i

� + u

2
,k�sn�i

� − u

2
,k�

0 1
sn�i

� + u

2
,k�

sni�,k�
0

0
sn�i

� + u

2
,k�

sni�,k�
1 0

− ksn�i
� + u

2
,k�sn�i

� − u

2
,k� 0 0

sn�i
� − u

2
,k�

sni�,k�

� . �2.15�
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The “Ising” limit corresponds to the choice of �= 1
2 I�, where

I� is one of two half-periods of the elliptic functions.9 In this
case the eight-vertex model, defined on a rectangular lattice,
splits into two independent Ising models defined on the two
sublattices.

�3� The transfer matrix and the Hamiltonian. For conve-
nience we denote the coordinates of the lattice sites by even-
even �2i ,2j� �black circles on Figs. 1 and 2�, and odd-odd
�2i+1,2j+1� �white circles on Figs. 1 and 2� numbers, and
assign two-dimensional linear spaces of quantum states of
spins 	�2i,2j
 and 	�2i+1,2j+1
 to each of these spaces. Periodic
boundary conditions imply

	�0,2j
 = 	�2N,2j
 and 	�2i+1,1
 = 	�2i+1,2N+1
 .

�2.16�

Local R�i , j� operators �2.8� are acting linearly on the prod-
uct of spaces 	�2i,2j
	�2i+1,2j−1
 at the sites �2i ,2j� and �2i
+1,2j−1�, moving them onto the sites �2i+1,2j+1� and
�2i+2,2j�,

R�i, j�:	�2i,2j
	�2i+1,2j−1
 ⇒ 	�2i+1,2j+1
	�2i+2,2j
 .

�2.17�

The product of R matrices on each chain along x direction on
the lattice �see Fig. 2� in the formulas of partition function
�2.7�, after summation over the boundary states, constitutes a
transfer matrix, �. Taking into account conditions �2.16�, we
obtain the following representation for the transfer matrices:

� j = tr1 �
i=N−1

0

R�i, j� � �
�0,2j

��0,2j	 �
i=N−1

0

R�i, j�	�0,2j
 .

�2.18�

They act on the states of spins at sites �2i+1,2j
−1�i=0,N−1,

		 j
 = 	�1,2j−1
	�3,2j−1
 ¯ 	�2N−1,2j−1
 ,

and map them onto the states at sites �2i+1,2j−1�i=0,N−1,

		 j+1
 = 	�1,2j+1
	�3,2j+1
 ¯ 	�2N−1,2j+1
 .

One can interpret the, y direction, marked by integers j, as a
time direction, while the transfer matrix � j will be the evo-
lution operator for discrete lattice time. In terms of the trans-
fer matrices, partition function �2.7� acquires the following
form:

Z = tr2�
j=N

1

� j � �
��2i+1,1�i=0,N−1

�	1	�
j=N

1

� j		1
 . �2.19�

In Eqs. �2.18� and �2.19�, tr1 and tr2 represent sums of the
states at the boundaries with �even, even� and �odd, odd�
coordinates �dark and light circles in the figures�, respec-
tively. Borrowing the usual terminology of the transfer-
matrix theory, we can refer the states marked by white circles
on the lattice as “quantum” states, while the states marked
with black circles as “auxiliary” states.

�4� 2D classical model as a �1+1�D quantum theory. Fol-
lowing to Ref. 30, one can introduce the limit

J1 � J
t, e−J2 � h
t, 
t � 1 �2.20�

for the continuous time, in order to establish connection be-
tween two-dimensional classical Ising model and a quantum
one-dimensional model. In this limit R-matrix �2.8� becomes

R =
I

h
t
+�

1 0 0 J/h
0 0 J/h 0

0 J/h 0 0

J/h 0 0 − 1
� +

h
t

2 �
1 0 0 0

0 − 1 0 0

0 0 − 1 0

0 0 0 1
� .

�2.21�

It acquires the following operator form:

R =
1

h
t
�1̂ � 1̂ + 2
tJ�1 � �1 + h�1 � �z + �z � 1��� .

�2.22�

The coefficient of 
t in log �, constructed with R-matrices
�2.22�, defines 1D quantum Hamiltonian for the Ising model
on a chain in a transverse magnetic field h,10

H = �
i

J�1�i��1�i + 1� + h�z�i�� . �2.23�

�5� Finite magnetic field. The Boltzmann weights of
the classical 2DIM in a uniformly applied magnetic field
B have the following matrix representation: WB

��
����

=eJ1��̄��̄��+�̄��̄���+J2��̄��̄�+�̄���̄���+�B/2���̄�+�̄�+�̄��+�̄���. Operator
representation of WB after unitary transformation gets
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FIG. 2. �Color online� �a� Bold lines and circled vertices repre-
sent a fragment of the lattice of the model in coordinate plane
�dotted lines�. �b� Local R operator.
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RB = U−1
� U−1WBU � U

=
e2�J1+J2�

2
cosh2B��1̂ � 1̂ + �1 � �1� +

e2�J1−J2�

2

��1̂ � 1̂ − �1 � �1� +
e2�J2−J1�

2

���z � �z − �2 � �2� +
e−2�J1+J2�

2
��z � �z + �2 � �2�

+
e2�J1+J2�

2
sinh2B��1̂ � �1 + �1 � 1̂� + sinhB�

���1 � �z + �z � �1� + coshB��1̂ � �z + �z � 1̂� .

�2.24�

In the limit

J1 � J
t, e−J2 � h
t, B � B
t, 
t � 1,

�2.25�

operator RB obtains the form

RB =
1

h
t
�1̂ � 1̂ + 2
t�J�1 � �1 + h�1̂ � �z + �z � 1̂�

+
B
2

�1̂ � �1 + �1 � 1̂��� , �2.26�

which establishes an equivalence with the quantum 1DIM in
the magnetic field B. In this case the operator 1


t log �, when

t→0, defines the following structure of Hamiltonian opera-
tor:

HB = �
i
�J�1�i��1�i + 1� + h�z�i� +

B
2

�1�i�� .

III. FERMIONIC REALIZATION
OF BOLTZMANN WEIGHTS

Besides the matrix formulation for Boltzmann weights
�2.5� and �2.6�, one can think of alternative representations.
Examples include representation of the R matrix in the Fock
space of the scalar fermions and in a space with the basis of
fermionic coherent states, developed in Refs. 25–27 and 29.
These reformulations are fully equivalent, and they allow
developing a field theory corresponding to the model. The
latter simplifies calculations of physical quantities �particu-
larly, the free energy and the magnetization� of the model,
and can be extended for the computation of form factors too,
which are problematic in the standard scheme.

Let us now consider the graded Fock space of scalar fer-
mions c+�i , j� and c�i , j�, on the lattice, �c+�i , j� ,c�i , j��+
=ik jr�, identifying the two-dimensional basis at each site,
labeled by �i , j�, with 	0
i,j �c�i , j�	0
i,j =0�; and 	1
i,j
=c+�i , j�	0
i,j.

Then it is not hard to construct fermionic representation
of the R operator. Note, that the R operator defined in the
previous section “permutes” the arrangement of the spaces

�as it is a “check” R matrix�, R : 	��
1	��
2⇒ 	�
2	�
1, so for
graded spaces we have

R = R��
����	�
2	�
12���	1���	

= R��
����	�
2���		�
1���	�− 1�p����p���, �3.1�

where p���=� is the parity of the space 	�
. Operators
	�
i���	 act on the Fock space with the basis �	0
i , 	1
i�, as

	0
i�0	 = 1 − ci
+ci, 	1
i�1	 = ci

+ci, 	0
i�1	 = ci, 	1
i�0	 = ci
+.

This means, that in terms of two scalar fermions �ci
+ ,cj�

=ij and �ci ,cj�= �ci
+ ,cj

+�=0, i , j=1,2, the R-perator in the
zero-field limit, B=0, reads

R�c1
+,c1;c2

+,c2� = R00
00 + R01

01c1
+c2 + R10

10c2
+c1 + �R10

01 − R00
00�c1

+c1

+ �R01
10 − R00

00�c2
+c2 + R00

11c2
+c1

+ + R11
00c2c1

+ �R00
00 − R10

01 − R01
10 − R11

11�c1
+c1c2

+c2, �3.2�

where Rij
kr are the matrix elements of the R matrix.

�1� The fermionic representation Eq. �3.2�� of the Ising
model’s R-matrix �2.8� has the following matrix elements:

R00
00 = 2�cosh2J1�cosh2J2� + 1� ,

R11
11 = 2�cosh2J1�cosh2J2� − 1� ,

R01
01 = R10

10 = 2 sinh2J1�cosh2J2� , �3.3�

R10
01 = R01

10 = 2 sinh2J1�sinh2J2� ,

R00
11 = R11

00 = 2 cosh2J1�sinh2J2� .

In the following we shall operate in the coherent-state basis.
For that purpose we need to represent R operator in the
normal ordered form. For zero magnetic field the operator R
can be expressed as an exponent of a quadratic form a con-
sequence of property �2.9��,

R = R00
00:exp A�c1

+,c2
+,c1,c2�: , �3.4�

where

A�c1
+,c2

+,c1,c2� = �c − 1��c1
+c1 + c2

+c2� + b�c1
+c2 + c2

+c1�

+ d�c2
+c1

+ + c2c1� , �3.5�

a =
R00

00

2
, b = R01

01/R00
00,

c = R01
10/R00

00, d = R00
11/R00

00. �3.6�

For a finite magnetic field B the fermionic realization RB
of the RB-operator �2.24� can be obtained in the same way,
substituting the corresponding matrix elements in formulas
�3.1�. Then the normal ordered form of the RB can be rep-
resented as follows:

RB = rB:eAB�c1
+,c2

+,c1,c2�: , �3.7�
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AB�c1
+,c2

+,c1,c2� = cB�c1
+c1 + c2

+c2� + bB�c1
+c2 + c2

+c1�

+ dB�c2
+c1

+ + c2c1� + hB�c1 + c2 + c1
+ + c2

+�

+ ��1c1 + �2c1
+�c2

+c2 + ��2c2 + �1c2
+�c1

+c1,

�3.8�

with

rB = 2 coshB� + 2 cosh2J1�cosh2J2� + e2�J1+J2��sinhB��2,

cB = −
2

rB
�coshB� + cosh2�J1 − J2��� ,

bB =
1

2rB
�e2�J1+J2��sinhB��2 + 2 cosh2J2�sinh2J1�� ,

dB =
1

2rB
�e2�J1+J2��sinhB��2 + 2 cosh2J1�sinh2J2�� ,

hB =
1

rB
�sinhB� + sinh2B�e2�J1+J2�� ,

�1 =
4

rB
2 �e2J1 coshB� + cosh2J2��sinhB�sinh2J1� ,

�2 = −
4

rB
2 sinhB�sinh2J1�sinh2J2� . �3.9�

�2� General R matrix and XYZ model. The fermionic rep-
resentation �3.2� is justified as well for arbitrary R matrix,
which has form

R =�
R00

00 0 0 R00
11

0 R01
01 R01

10 0

0 R10
01 R10

10 0

R11
00 0 0 R11

11
� . �3.10�

Now the A�c1
+ ,c2

+ ,c1 ,c2� in the normal ordered form �3.4�
has a quartic term also,

A�c1
+,c2

+,c1,c2� = �c − 1�c1
+c1 + �c� − 1�c2

+c2 + bc1
+c2 + b�c2

+c1

+ dc2
+c1

+ + d�c2c1 + 
c1
+c1c2

+c2, �3.11�

a =
R00

00

2
, b =

R01
01

R00
00, b� =

R10
10

R00
00, c =

R10
01

R00
00, c� =

R01
10

R00
00 ,

d =
R11

00

R00
00, d� =

R00
11

R00
00 ,


 =
R01

01R10
10 + R11

00R00
11 − R10

01R01
10 − R00

00R11
11

R00
002 . �3.12�

For the XYZ model’s general R matrix, given in Eq. �2.15�,
the 
 parameter writes as


 = 2

sn�i
� + u

2
,k�cni�,k�dni�,k�

sn�i
� − u

2
,k��sni�,k��2

. �3.13�

The limit 
=0 corresponds to the free-fermionic XY model.
It fulfills when

cni�,k�dni�,k� = 0. �3.14�

Possible solutions are cnI ,k�=0 and dnI+ iI�k�=0. Here
I , I� are the half-periods of the elliptic functions. Note that
the Ising limit derived in the Ref. 9 corresponds to the values

� = I�/2, 
 = 2

k1/2�1 + k�sn�i
� + u

2
,k�

sn�i
� − u

2
,k� . �3.15�

IV. QUANTUM FIELD THEORY REPRESENTATION
ON THE LATTICE: WITH GENERAL R MATRIX

AND 2DIM

In this section we will introduce fermionic fields �̄�i , j�
and ��i , j�, corresponding to the coherent states of scalar
fermions c+�i , j� and c�i , j�. By definition, coherent states are
the eigenstates of annihilation operators of scalar fermions.
For a set of the scalar fermions ci and ci

+, they are defined by
the following relations:

ci	�i
 = �i	�i
, ��̄i	ci
+ = ��̄i	�̄i. �4.1�

Because of the Fermi statistics, namely, anticommutation re-
lations, these eigenvalues are Grassmann variables denoted

in Eq. �4.1� by �i and �̄i. They fulfill �i� orthonormality and
�ii� completeness relations,

��̄i	� j
 = ije
�̄i�i, � d�̄id�ie

−�̄i�i	�i
��̄i	 = I . �4.2�

The kernel of any normal ordered operator K��ci
+ ,cj�� in

terms of coherent states can be obtained simply by replacing
creation-annihilation operators ci ,ci

+ by their eigenvalues and

multiplying by exp��i�̄i�i�,

K���̄i,� j�� � �� �̄i	K��ci
+,cj��	� � j


= exp��i
�̄i�i�K���̄i,� j�� . �4.3�

The trace of the operator K��ci
+ ,cj�� in coherent states is an

integral over the Grassmann variables,

tr K��ci
+,cj�� =� D�D�̄ exp��i

�̄i�i�K���̄i,� j�� ,

D�D�̄ = �
i

d�id�̄i. �4.4�

In order to obtain the form of the partition function Z Eq.
�2.7�� in the basis of coherent states, let us at each circled
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vertex of the lattice, between the R�i , j� operators �see Fig.
2�, insert the following identity operators:

I =� d�̄�i, j�d��i, j�e−�̄�i,j���i,j�	��i, j�
��̄�i, j�	 .

With the properties of coherent states represented above, we
can easily calculate the matrix elements of the R-operator
�3.2�, using the normal ordered form representations �3.4�
and �3.11�, in terms of Grassmann fields,

��̄�2i + 1,2j + 1�	��̄�2i + 2,2j�	

�R�i, j�	��2i,2j�
	��2i + 1,2j − 1�


= R00
00 exp�A�̄�2i + 2,2j�,�̄�2i + 1,2j + 1�,��2i,2j�,��2i

+ 1,2j − 1�� + �̄�2i + 2,2j���2i,2j� + �̄�2i + 1,2j

+ 1���2i + 1,2j − 1�� . �4.5�

Then the partition function Z for large N can be written as a
path integral,

Z = tr� j=1

N �i=N−1

0 R�i, j� = �R00
00�N2� D�̄D�e−A��̄,��,

�4.6�

with action A��̄ ,��,

− A��̄,�� = �i,j
�b�̄�2i + 2,2j���2i + 1,2j − 1� + b��̄�2i

+ 1,2j + 1���2i,2j� + c�̄�2i + 2,2j���2i,2j�

+ �c��̄�2i + 1,2j + 1���2i + 1,2j − 1�� + d�̄�2i

+ 2,2j��̄�2i + 1,2j + 1� + d���2i,2j���2i + 1,2j

− 1� + 
�̄�2i + 2,2j���2i + 1,2j − 1��̄�2i + 1,2j

+ 1���2i,2j� − �̄�2i,2j���2i,2j� − �̄�2i + 1,2j

+ 1���2i + 1,2j + 1�� + � j
�̄�2N,2j���0,2j�

+ �i
�̄�2i + 1,2N + 1���2i + 1,1� . �4.7�

In sum �4.7� the last two terms come from the trace. So, the
partition function of a model, defined by R-matrix �3.10�, has
fermionic path-integral representation with local action �4.7�
on the two-dimensional lattice.

As it is apparent, the 2DIM has fermionic representation
with local quadratic action see Eqs. �3.5� and �3.3��. It is
true also for the partition function of the XY model, defined
with the Eqs. �3.14�, as well, since the Gaussian quadratic
form is a consequence of the “free-fermionic” property,
given by Eq. �2.9�, and the formula of the coefficient at quar-
tic term �3.12�. On the other hand, the Ising limit of the
eight-vertex �XYZ� model does not correspond to a quadratic
action, as it is followed from the Eqs. �3.15�. However it is
well known that the two limits of the XYZ model-Ising limit
�XZ� and free-fermionic limit �XY� are equivalent and can be
brought one to another by redefinition of the model param-
eters.

A. Path integral representation of partition function
for the case of finite magnetic field

For construction of partition function of 2DIM in a non-
zero magnetic field we make use of fermionic expression
�3.7�. In order to take into account the graded character of
the R�B� operators �recall, that they have no definite parity�,
we are led to include nonlocal operators,

Z�B� = tr�
j=1

N

�
i=N−1

0

�RB
�even��i, j� + RB

�odd��i, j�J�i, j�� .

�4.8�

In Eq. �4.8� operators RB
�even� and RB

�odd� represent the parts of
the R�B�-operator �3.7� that have even and odd gradings �or
their series expansions consist of even/odd powers of B or
fermionic operators�, correspondingly. Operator J�i , j�=��1
−2n� is the Jordan-Wigner nonlocal operator see Eq. �5.5�
and the Appendix�.

Let us introduce formal definitions,

RB�
�even�/�odd��i, j� = RB

�even�/�odd��i, j�1 − 2n�2i,2j�� ,

RB�
�even�/�odd��i, j� = 1 − 2n�2i + 1,2j + 1��RB

�even�/�odd��i, j� .

�4.9�

Then we can expand the product in Eq. �4.8� and rewrite it as

Z�B� = tr �
C�k,r�

�
i,j

RB
Ckr�i, j� , �4.10�

where the sum goes over all lattice sites denoted by C�k,r�.
Operator RB

Ckr�i , j� is attached to the square �i , j� �see Fig. 2�.
It is equal to RB

�odd��i , j� or RB�
/��odd��i , j�, if �i , j�= �k ,r�, and

is equal to RB
�even��i , j� or RB�

/��even��i , j� otherwise.
Each summand in Eq. �4.10� can be written in the basis of

coherent states in the same way as it was done in previous
subsection. Finally we find

Z�B� =� D�̄D� exp− �i,j
�̄�i, j���i, j�

+ � j
�̄�2N,2j���0,2j�

+ �i
�̄�2i + 1,2N + 1���2i + 1,1� + IB��̄,��� ,

IB��̄,�� = ln �
C�k,r�

�
i,j

��̄�2i + 1,2j + 1�	��̄�2i + 2,2j�	RB
Ckr�i, j�

�	��2i,2j�
	��2i + 1,2j − 1�
 . �4.11�

Because we operate with local fermionic RB matrices, form
�4.11� of the partition function will be held for the case of
inhomogeneous magnetic field as well.

B. Partition function

For calculation of partition function �4.6� in the “free-
fermionic” case 
=0, we need to diagonalize the action

A��̄ ,��. Taking into account antiperiodic boundary condi-
tions imposed on the Grassmann fields,

CHARACTERISTICS OF TWO-DIMENSIONAL LATTICE… PHYSICAL REVIEW B 80, 125128 �2009�

125128-7



�̄�2N,2j� = − �̄�0,2j�, ��2N,2j� = − ��0,2j� ,

�̄�2N + 1,2j + 1� = − �̄�1,2j + 1� ,

��2N + 1,2j + 1� = − ��1,2j + 1� ,

�̄�2i,2N� = − �̄�2i,0�, ��2i,2N� = − ��2i,0� ,

�̄�2i + 1,2N + 1� = − �̄�2i + 1,1� ,

��2i + 1,2N + 1� = ��2i + 1,1� , �4.12�

we can perform the Fourier transformation with odd mo-
menta,

��r,k� =
1

N
�

nr,nk=0

N−1

e−�i�/2N��2nr+1�r+�2nk+1�k�

� ��� �

2N
�2nr + 1�,

�

2N
�2nk + 1�� . �4.13�

Here �=1 for even coordinates �r ,k�, and �=2 for odd co-
ordinates. After defining new Grassmann fields
�3�p ,q� ,�4�p ,q� as

�1�� − p,� − q� � − �̄3�p,q�,

�2�� − p,� − q� � − �̄4�p,q� ,

�̄1�� − p,� − q� � �3�p,q�, �̄2�� − p,� − q� � �4�p,q� ,

�4.14�

we will come to the following simple form for the action A
�4.7� in the momentum space

− A��̄,�� = �
p,q

�
k,r

Akr�p,q��̄k�p,q��r�p,q� . �4.15�

In Eq. �4.15� we have introduced the notations

A�p,q� =�
cei2p − 1 bei�p+q� 0 − dei�p−q�

b�ei�p+q� c�e2iq − 1 de−i�p−q� 0

0 d�e−i�p−q� ce−2ip − 1 b�e−i�p+q�

− d�ei�p−q� 0 be−i�p+q� c�e−2iq − 1
� ,

�4.16�

and

p =
�

2N
�2np + 1�, q =

�

2N
�2nq + 1� ,

np = 1, . . . ,N/2 − 1, nq = 1, . . . ,N − 1. �4.17�

Then the partition function acquires form of a product of
determinants

Z = �R00
00�N2 �

np,nq=0

�N/2�−1,N−1

Det�A��
�2np + 1�

2N
,�

�2nq + 1�
2N

�� .

�4.18�

The determinants are found as

DetA�p,q�� = �1 + 2�R01
10

R00
00�2

+ �R11
11

R00
00�2

− 2
R01

10�R00
00 − R11

11�
�R00

00�2 �cos2p� + cos2q��

+ 4�R01
10

R00
00�2

cos2p�cos2q� − 2�R01
01

R00
00�2

�cos2�p + q�� − 2�R00
11

R00
00�2

cos2�p − q��� .

�4.19�

Here we have assumed that R01
10=R10

01 and R01
01=R10

10.
Ising model. Substituting the matrix elements given in

Eqs. �3.3�, we are arriving at

DetA�p,q���1 + cosh2J1�cosh2J2��2

= 2�1 + �cosh2J1�cosh2J2��2 + �sinh2J1�sinh2J2��2

− 2 sinh2J1�sinh2J2��cos2p� + cos2q��

− �sinh2J1��2cos2�p + q�� − �sinh2J2��2

�cos2�p − q��� . �4.20�

In the limit p→0, q→0, it takes place DetA�p ,q��
→ �DetA0��2, with

DetA0� = 2� 1 − sinh2J1�sinh2J2�
1 + cosh2J1�cosh2J2�� . �4.21�

Equations �4.20� and �4.21� suggest that DetA�p ,q���0 ev-
erywhere if �p ,q�� �0,0�, and only exactly at �p ,q�= �0,0�
and �1−sinh2J1c�sinh2J2c�=0�, we have DetA0�=0, corre-
sponding to the point of the second-order phase transition.

XY model. Free fermionic limit of the eight-vertex model
corresponds to relation �3.14�. The solutions of that relations
are �to within the periods of the elliptic functions�

i� = I or i� = I + iI�. �4.22�

When i�= I, then the expression in Eq. �4.19� writes as

DetAxy�p,q�� = 2�1 + � sniu�,k�dniu,k�
cniu�,k� �2

��1 + 2 cos2p�cos2q�� −
dniu�,k�2

cniu�,k�2

�cos2�p + q�� − �ksniu�,k��2

�cos2�p − q��� . �4.23�

Here there is redefinition of the parameter u of the Eq.
�2.15�, u�= �+u

2 . When k=0 XY model goes to the XX model,
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DetAxx�p,q�� =
2

�cosu���2 �1 + 2�sinu���2

�cos2p�cos2q� − cos2�p + q��� .

�4.24�

As we can see this expression goes to the value 0, when p
=−q= �

4 , for all the values of parameter u�, which is a hint of
the known fact,9 that the region −1�
�1 corresponds to
the critical line of the XYZ model.

C. Continuum limit: IM

At the critical line, which is described by the parameters
J1c and J2c, correlation length of the system goes to infinity.
All the relevant distances become large at criticality and it is
natural at that limit to be interested in large distances com-
pared to the lattice constant. It is well known that in the
continuum limit, at the point of the second-order phase tran-
sition, 2DIM is described by free massless Majorana fermi-
ons. Below, for achieving it, we are going to expand the
action near the point J1=J2=Jc �considering for simplicity
homogeneous case� with small values of momenta p ,q.

Diagonalization of matrix �4.16� brings the action to the
form

− A��̄,�� = �
p,q

Ek�p,q��̄k��p,q��k��p,q� , �4.25�

with the eigenvalues Ek�p ,q� of A�p ,q� being

E1�p,q� = e1 − e2 − e3, E2�p,q� = e1 − e2 + e3,

E3�p,q� = e1 + e2 − e4, E4�p,q� = e1 + e2 + e4,

e1 =
c

2
�cos2p� + cos2q�� − 1,

e2 = � c2

4
�cos2p� − cos2q��2 − �d sinp − q��2

− �b sinp + q��2�1/2
,

e3 = � c2

4
�cos4p� + cos4q� − 2� + �d cosp − q��2

+ �b cosp + q��2� − �c�cos2p� + cos2q��e2�1/2,

e4 = � c2

4
�cos4p� + cos4q� − 2� + �d cosp − q��2

+ �b cosp + q��2� + �c�cos2p� + cos2q��e2�1/2.

�4.26�

We see from Eq. �4.26� that at the critical value of coupling
J, J=Jc, and at the momenta �p ,q�= �0,0� �or �p ,q�= �0,���
two eigenvalues E2�p ,q� and E4�p ,q� become 0, whereas the

remaining two eigenvalues E1�p ,q� and E3�p ,q� take the
value − 4

3 . As we have mentioned, taking the continuum limit
at the point of second-order phase transition is justified, as
the lattice constant can be neglected compared to the corre-
lation length, and the latter is proportional to the inverse of
mass. Thus, we expand the action for the massless fermions

�̄k��p ,q� and �k��p ,q�, k=2,4, at the critical point. Expansion
of the eigenvalues gives

E2�p,q� = �2�J − Jc� − �− p2 − q2,

E4�p,q� = �2�J − Jc� + �− p2 − q2. �4.27�

After a linear transformation of the field variables �2��p ,q�
and �4��p ,q�, the sum

��2�J − Jc� − �− p2 − q2��̄2��p,q��2��p,q� + ��2�J − Jc�

+ �− p2 − q2��̄4��p,q��4��p,q�

takes the form

��̄+�p,q�,�̄−�p,q��� m iq − p

iq + p m
���+�p,q�

�−�p,q�
� ,

m = �2�J − Jc� . �4.28�

Continuum action of 2DIM can be conveniently written upon
introducing two-dimensional gamma matrices �0=�1 and
�1= i�2, as

− A��̄,�� =� �̄�p,q��m − i��p����p,q� . �4.29�

Here ��p ,q�= �
�+�p,q�
�−�p,q� �, �̄�p ,q�= ��̄+�p ,q� �̄−�p ,q��, p0= iq,

and p1= p.

D. Thermal capacity

Determinant representation of partition function �4.18�
leads to the following expression for free energy,
F=−�T ln Z� /N2, per site:

F = − T/N2�
p,q

ln 2�1 + �cosh2J1�cosh2J2��2

+ �sinh2J1�sinh2J2��2 − 2 sinh2J1�sinh2J2��cos2p�

+ cos2q�� − �sinh2J1��2cos2�p + q��

− �sinh2J2��2cos2�p − q��� . �4.30�

The thermal capacity is related to the second derivative of
the free energy with respect to the temperature as follows:

C = − T
�2F

�T2 . �4.31�

In order to obtain the temperature dependence of the free
energy, one has to replace parameters �J1 ,J2� with
�J1 /T ,J2 /T�. Then the result for thermal capacity C follows
upon performing this replacement in Eq. �4.31� and substi-
tuting F into Eq. �4.31�. The result has a simple form in
homogeneous case, J1=J2=J, and reads
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C = 4
1

N2� J

T
�2

�
p,q

N,N/2 �2

cosh�4
J

T
� + cosh�8

J

T
� − 4�cosp�cosq��2cosh�4

J

T
�

�cosh�2
J

T
��4

− 4�cosp�cosq�sinh�2
J

T
��2

−��1 + cosh�4
J

T
� − 4�cosp�cosq��2�sinh�4

J

T
�

�cosh�2
J

T
��4

− 4�cosp�cosq��2 �
2

� . �4.32�

In the thermodynamic limit, N→�, the sum in Eq. �4.32� should be replaced by the integral as

1

N2 �
p,q

N/2,N

→
1

�2�
0

�/2 �
0

�

dpdq . �4.33�

Then, after performing the integration, we obtain

C =
4

�
� J

T
csch�4

J

T
��2�− 4�cosh�2

J

T
��2�� + �1 + cosh�4

J

T
��E�4�sech�2

J

T
�tanh�2

J

T
��2��

+ �15 + cosh�8
J

T
��K�4�sech�2J

T
�tanh�2J

T
��2�� . �4.34�

Here the functions E and K are the complete elliptic inte-
grals of the second and the first kinds. Equation �4.34� repro-
duces the expression for the thermal capacity obtained from
Onsager’s solution.3,7,8 The consequence of the factorization
property of the determinants in expression Eq. �4.18� for the
partition function,

DetA�p,q���1 + cosh2J1�cosh2J2��2/4

= �cosh2J1�cosh2J2� − cosp + q�sinh2J1� − cosp

− q�sinh2J2�� � �cosh2J1�cosh2J2� + cosp

+ q�sinh2J1� + cosp − q�sinh2J2�� , �4.35�

demonstrates the link to Onsager’s solution.3 Note, that the
first and the second terms in the product on right-hand side
of Eq. �4.35� differ only by shifts �− p̄ and �− q̄, where p̄
= p+q and q̄= p−q. Therefore, expression �4.18� for the par-
tition function can be written as a product of the first terms in
Eq. �4.35� only, where p̄= p+q and q̄= p−q take values in the
interval from zero to �.

V. CORRELATION FUNCTIONS: IM, B=0

Fermionic approach formulated above is very convenient
for calculation of correlation functions and spontaneous
magnetization. Let us first analyze vacuum expectation value
of the spin variable, �̄�,

��̄��i, j�
 =
1

Z
�
��̄�
��̄��i, j��

k,r
W����

�����k,r�� . �5.1�

Here, as in the beginning, �̄��i , j� are classical spin variables
attached to the vertex �i , j�.

Our recipe for further evaluation is simple. For calcula-
tion of the average of any quantity, say ḡ(��̄��i , j��), first we
represent it in the spin operator form �as it was done for the
Boltzmann weights in Sec. I� as a function of Pauli opera-
tors, g(��k�i , j��). Then we determine corresponding fermi-
onic realization of g in the normal ordered form
Ngf(�c+�i , j� ,c�i , j��)�. Average �ḡ(��̄��i , j��)
 then will be

equivalent to the Green’s function �Ngf(��̄�i , j� ,��i , j��)�
 in
the corresponding fermionic field theory with local quadratic
action �4.7� on the lattice.

The average of a spin variable in the Eq. �5.1� can be
expressed via operator forms of Boltzmann weights �2.5� and
R-matrices �2.6�,

��̄��i, j�
 =
1

Z
tr��k,r�j� W�k,r���k�i� W�k, j��z�i, j�

���k,r�j� W�k,r���k�i� W�k, j�

=
1

Z
tr��k,r�j� R�k,r���k�i� R�k, j��1�i, j�

���k,r�j� R�k,r���k�i� R�k, j� . �5.2�

Here the trace is understood as the composition of tra defined
in Eqs. �2.18� and �2.19�: tr= tr2 tr1. By taking into account
Jordan-Wigner nonlocal operator, J=��1−2n� �for details,
see the Appendix�, we can represent the single spin operators
on the lattice via fermionic creation-annihilation operators,

��1�2i,2j�
 = c�2i,2j� + c+�2i,2j��J�i, j� , �5.3�
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��1�2i + 1,2j + 1�
 = c�2i + 1,2j + 1�

+ c+�2i + 1,2j + 1��J�i, j� , �5.4�

J�i, j� = �
k�i

1 − 2n�2k + 1,2j + 1�� · �
r�j

1 − 2n�0,2r + 2�� .

�5.5�

For a finite lattice the expectation value given by Eq. �5.2�
always acquires value 0 due to the Z2 symmetry of the
model. In fermionic approach this is quite apparent, as it
corresponds to an integration of a polynomial over odd
Grassmann variables see Eqs. �5.3� and �5.4��, while the
integration goes by even number of variables, Eq. �4.4�. The
case of infinite lattice will be specified in the next section.

Now it is convenient to rewrite operators �1−2n� as

1 − 2n = �c+ + c��c+ − c� , �5.6�

which brings expressions �5.3� and �5.4� to the form �c+

+c���c++c��c+−c��. Then we insert the resulting formulas
of Eqs. �5.3� and �5.4� into Eq. �5.2�. In the previous section
we included fermionic fields for each R operator locally �or
for each dashed square in the lattice on Fig. 2�, later repre-
sented them in the normal ordered form and finally switched
to the coherent basis. In order to escape complications in the
further calculations, we shall always attach “even-even”
c+�2i ,2j��c�2i ,2j�� fermionic operators to R�i , j� matrix,
Fig. 3�a��, and the “odd-odd” fermionic operators c+�2k
+1,2r+1��c�2k+1,2r+1�� to R�k ,r� matrix Fig. 3�b��. In
Fig. 3 operators �c+�c� are shown by large circles on the
vertices. This choice, which of course will not affect the
result of the calculation of expectation values, has a simple
explanation.

Let us consider normal ordered forms of the operators
R�i , j�c+�2i ,2j��c�2i ,2j�� and c+�2k+1,2r+1��c�2k
+1,2r+1��R�i , j�, where R is the fermionic R operator
given by Eq. �3.2�. They are particular cases of a general
expression

R00
00:x1c1 + x2c2 + x3c1

+ + x4c2
+�eA�c1

+,c2
+,c1,c2�: , �5.7�

with different choice of x1 ,x2 ,x3, and x4 depending on pa-
rameters b ,c ,d see Eq. �3.6��. A is defined by Eq. �3.5�.

While for operators c+�2i ,2j��c�2i ,2j��R�i−1, j� and
R�i , j+1�c+�2k+1,2r+1��c�2k+1,2r+1��, fermionic nor-
mal ordered form belongs to the following general expres-
sion:

R00
00:x�c1 + c1

+ + c2 + c2
+� + �x1c1 + x2c1

+�c2
+c2

+ �x3c2 + x4c2
+�c1

+c1�eA�c1
+,c2

+,c1,c2�: . �5.8�

Equations �5.7� and �5.8� show that in the latter case we have
additional powers of Grassmann fields.

In expressions of the two-point operators �1�i , j��1�k ,r�
some of �1−2n� operators coincide and cancel each other
due to Eq. �A5�. The remaining operators between two
points, �i , j� and �k ,r�, form a path, which can be deformed
using feature �A16�. For example, if i1� i2, j2� j1, we have

�1�2i2 + 1,2j2 + 1��1�2i1,2j1� = c�2i2 + 1,2j2 + 1� + c+�2i2 + 1,2j2 + 1��1 − 2n�2i2 + 1,2j2 + 1���r=j1+1

j2 1 − 2n�2i2

+ 2,2r���k=i2+1

i1−1
1 − 2n�2k + 1,2j1 + 1��c�2i1,2j1� + c+�2i1,2j1��

= c+�2i2 + 1,2j2 + 1� − c�2i2 + 1,2j2 + 1���r=j1+1

j2 1 − 2n�2i2 + 2,2r���k=i2+1

i1−1
1 − 2n�2k

+ 1,2j1 + 1��c�2i1,2j1� + c+�2i1,2j1�� . �5.9�

Making use of expression �5.6�, we bring the correlation
functions ��1�i1 , j1��1�i2 , j2�
 to the form

�c+ − c�� �c+ + c��c+ − c��c+ + c�
 . �5.10�

With the help of the Wick’s theorem, we can represent aver-
age �5.10� in terms of the Pfaffian form with elements

�c+�i, j� � c�i, j��c+�k,r� � c�k,r��
 .

Let us consider in details the cases when two spins are ar-
ranged along a direct line on the lattice, in horizontal or in
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FIG. 3. �Color online� �a� R�i , j�c+�2i ,2j��c�2i ,2j��, �b�
c+�2k+1,2r+1��c�2k+1,2r+1��R�i , j�.
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vertical directions. Since there is a translational invariance in
both directions we shall restrict ourselves by two cases:
��1�0,0��1�0,2k�
 and ��1�2k+1,1��1�1,1�
. For the verti-
cally arranged spins we have

G�k� � ��1�0,2k��1�0,0�


=�c+�0,2k� + c�0,2k��

� �
r=0

k−1

1 − 2n�0,2r��c+�0,0� + c�0,0���
= �c+�0,2k� + c�0,2k��

� ��r=1

k−1
c�0,2r� − c+�0,2r��c+�0,2r� + c�0,2r���

� c�0,0� − c+�0,0��
 . �5.11�

Wick’s rules allow representing the last expression in Eq.
�5.11� as a square root of a determinant, and hence G�k� has
the following representation by means of a Gaussian path
integral:

G�k� =� D� exp�1

2 �
i,j=1

2k

Gij��i���j� − �
i=0

2k−1

��2i + 1���2i�� .

�5.12�

Here ��i�’s are Grassmann variables. Antisymmetric matrix
elements Gij are defined as

G2i+12j+1 = �c+�0,2i� − c�0,2i��c+�0,2j� − c�0,2j��
 ,

G2i2j = �c+�0,2i� + c�0,2i��c+�0,2j� + c�0,2j��
 ,

G2i2j+1 = �c+�0,2i� + c�0,2i��c�0,2i� − c+�0,2j��
 .

�5.13�

All the expressions in Eq. �5.13� can be easily derived in the
basis of coherent states �4.1�. As it was stated earlier, the
normal ordered form of the operator
R�i , j�c+�2i ,2j��c�2i ,2j�� has form �5.7�. The parameters
in this case are given by

�x1,x2,x3,x4� = ��1,d,c,b� . �5.14�

Let �x1� ,x2� ,x3� ,x4�� and �x1� ,x2� ,x3� ,x4�� be the parameters corre-
sponding to the operator �c+�c� at �0,2i� and �0,2j� points,
respectively. Then we can rewrite all the expressions in Eq.
�5.13� as a general function of these parameters, namely,
G�i , j , �x�� , �x���, which has the following integral form in
coherent-state basis:

G�i, j,�x��,�x��� =
�R00

00�N2

Z
� D�̄D�eA��̄,�� � x1���0,2i�

+ x2���1,2i − 1� + x3��̄�2,2i� + x4��̄�1,2i

+ 1�� � x1���0,2j� + x2���1,2j − 1�

+ x3��̄�2,2j� + x4��̄�1,2j + 1�� , �5.15�

where A and Z are defined in Eqs. �4.7� and �4.6�.
The second sum −�i=0

k−1��2i+1���2i�� in Eq. �5.12� and
hence the additional unity elements with G2i+12i�−G2i,2i+1� are
conditioned by the normal ordered version of relation 1
−2n= �c++c��c+−c�, i.e., :1−2nª1+ : �c++c��c+−c�:.

Then straightforward calculations lead to the following
expression for G�r , j , �x�� , �x���:

G�r, j,�x��,�x��� = 1/N2 �
n1=1,n2=1

N/2,N ��K1

k1
x3�x4� +

k

K1
x1�x2� −

k

K1
x4�x3� −

K1

k1
x2�x1���A−1�14 + �K1x3�x2� −

kk1

K1
x1�x4� + K1x4�x1� −

kk1

K1
x2�x3��

��A−1�12 + �K1

k
x4�x3� +

k1

K1
x2�x1� −

k1

K1
x3�x4� −

K1

k
x1�x2���A−1�23 + � 1

K1
x3�x2� −

K1

kk1
x1�x4� +

1

K1
x4�x1� −

K1

kk1
x2�x3���A−1�34

+ �K −
1

K
���x3�x3� − x1�x1���A

−1�13 + �x4�x4� − x2�x2���A
−1�24� + k�Kx3�x1� −

x1�x3�

K
��A−1�11 + k1�Kx4�x2� −

x2�x4�

K
�

��A−1�22 +
1

k
� x1�x3�

K
− Kx1�x3���A−1�33 +

1

k1
� x4�x2�

K
− Kx2�x4���A−1�44�	p=2�2n1+1/2N,q=2�2n2+1/2N. �5.16�

Here A is the 4�4 matrix defined by Eq. �4.16�, and

K = ei�2rp+2jq�, K1 = ei�2r+1�p+�2j+1�q�,

k = ei2p, k1 = ei2q, r, j = 1, . . . ,N . �5.17�

Similar expressions can be obtained for the horizontally arranged spins too,

G��k� � ��1�2k + 1,1��1�1,1�
 =�c+�2k + 1,1� − c�2k + 1,1���
r=1

k−1

1 − 2n�2r + 1,1��c+�1,1� + c�1,1��� , �5.18�
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which also admits integral representation �5.12�, in this case
with the matrix elements

G2i+1,2j+1 = �c+�2i + 1,1� − c�2i + 1,1��c+�2j + 1,1�

− c�2j + 1,1��
 ,

G2i,2j = �c+�2i + 1,1� + c�2i + 1,1��c+�2j + 1,1�

+ c�2j + 1,1��
 ,

G2i,2j+1 = �c+�2i + 1,1� − c�2i + 1,1��c+�2j + 1,1�

+ c�2j + 1,1��
 . �5.19�

The elements given by Eq. �5.19� can also be expressed by

the function G�i , j , �x�� , �x��� Eqs. �5.15� and �5.16��, but
here the parameters defined by the normal ordered form �5.7�
of the operator c+�2i+1,2j+1��c�2i+1,2j+1��R�i , j�
read

�x1,x2,x3,x4� = �b,c,d, � 1� . �5.20�

The above relations enable us to find correlation functions
for all the statistical models with weights, which can be writ-
ten in the matrix form �3.10�, with condition �2.9�, letting
R01

10=R10
01,R01

01=R10
10.

2DIM. Inserting the parameters �x�� , �x�� and the elements
of the inverse matrix A−1 defined for the 2DIM �3.3� into Eq.
�5.16�, we find the following expression for Eq. �5.19�:

G2i2j = G2i+12j+1 =
− 2

N2 �
n1=1

N/2−1

�
n2=1

N−1
sin2�i − j�p�

a2 DetA�p,q��
�cosh2J2�sin2�p − q�� − cosh2J1�sin2�p + q��

+ 2 sin2q��cos2p� − 2 sinhJ1�sinhJ2��� ,

G2k2r+1 = − G2r+12k =
2

N2 �
n1=1

N/2−1

�
n2=1

N−1
1

a2 DetA�p,q��
�cos2�r − k�p��3 + cosh2J1�cosh2J2� − 4 coshJ1�coshJ2�

+ 2 cos2p�cos2q� − cos2�p + q��cosh2J1� − cos2�p − q��cosh2J2� − 4�cos2p�

+ cos2q��sinhJ1�sinhJ2�� + cos2�r − k − 1�p�sinh2J1�sinh2J2�� ,

p =
�

2N
�2n1 + 1�, q =

�

2N
�2n2 + 1� . �5.21�

The elements Gij in Eq. �5.13� for the vertical case can be
obtained from expressions �5.21� simply by interchanging
the coupling constants J1 and J2.

In the homogeneous case J1=J2=J, we have G2i2j =0 and
G2i+12j+1=0, and the expression for G�i�G��i�� simplifies to
the determinant

G�i� = Det�
Gi0 Gi1 ¯ Gii−1

Gi−10 Gi−11 ¯ Gi−1i−1 − 1

] ]

G10 G11 − 1 ¯ G1i−1

� ,

�5.22�

Gk+ik � Gi � G2�k+i�2k+1. �5.23�

Therefore we can rewrite the Gaussian integral representa-
tion �5.12� in the following way:

G�i� =� D��̄D� exp� �
k=1,r=0

i,i−1

Gk−r�̄k��r − �
k=1

i−1

�̄k��k� .

�5.24�

After the replacement �̄k�= �̄k−1, Eq. �5.24� reads

G�i� =� D�̄D� exp� �
k,r=0

i−1

Gk−r+1�̄k�r − �
k=1

i−1

�̄k−1�k� .

�5.25�

Of course, the expressions for correlation functions can be
caught as well from the logarithmic derivatives of the parti-
tion function Z�B� Eqs. �4.8� and �4.11�� with respect to
inhomogeneous field B�i , j�, taken at B�i , j�=0.

Limit of an infinite lattice and large distances. Magnetization

In the limit of an infinite lattice, N→�, one can replace
the sums in Eq. �5.21� by integrals in accordance with Eq.
�4.33�. After evaluation of the integral over q, one will obtain
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G2i2j+1 = i,j +
2

�
�

0

�/2 cos2�i − j − 1�p�sinhJ1�sinhJ2� − cos2�i − j�p�
�1 + �sinh2J1�sinh2J2��2 − 2 cos2p�sinh2J1�sinh2J2�

dp ,

G2i2j = G2i+12j+1 = 0. �5.26�

The last expression in Eq. �5.26� shows that as in the homogeneous case, on the infinite lattice in the inhomogeneous case
J1�J2 also we can use determinant representation �5.22� instead of Eq. �5.12�,

G�i� =� D�̄D� exp� �
k,r=0

i−1,i−1

Gk−r+1� �̄k�r� = DetG��i�� ,

G��i��k,r � Gk+1−r� , k,r = 0,i − 1, �5.27�

with

Gk−r+1� =
2

�
�

0

�/2 cos2�k − r − 1�p�sinhJ1�sinhJ2� − cos2�k − r�p�
�1 + �sinh2J1�sinh2J2��2 − 2 cos2p�sinh2J1�sinh2J2�

dp . �5.28�

It is easy to see that the integral for the matrix elements in Eq. �5.28� can be transformed into the form

Gn+1� =
2

�
�

0

�/2 cos2�n − 1�p�sinh2J1�sinh2J2� − cos2np�
�1 + �sinh2J1�sinh2J2��2 − 2 cos2p�sinh2J1�sinh2J2�

dp

=
1

�
�

0

� cos�n − 1�p�sinh2J1�sinh2J2� − cosnp�
�1 + �sinh2J1�sinh2J2��2 − 2 cosp�sinh2J1�sinh2J2�

dp

=
1

2�
�

0

� einp�e−ip sinh2J1�sinh2J2� − 1� + e−inp�eip sinh2J1�sinh2J2� − 1�
��eip sinh2J1�sinh2J2� − 1��e−ip sinh2J1�sinh2J2� − 1�

dp

=
1

2�
�

−�

�

ei�np�
�e−ip sinh2J1�sinh2J2� − 1
�eip sinh2J1�sinh2J2� − 1

dp . �5.29�

It is well known that one can investigate the magnetiza-
tion ��1�i , j�
 by analyzing the large distance asymptotes of
two spin-correlation function on an infinite lattice. Namely,

��̄��i, j�
�2 = lim
K→�

 lim
N→�

��̄��0,0��̄���K,K�
�

= lim
K→�

 lim
N→�

��̄��0,0��̄���0,K�
� , �5.30�

where N is the linear size of the square lattice.
In Ref. 8 it was shown that spin-spin correlation functions

��̄��0,0��̄���i , i�
 and ��̄��0,0��̄���0, i�
 �for T�Tc� have a
determinant representation. These correlation functions have
been represented as a determinant of an i� i matrix, Ci, of
the Toeplitz type,

Ci =�
c0 c−1 ¯ c−i+1

c1 c0 ¯ c−i+2

] ] ] ]

ci−1 ci−2 ¯ c0

� . �5.31�

In Eq. �5.31� the matrix elements are given by

cn =
1

2�
�

0

2�

d�e−in�C�ei�� ,

C�ei�� = � �1 − �1ei���1 − �2e−i��
�1 − �1e−i���1 − �2ei���

1/2

. �5.32�

For the case

lim
N→�

��̄��0,0��̄���i,i�
 = DetCi� , �5.33�

��i�’s are defined as follows:

�1 = 0, �2 = �sinh2J1�sinh2J2��−1. �5.34�

Careful analysis of the matrix G��i�, given by Eq. �5.27�,
shows that due to Eqs. �5.28� and �5.29� and after some
rearrangement of its rows, which leave the determinant in-
variant, G��i� coincides with Ci. Note that in our notations the
coordinate plane on the lattice is 45° rotated with respect to
the coordinate plane in Ref. 8, so the correlation function of
the spins arranged in the horizontal or vertical lines in our
case coincide with ��̄��0,0��̄���i , i�
 derived in Ref. 8.

Now one can follow the technique developed in Ref. 8,
based on the Szegö’s theorem, and find the solution for the
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magnetization. The theorem can be applied when T�Tc and
directly reproduces the known result for the
magnetization,3,5,9 originally derived by Yang in article:5

lim
i→�

��̄��0,0��̄���0,i�
 = lim
i→�

��̄��0,0��̄���i,i�


= � �1 − �2
2��1 − �1

2�
�1 − �1�2�2 �1/4

= �1 − �sinh2J1�sinh2J2��−2�1/4.

�5.35�

VI. RELATED ONE-DIMENSIONAL
QUANTUM PROBLEM

It is possible to connect the partition function of the quan-
tum 1DIM to the partition function of two-dimensional clas-
sical system �2DIM� using limit �2.20� and the Trotter for-
mula, see Ref. 30.

As it was stated in the second section, the transfer matrix
of two-dimensional model, which is defined as a product of
R matrices, plays a role of the discrete time evolution opera-
tor defined on a 1D chain.

In this section we investigate the transfer matrix given by
Eq. �2.18� and express it via one-dimensional fermionic

fields defined on a chain. By the convention, the trace of the
transfer matrix can be connected with the partition function
of the quantum chain model, defined by Hamiltonian opera-
tor H,

tr � = tr e−H.

The trace in the definition of the transfer matrix, � j
=tr1�iR�i , j�, in Eq. �2.18� is taken over the variables which
have even-even lattice coordinates �denoted by black circles
on the figures�; R�i , j� matrices are arranged along the hori-
zontal chain with N vertices �white circles on the figures�. In
the following we shall omit the coordinate indices and will
use only indices denoting the vertices on the chain. Using R
operators represented in terms of fermionic creation-
annihilation operators, R�c1

+ ,c1 ;c2
+ ,c2� Eqs. �3.2� and

�3.11��, one easily comes to the transfer matrix

���cn
+,cn�� = tr1�

i=1

N

R�c1
+,c1;ci

+,ci� . �6.1�

We can evaluate the trace in Eq. �6.1� passing to the coherent
basis with Grassmann variables for the fermionic operators
c1

+ ,c1 and �ci
+ ,ci�. After integration by the variables corre-

sponding to the operators c1
+ ,c1, we shall arrive at we have

chosen the homogeneous case b=b� ,c=c� ,d=d�, Eq. �3.11��

t���̄,��� = �
i

��̄i	���cn
+,cn���

i

	�i
 = �R00
00N

+ R01
10N

�e−H��̄i,�i�, �6.2�

− H��̄i,�i� = �
k=1

N
�− 1�kcN−k
k

�1 + cN�k �
i1�¯�ik

ni1
¯ nik

+ c�
i=1

N

ni +
1

1 + cN�1 + �
k=1

N
�− 1�k

�1 + cN�k��
i=1

N

�c − 
ni� − cN�k�
� �

i,j
�b�̄i − d�i�Ki,j�b� j−1 + d�̄ j−1� �6.3�

Ki,j = � 1, i = j

�c − 
nj� ¯ �c − 
ni−1� , i � j

− �c − 
n1� ¯ �c − 
ni−1��c − 
nj� ¯ �c − 
nN� , i � j .
� �6.4�

Here ni= �̄i�i. Correspondingly the normal ordered expression of ���cn
+ ,cn�� is

���cn
+,cn�� = �R00

00N
+ R01

10N
�:exp− H�ci

+,ci� − �i
ci

+ci�: . �6.5�

The expression of H in Eq. �6.3� simplifies if c=0. In case of 
=0 the function H is a quadratic function and admits
diagonalization by means of Fourier transformation.

IM, XY. Here we are presenting the transfer matrices, which correspond to the free-fermionic cases: 
=0 in Eq. �3.11�, i.e.,
IM Eq. �2.11�� and XY model Eqs. �2.15� and �4.22��. Now logarithm of Eq. �6.1� is a quadratic function over N pairs of
fermion operators, �cn

+ ,cn�, due to the Eqs. �3.4� and �3.5�. After performing Fourier transformation for operators cn
+ ,cn in Eq.

�6.3�, the transfer matrix takes the form

� = �R00
00�N�1 − cN�:exp� �

p=0

N/2−1

H�p��:; �6.6�
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H�p� = �c − 1 +
b2ei�2p+1/N

1 − cei�2p+1/N +
d2e−i�2p+1/N

1 − ce−i�2p+1/N�cp
+cp + �c − 1 +

b2e−i�2p+1/N

1 − ce−i�2p+1/N +
d2ei�2p+1/N

1 − cei�2p+1/N�cN−p−1
+ cN−p−1

+

2ibd sin��
2p + 1

N
�

1 + c2 − 2c cos��
2p + 1

N
� �cp

+cN−p−1
+ + cpcN−p−1� . �6.7�

In the course of calculation of the partition function in
Sec. III we have diagonalized this type of quadratic expres-
sion by a simple change of basis �4.14�. Recall that here
cp

+ ,cp are not Grassmann variables but rather fermionic op-
erators and any transformation must keep anticommutation
relations. So we distinguish two kind of fermion fields, de-
fined as c�p, �=1,2,

c1p
+ = cp

+, c1p = cp, c2p
+ = cN−p−1, c2p = cN−p−1

+ .

�6.8�

These replacements bring the operator �p=0
N/2−1H�p� to the

form

�
p=0

N/2−1

�
�,�=1,2

H��� �p�c�p
+ c�p. �6.9�

The task now is to diagonalize the matrix

H��p� = � r1�p� r2�p�
− r2�p� − r1�− p�

� , �6.10�

where

r1�p� = c − 1 +
b2ei�2p+1/N

1 − cei�2p+1/N +
d2e−i�2p+1/N

1 − ce−i�2p+1/N ,

r2�p� =

2ibd sin��
2p + 1

N
�

1 + c2 − 2c cos��
2p + 1

N
� . �6.11�

We can represent the transfer matrix given by Eq. �6.6� in the
following diagonal form:

� � exp�p=0

N/2−1
„a+��p�c1p�

+c1p� + a−��p�c2p�
+c2p� …� ,

�6.12�

with the eigenvalues of matrix �6.10�,

a�� �p� =
1

2
�r1�p� − r1�− p� � �r1�p� + r1�− p��2 − 4r2�p��2� .

�6.13�

Thus, we arrive at a 1D quantum system defined with Hamil-
tonian operator

H = − �
p=0

N/2−1

„a+��p�c1p�
+c1p� + a−��p�c2p�

+c2p� … . �6.14�

Particularly, for the IM where b ,c ,d are defined as in Eq.
�3.6��, in the homogeneous case, J1=J2=J, we have r1�p�
=r1�−p� and eigenvalues �6.13� acquire the form

a�� �p� = � �	r1�p�	2 + 	r2�p�	2. �6.15�

The ground state of the system is composed by the negative-
energy modes. In the thermodynamic limit, N→�, the gap
between two spectral curves, a�� �p�, is found at the Fermi
points with momenta 0 ,� and is equal to

a+��0� − a−��0�� � 2r1�0� = 2�1 − sinh�2J

T
��

��1 + sinh�2J

T
�� .

�6.16�

We see that r1�0� vanishes at the critical temperature Tc of
2DIM, given by sinh2J /Tc�=1, as

a+��0� − a−��0�� � �T − Tc� , �6.17�

demonstrating that at T=Tc the 1D system is gapless and has
no massive excitations. Behavior �6.17� holds true for the
inhomogeneous case J1�J2 also.

VII. SUMMARY

In this work we have presented an approach to the inves-
tigation of two-dimensional statistical models, basing on the
fermionic formulation of the vertex R matrices �Boltzmann
weights�. If the operator form of the R matrix in terms of
scalar fermionic creation and annihilation operators has defi-
nite even grading for XYZ model and 2DIM see Eq. �3.2��,
then fermionic representation of R�i , j� on the lattice acquires
local character. If the operators have indefinite grading mod-
els in the presence of an external magnetic field, see Eq.
�3.7��, then one must take into account Jordan-Wigner non-
local operator, as in Eq. �4.8�, which is discussed in details in
the Appendix.

For the models under consideration we derive partition
functions as continual integrals with corresponding field the-
oretical actions on the square lattice: Eq. �4.7� gives the fer-
mionic action corresponding to the general eight-vertex
model, which includes both XYZ model and two-dimensional
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Ising model. Although there is a correspondence between
2DIM and XZ models, we straightforwardly presented the R
matrix of the 2DIM in Eq. �2.22� as a solution of Yang-
Baxter equation which ensures the integrability of the model.
For the free-fermionic case the direct calculation of the par-
tition function and correlation functions is performed Eqs.
�4.18� and �5.16��. In case of the 2DIM the continuum limit
of the two-dimensional action is presented in Eq. �4.29� and
the known thermodynamic and magnetic characteristics are
reproduced see Eqs. �4.20�, �4.34�, and �5.35��. We also con-
sider 2DIM in the presence of a finite magnetic field and
corresponding nonlocal fermionic action is evaluated Eq.
�4.11��.

In light of correspondence of two-dimensional classical
statistical models and one-dimensional quantum models, we
obtain one dimensional quantum fermionic Hamiltonian op-
erator �6.3� for eight-vertex model. For free-fermionic cases
the Hamiltonian operators are brought to the diagonal form
�6.14�, the spectral analysis of which reflects the critical be-
havior of the underling models.
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APPENDIX

Jordan-Wigner transformation. Fermionic representation
of spin states naturally introduces grading for both states and
operators. �̄� ,�=0,1 spin states can be represented by
	0
 , 	1
 fermionic states with zero and one fermions. Single
fermion states are anticommuting at different points of the
lattice. The same property takes place for the odd operators
in terms of fermionic creation and annihilation operators.
This property does not hold for spin states and operators.
Therefore, if one would like to represent the action of odd
number of spin operators �1

�k� defined in the space of spins
�nongraded space�

�1̂�1�
� 1̂�2�

¯ � �1
�k�

� ¯ � 1̂�n��:	�1
	�2
 ¯ 	�n
 ,

�A1�

in terms of fermionic operators �c+c+��k�, which act on
graded states 	�k
, one has to take into account the graded
behavior of all states 	�i
, i�k, placed before the state 	�k
.
This can be done with the help of the operator 1−2n, action
of which on the state 	�
 depends on the parity, p���=�, as
follows:

�1 − 2n�	�
 = �− 1�p���	�
 . �A2�

Using these operators, one can represent the action of a spin
operator �1

�k�, as

�1̂�1�
� 1̂�2�

¯ � �1
�k�

� ¯ � 1̂�n��

⇒ �c + c+��k��1 − 2c+c��1�
¯ �1 − 2c+c��k−1�. �A3�

This expression constitutes the inverse Jordan-Wigner spin-
fermion nonlocal transformation.

It is clear that for the product of two odd operators at
different points one needs to take into account only the states
between them,

�¯ 1̂�i−1�
� �1

�i�
� 1̂�i+1�

¯ 1̂�k−1�
� �1

�k�
� 1̂�k+1�

¯�

⇒ �c + c+��i��
r=i

k−1

�1 − 2c+c��r��c + c+��k�, �A4�

which is a consequence of the property

�1 − 2c+c��i��1 – 2c+c��i� = 1. �A5�

Note that operator �1−2c+c� is the fermionic form corre-
sponding to the Pauli matrix �z. This means that if we place
the operators �z

�i� instead of unity 1�i� in Eq. �A3� for all i
�k, we shall have

��z
�1�

� �z
�2�

¯ � �1
�k�

� ¯ � 1̂�n�� ⇒ �c + c+��k�.

�A6�

Similarly, we have

�. . . 1̂�i−1�
� ��1�z��i�

� �z
�i+1� . . . �z

�k−1�
� �1

�k�
� 1̂�k+1�. . .�

⇒ �c + c+��i��c + c+��k�. �A7�

Jordan-Wigner spin-fermion transformation on the two-
dimensional lattice. In Sec. II the partition function Eq.
�2.19� was defined as an expectation value of the products of
R operators. These products can be rewritten as

Z = �
��2i+1,1�i=0,N−1

�
��0,2j�j=1,N

�		�
j=N

1

�
i=N−1

0

R�i, j�		
 , �A8�

where the trace is taken over both “auxiliary” and “quantum”
states,

		
 = 	�0,2N
 ¯ 	�0,4
	�0,2
	�1,1
	�3,1
 ¯ 	�2N−1,1
 .

In fermionic representation described in Sec. III, the states
	�i,j
 acquire grading and the arrangement in 		
 becomes
significant. Fermionic R operator given by Eq. �3.2� has zero
parity, which ensures the local “fermionization” of the parti-
tion function: each R operator in Eq. �A8� can be replaced
with its fermionic counterpart without any “tail.” But the
formulas of spin-spin correlation functions contain the spin
operator �1�k ,r�, which in the fermionic formulation has odd
parity. From the inverse Jordan-Wigner transformation in Eq.
�A4� it follows that the fermionic operator corresponding to
�1�k ,r� should contain nonlocal operator �1−2n�i , j��,
where the product runs over sites �i , j�, arranged before the
site �k ,r�.

Recall, that the mean value of the operator �1�2k ,2r� is
defined by

��1�2k,2r�
 =
1

Z � �		�R ¯ R�k,r��1�2k,2r�

�R�k − 1,r� ¯ R�		
 . �A9�

Moreover due to the conventions adopted in the previous
sections, the R�i , j� operator acts as
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R�i, j�	�2i,2j
	�2i+1,2j−1
 = R�2i,2j�2i+1,2j−1

�2i+1,2j+1�2i+2,2j+2	�2i+1,2j+1


�	�2i+2,2j+2
 , �A10�

with the matrix elements defined by Eq. �3.3�. Then one can
notice that the action of R operators, placed on the right side
of �1�2k ,2r� in the right-hand side of Eq. �A9�, on the state
		
, transforms it to the following state:

�
i=k−1

0

R�i,r��
j=r

1

�
i=N−1

0

R�i, j�		


⇒ 	�0,2N
 ¯ 	�0,2r+2
	�1,2r+1
 ¯ 	�2k−1,2r+1
	�2k,2r


�	�2k+1,2r−1
 ¯ 	�2N−1,2r−1
 . �A11�

Hence, according to Eq. �A3�, operator �1�2i ,2j� in its fer-
mionic formulation reads

c�2k,2r� + c+�2k,2r�� �
i=k−1

0

1 − 2n�2i + 1,2r + 1��

� �
j=r+1

N

1 − 2n�0,2j�� . �A12�

Similarly, in expression for the vacuum average value of spin
operators �1�2k+1,2r+1�, defined at odd-odd sites,

��1�2k + 1,2r + 1�
 =
1

Z � �		R ¯ R�k + 1,r��1�2k + 1,2r

+ 1�R�k,r� ¯ R�		
 , �A13�

the R operators on the right-hand side of �1�2k+1,2r+1�
transform the state 		
 into

�
i=k

0

R�i,r��
j=r

1

�
i=N−1

0

R�i, j�		


⇒ 	�0,2N
 ¯ 	�0,2r+2
	�1,2r+1
 ¯ 	�2k+1,2r+1


�	�2k+2,2r
	�2k+3,2r−1
 ¯ 	�2N−1,2r−1
 , �A14�

which means that in its fermionic formulation �1�2k+1,2r
+1� is equipped with the same nonlocal operator as Eq.
�A12�,

c�2k + 1,2r + 1� + c+�2k + ,2r + 1��

� �
i=k−1

0

1 − 2n�2i + 1,2r + 1�� �
j=r+1

N

1 − 2n�0,2j�� .

�A15�

As an example, consider the spin operators on the vertices
�5,3� and �6,2� in Fig. 2. There the positions of the 1−2n
operators are marked by arrows at the corresponding sites. If
spin operators are placed on the edges of the lattice �1�2i
+1,1� and �1�0,2j�, they immediately act on 		
 and can be
replaced by the fermionic operators,

c�2i + 1,1� + c+�2i + 1,1��

��
r=1

N

1 − 2n�0,2r���
k=1

i−1

1 − 2n�2k + 1,1��

and

c�0,2j� + c+�0,2j�� �
r=j+1

N

1 − 2n�0,2r�� ,

respectively, in accordance with general expressions in Eqs.
�A12� and �A15�.

In order to calculate the correlation function
��1�i , j��1�k ,r�
 in the fermionic operator form, it is neces-
sary to replace �1�i , j� by corresponding fermionic operators
�A12� and �A15�. As it is shown in the first part of this
section, coinciding operators 1−2n in fermionic counterparts
of �1�i , j� ,�1�k ,r� operators cancel each other and only op-
erators placed on a path, which connects points �i , j� and
�k ,r�, will be left. The choice of the path is arbitrary, which
is a result of property �A5�, 1−2n=�z and

��z � �z�R��z � �z� = R , �A16�

with R operator defined in Eq. �2.6�.
More precisely, a fermionic realization for the product of

two spin operators, �1�i , j� and �1�k ,r�, when i�k , j�k, has
the form presented in Eq. �5.9�. It looks as if one inserts into
the vertices on a path between �i , j� and �k ,r� points, opera-
tors �z�=1−2n�, instead of unity operators in the spin repre-
sentation, and vice versa: it is a simple task to derive the
correlation function ��1�i , j���z�i� , j����1�k ,r�
 on the two-
dimensional lattice, where the operators �z are placed on a
path of vertices connecting points �i , j� and �k ,r�. It can be
done by replacing operators �1 by �c+c+� and finding corre-
sponding Green’s functions see Eq. �A7��.
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