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Site-centered, electronic-structure methods use an expansion inside nonoverlapping “muffin-tin” �MT�
spheres plus an interstitial basis set. As the boundary separating the more spherical from nonspherical density
between atoms, the “saddle-point” radii �SPR� in the density provide an optimal spherical region for expanding
in spherical harmonics, as used in augmented plane wave, muffin-tin orbital, and multiple-scattering �Korringa,
Kohn, and Rostoker �KKR�� methods. These MT-SPR guarantee unique, convex Voronoi polyhedra at each
site, in distinction to Bader topological cells. We present a numerically fast, two-center expansion to find SPR
a priori from overlapping atomic charge densities, valid also for disordered alloys. We adopt this MT-SPR
basis for KKR in the atomic sphere approximation and study �dis�ordered alloys with large differences in
atomic size �fcc CoPt and bcc CrW�. For this simple and unique improvement, we find formation energies and
structural parameters in strikingly better agreement with more exact methods or experiment, and resolve issues
with former results.

DOI: 10.1103/PhysRevB.80.125123 PACS number�s�: 71.15.Ap, 71.15.Nc, 71.23.�k

Popular site-centered, all-electron, electronic-structure
methods, such as augmented plane wave �APW�, linear
muffin-tin orbital �LMTO�, and multiple-scattering theory
from Korringa, Kohn, and Rostoker �KKR�, use a spherical
harmonic expansion of the electronic density and potential in
a region defined by nonoverlapping MT spheres, with an
additional basis set in the interstitial. Such radii are often
arbitrarily chosen, or adjusted by hand, to help, for example,
optimize an LAPW basis, better represent the elemental sizes
of the atoms, or reduce overlap error in atomic sphere ap-
proximation �ASA� calculation. For ASA calculations of or-
dered and disordered alloys, spheres have been adjusted of-
ten with no rigorous basis. It would be beneficial to have a
physics-based, closed-form expression that yields, before
any calculation, the site-centered basis sets providing the op-
timal spherical regions to expand, eliminates human inter-
vention, reduces the size of the basis sets, and improves fast
but approximate calculations, such as the ASA.

We provide a numerically fast, displaced-center expansion
for spherical harmonics �Sec. II� that is applicable to arbi-
trary number of sublattices and components, as well as the
coherent potential approximation �CPA�. The expansion is
especially useful with overlapping atomic charge densities
via a Herman-Skillman1 approach to find a priori �i� initial
potentials via Löwdin construction,2 and �ii� the MT, saddle-
point radii �SPR� at each site. The MT-SPR reflect an optimal
boundary separating the spherical and nonspherical density
between neighboring atoms, which improves the representa-
tion �as we verify by direct variation�, reduces the required
basis set �the maximum number of angular momenta, Lmax
��l ,m��, and defines the convex Vornoi polyhedra �Sec. I�.
As spherical potential methods are ubiquitous due to compu-
tational efficacy and relative accuracy, we focus on how the
SPR basis dramatically improves the ASA. So, we have
implemented the SPR basis in a KKR-CPA-ASA code �Sec.
III� and studied �Sec. IV� �dis�ordered alloys with large dif-
ferences in atomic size �fcc CoPt and bcc CrW� or large c /a
distortions �hcp Ti3Al�. We show that the MT-SPR-ASA en-

ergies and structural parameters agree strikingly better with
full-potential methods and/or measurements, and there is
much reduced sensitivity on Lmax. Also, we show that former
“bad” CPA results were not due to issues with the CPA but,
rather, due to the poorly represented densities and potentials
used. In addition, site excess charges are now more those
expected from electronegativity.

I. BACKGROUND

Wigner-Seitz cells in electronic-structure calculations are
usually geometrically constructed, convex Voronoi polyhedra
�VP�,3 with no reference to the topology of the charge den-
sity. As long as basis expansions are done to high enough
order and the integrals are done with enough accuracy �both
increase computational effort�, answers are correct. An im-
provement to this standard approach would be to use the
topology of the charge density to guide the choice of the cell
around an atomic site. As evidenced in the calculated charge
density of B2 CrW, see Fig. 1, the site-dependent MT
spheres �red circles� defined by saddle points in the density
�obtained from the application of the expansion here within�
reflect the boundary separating the more spherical and non-
spherical density between neighboring atoms. Visually ap-
parent are the s- and d-like character of the W density, where
on the same scale �due to spatial extent of density� the con-
tour lines for Cr are closely spaced but completely enclosed
by the MT-SPR. Hence, these MT-SPR are physically appro-
priate and unique choice for the optimal region for expand-
ing in spherical harmonics.

From applied math, we know that touching, inscribed MT
spheres guarantee convex VP if weights for their construction
are chosen as the squares of the MT radii.4–6 This method is
also called radical plane construction4,7 and has been used,
e.g., for void formation in unequal spheres7,8 or nonspherical
particles.9 These generalized Wigner-Seitz cells are called
power diagrams,6,10,11 which can be computed in order
n log n time for n sites in three dimensions.6,10,12 Such con-
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vex VP are also required in KKR to define the single-site
scattering matrices,13,14 such that electron scattering at a site
is completed before occurring at a neighboring site. Now,
because MT-SPR reflect the spatial extent of the site density
�or the atom’s “size”� and the optimal region for expanding
in spherical harmonics, the VP weights should be determined
from MT-SPR. In contrast, equal spheres manifestly lead to
large nonspherical components in the MT of the smaller
atom, as evident in Fig. 1. For B2 CrW, the ratio of the W
and Cr MT-SPR spheres is 1.191, and, therefore, due to the
power diagram weighting, the ratio of the VP volumes of W
and Cr is then �1.191�2. Alternatively, the MT-SPR spheres
are 19% different in size, and, thus, the VP volume of W �Cr�
increases �decreases� by 19% over the equal sphere case. We
are unaware of the use of saddle points in the density to
control size and shape of the VP cell to better represent the
system in density-functional theory �DFT� calculations. Else-
where, we will report on the use of isoparametric methods
for numerically efficient integration of quantities over each
VP without recourse to “shape functions.”13–16

Using topology of the charge density to improve site-
related descriptions is not new. Bader’s topological cells are
based on the set of extrema �saddle points, maxima and
minima� in the density in molecules or solids.17,18 However,
due to the nature of the density, the topological cells exhibit
both convex and concave surfaces, making a decidedly inap-
propriate cell for use in site-centered expansions. Nonethe-
less, integrating the charge in the topological cells �a post-
processing exercise� yields the so-called “Bader charge”19,20

that more closely follows one’s expectation from
electronegativity.17 Yet, the excess charges in MT-SPR de-
rived VP cells �or their approximates, such as ASA� might
also be expected to follow physical expectations. Charge dif-
ference have been compared between Bader, Mülliken, and
Voronoi definitions of spatial integrations.21 However,
Voronoi charges were determined only from the standard
geometric definition.

With the MT-SPR in hand, we can obtain the unique set of
convex VP �using set of FORTRAN codes adapted from
Bernal22,23� or ASA spheres at each site. Thus, an efficient,
site-shifted �spherical harmonic� expansion would be useful
to determine the MT-SPR via saddle points in the atomic
overlapping charge density prior to any calculation and to
provide a better representation for dramatically improved re-
sults for the ASA. In LAPW, some adjustments of the MT
spheres �often by hand� are done to help optimize the basis.
In ASA calculations, the spheres �whatever their sizes� must
fill all space on average. In general, equal spheres are used to
minimize the error due to geometrical overlap. However, for
systems with atoms of very different sizes, this choice leads
to large errors in the total energy, where, e.g., in LMTO,
combined correction24–27 are needed to help ameliorate such
errors, which have not been developed for CPA case. Some
errors can be reduced by using empty spheres.25,28

Attempts have been made to improve ASA approaches.
For example, the LMTO total energy of ordered alloys has
been minimized with respect to the ASA radii.29 As the ASA
radius is not a variational parameter, such calculations can be
unreliable, leading to uncontrolled error and increased sphere
overlap. Masuda-Jindo and Terakura30 used ASW to study
strengthening in Al-Li with ASA spheres adjusted according
to first-order perturbation analysis of the electron-ion
pseudopotential;31 so the ASA spheres were not equal, but
dependent upon ratio of bulk moduli and relative volumes
�ASA radii� of the elements. Similarly, Kootte et al.32 studied
Co-Pt using ASW by fixing the size of Co spheres from
hcp-Co results and then adjusted Pt spheres to conserve vol-
ume. In addition, charge transfer depends upon how space is
partitioned around each atom. Therefore, equivolume calcu-
lations introduce unphysical charge-transfer effects, affecting
energetics. Some schemes have been proposed33–36 to treat
these effects in CPA disordered alloys. Singh and Gonis36

proposed use of charge-neutral ASA spheres, leading to, in
some cases, unphysical drops in formation energies. Al-
though untested in detail, Andersen et al.37 proposed making
the potential continuous across the sphere boundary by ad-
justing the ASA radii. In one case, Jepsen and Andersen38

used saddle points in the spherically averaged �Hartree-only�
potential to establish the MT sphere radii, with ASA sphere
radii found by scaling up the MT sphere radii equally to
conserve cell volume and then adjusted by hand to minimize
overlap; however, no publications detail how saddle points
were determined, nor what improvements resulted. Although
a first-order perturbation analysis of the electron-ion pseudo-
potential yields a more intricate expression in the impurity
limit,30 the subtlety of adjusting spheres without a physical
principle can be seen as follows. Equating the electronic
pressure on two ASA spheres one finds that

�V1

�V2
�

V1 − V1
0

V2 − V2
0 =

B2
0

B1
0 ,

with the additional requirement of volume conservation.
Hence, if volume �V0� and bulk moduli �B0� of the elements
are similar, then the change to ASA volumes �V� are small;
whereas, if the B0 are quite different �e.g., Al-Li�, then ASA

FIG. 1. �Color online� Charge density contours in �110� plane
for B2 CrW with a0=3.016 Å. More spherical versus nonspherical
density is evident, with reference to the MT-SPR �red� of 1.1952 Å
�1.4238 Å� for small Cr �large W�. Volume-conserving ASA radii
�the larger, blue circles� of 1.3791 Å �1.5781 Å� are shown. The
ratio of larger to smaller MT-SPR �ASA radii� is 1.191 �1.144�. Cr-
or W-centered unit cell boundaries are given �rectangles�. Contour
levels are every 0.023 eV /Å3.
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volumes can be adjusted larger at the expense of the element
with smallest B0, lowering the ASA energy unphysically.
Saddle-point radii are unique and encompass the correct
physical representation.

II. FORMALISM

To achieve an optimized basis set representation via the
saddle points in the atomic overlapping charge density, we
desire a two-center expansion to calculate the charge density
�as well as potential� of the central atom at r=0 and that
from the neighboring atoms by shifting the overlapping
atomic charge densities to a common origin. To our knowl-
edge, a number of such expansion formulas have been de-
rived �but efficiency is key� and used with different motiva-
tions, such as to compute molecular integrals between atomic
orbitals about separated centers.39,40 We apply Löwdin’s
idea2,39,40 of spherical harmonic expanding any three-
dimensional function f�r−R�= f��r−R��YLM��R ,�R� at a site
centered at r=R about that at r=0, i.e.,

f�r − R� = �
l=0

�

�
m=−l

+l

V�l,m;L,M ;r,R�Ylm��,�� , �1�

where YLM��R ,�R� and Ylm�� ,�� are the spherical harmonics
around their respective centers, and �R represents the solid
angles ��R ,�R�. We utilize such formulas with the goal of
finding an approximate total charge density and locating, a
priori to any electronic-structure calculation, the saddle
points of said density for optimal site-centered basis, for any
configuration and even approximations to the disordered
state.

The saddle points around each site can be located as the
minima in the local total density �Hartree part� along the
lines connecting each near-neighbor atom. We define the dis-
tance to the closest saddle point at each site as the MT-SPR.
Inside this region, we expand wave functions, potentials, and
densities in Ylm, as it separates the mostly spherical density
from the symmetry-induced, nonspherical part in the intersti-
tial; see Fig. 1. The MT-SPR basis better reflect the local
charge on a site, more akin to that expected from electrone-
gativities.

Various ways41–44 have been proposed for deriving such
formulas, though not always numerically efficient. One well-
known expansion was given by Sack,45–47 whose early work
gave an expansion for ��r�=rn, yielding a series expansions
for V. Subsequently, Sack47 gave V as an integral, whose
kernel, however, must first be found from ��r� by solving an
integral equation. We shall use a general method from
Silverstone39 and Suzuki40 for obtaining the radial function
V of Eq. �1� derived from the Fourier-transform convolution
theorem. All the quantities in this later approach are formu-
lated in terms of explicit one-dimensional integrals, and we
reproduce some equation for completeness and clarity.

Using orthogonality of YLM, Eq. �1� yields

V�l,m;L,M ;r,R� =� d�f�r − R�Ylm
� ��� . �2�

We can cast V as an overlap integral by introducing a radial
function r−2� �r�−r� and integrating with respect to r� on the
right-hand side of Eq. �2�,

V�lm;LM ;r,R� =� d3r�	��r��f�r� − R� , �3�

where

	�r�� = r−2��r� − r�Ylm���,��� . �4�

The R dependence of Eq. �3� is greatly simplified by the use
of the Fourier-transform convolution theorem48,49 as

V�lm;LM ;r,R� =
1

�2
�3� d3k	̄��k� f̄�k�eik.R. �5�

The transforms 	̄�k� and f̄�k� can be evaluated conveniently
via Bauer’s identity,

eik·r = �
l=0

�

�
m=−l

+l

4
iljl��r�Ylm��k�Ylm
� ��� , �6�

where �k= ��k ,�k� are the spherical polar coordinate of k
and jl is the spherical �lth order� Bessel function.

After some effort, a simplified expression for V in Eq. �5�
is obtained, which when substituted back in Eq. �1�,39,40

yields the following form of the site-shifted f�r−R�:

f�r − R� = �
l=0

�

�
�=�L−l�

�L+l�

Vl�L�r,R� �
m=−l

+l

CLM;lm
� Y�,M−m��R�Ylm��� .

�7�

Here CLM;lm
� are Gaunt coefficients defined as

CLM;lm
� =� d�kY�,M−m

� ��k�Ylm
� ��k�YLM��k� . �8�

CLM;lm
� is nonzero if ��+ l+L� is even. Also Vl�L�r ,R�, the

radial part of f , has a simple form as the sum of one-
dimensional integral, i.e.,

Vl�L�r,R� =
2


R
�− 1�l �

s=0

�L+�+l�/2

�
t=0

�L+�+l�/2−s

Dl�Lst	 r

R

2t−l−1

�
�r−R�

�r+R�

dr�f�r��	 r�

R

2s−L+1

. �9�

Here, as defined by Silverstone,39

Dl�Lst = ��2s� ! ! �2s − 2L − 1�!!�2t� ! ! �2t − 2l − 1�!!�L + l

+ � − 2s − 2t� ! ! �L + l − � − 2s − 2t − 1�!!�−1, �10�

where the symbol !! indicates a double factorial with a non-
negative argument, where �−1� ! ! �1, while !! allows �non-�
negative argument, i.e., for integer n,

�2n − 1�!! = ��2n − 1� ! ! n is positive

��− 1�−n�− 2n − 1� ! !�−1 otherwise.
�
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Expansions �7� and �9� require a significantly fewer
nested, as well as external, �l ,m� sums, so the calculations
are not intensive. Thus, we use Eqs. �7� and �9� to calculate
the contribution of the overlapping atomic charge density �or
potentials� arising from the near-neighbor sites onto the cen-
tral site and whose total is given by

f total�r� = fsite�r� + �
R�n.n.

fneigh�r − R� . �11�

With a sum in Eq. �11� over �at most� the first two shells of
neighbors, the resulting sum of Eqs. �7� and �9� is a very
numerical efficient form of Löwdin’s approach. We use Eq.
�11� to get the total, site-centered, charge density and find the
site-dependent saddle points and SPR. In fact, the monopole
�l=0� terms in Eq. �7� already determine the SPR to within
1
4%, further reducing the computation.

First, we use v�r−R� as f in Eqs. �1� and �2� and Eq. �11�,
and we find a starting potential via the Herman-Skillman
approach.1 �We store and use rv�r� as there are no Coulomb
singularities.� Then, with ���r−R�� as f , we estimate the den-
sity and we use numerical gradients to find its saddle points
rapidly. �We store 4
r2���r−R�� as it is zero at the origin and
positive definite elsewhere.� For ordered systems, it is
straightforward for all sites in the unit cell to locate the
saddle points by tracing the charge density along the lines
connecting the nearest-neighbor atoms and assign this as the
optimal MT radius. For example, for 16 atoms/cell the
Herman-Skillman densities and potentials, Löwdin potential,
SPR, and ASA radii are found in less than 0.5 s on 2005 Intel
processor.

ASA cells and disordered alloys

These MT-SPR provide the Voronoi cells �Sec. I�. More-
over, the interstitial density and potentials are now better
described by plane waves and, in close-packed, metallic sys-
tems, they are almost constant beyond the MT-SPR, as seen
in Fig. 1. Hence, for ASA calculations, MT corrections28,50,51

are now a better approximation to the interstitial contribu-
tions. Empty spheres can be used in more open structures to
improve further the basis.

To obtain ASA radii, volume must be conserved �a con-
straint�. But, ASA overlap should be considered, especially
for large and small MT spheres. These are discussed in the
Appendix, where we derive an equation that provides unique
ASA radii with minimal overlap for any configuration, in-
cluding the disordered phase within a single-site approxima-
tion. In the ordered case, each inequivalent sublattice s has
only one atom type ��� occupying it and the concentration
�c�,s� of which is either 1 or 0. For disordered alloy the
scenario differs from that of the ordered one, because trans-
lational symmetry is obtained only after the configurational
averaging is performed, due to the fact that on each inequiva-
lent sublattice 0�c�,s�1. Thus, the configurationally aver-
aged ASA radii at a site depend on all possible local chemi-
cal environments, not just a single one as in the perfectly
ordered case. Nonetheless, we follow a similar procedure as
the ordered case to estimate the radii of a particular atom �
by calculating the saddle points along the lines connecting

the nearest-neighbor sites. That is, for each site on a sublat-
tice s �as in the ordered case� you put an atom of type � and
populate the neighboring sites by all possible species � that

are permitted. After weighting the various SPR R�,s
�,s� by the

probability of having an � atom in that neighboring site and
sublattice s�, we use the minimum SPR for that environment,

i.e., R̄�,s=min
∀s�

���c�,s�R�,s
�,s��, if there is no short-range order.

Once the configurationally averaged MT saddle-point radii
for each species and sublattices are evaluated, the ASA radii
are determined by the roots of a simple cubic equation; see
the Appendix.

III. COMPUTATIONAL DETAILS

Calculations were performed via Green’s function mul-
tiple scattering theory52,53 of Korringa, Kohn, and Rostoker
�KKR�. We used the KKR-CPA to include54,55 the chemical
and magnetic disorder in the electronic structure and energet-
ics, all treated on equal footing, for multisublattices and mul-
ticomponents. The CPA permits us to address the paramag-
netic �PM� state via the disordered local moment56–62 state to
include moment-orientational disorder. We also used the
screened-CPA �scr-CPA� �Ref. 63� to incorporate more prop-
erly the metallic screening due to charge correlations in the
local chemical environment and predict more accurate en-
thalpies and charges. To get initial potentials and MT-SPR
within our KKR-CPA code,64 we automated the expansions
via the Herman-Skillman method1 using a numerical dou-
bling grid �with 1001 points and doubling the grid steps ev-
ery 200, so there are five sets of grids�. We employed the
local spin density approximation �LSDA� to the density-
functional theory exchange and correlation functionals, as
parametrized by von Barth and Hedin,65 for ferromagnetic
�FM� and PM states. For the valence electrons, scalar-
relativisitic effects are included as described by Koelling and
Harmon,66 but core electrons are treated fully relativistically.
For the ASA, we include only electrostatic monopoles
�Madelung energy� plus muffin-tin corrections25,28,50,51

�MTC� to include the interstitial electron for better structural
parameters. All results are reported for Lmax=3 �or s, p, d,
and f symmetries�. Charge self-consistency is obtained via
contour integrations of the Green’s functions in the complex
energy plane, using a Gauss-Legendre semicircular contour
with 18–24 energy points. At each complex energy, a Bril-
louin zone integration was performed using Monkhorst-Pack
special k-point method,67 �e.g., for four-atom cells, 203 �43� k
points near the real axis �far in the complex or below zero
energy�, yielding changes in relative energies of less than 2
meV/atom.

In some cases literature does not provide equivalent com-
parisons to the present results. If not, we used a pseudopo-
tential plane-wave method, as implemented in the Vienna ab
initio simulation package �VASP�,68,69 with a projector aug-
mented wave �PAW� basis70 to yield accurate energy differ-
ences. We used generalized gradient approximation �GGA�71

and/or LSDA. We used 350–400 eV energy cutoff for the
plane-wave basis set and similar Brillouin zone meshes to
KKR but 3 mRy smearing of the density of states. Conver-
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gence of the total energies �forces� is less than 2 meV/atom
�30 meV /Å�. Also, we use Stuttgart LMTO code72 with com-
bined corrections �which can adjust ASA sphere sizes for
ordered systems via saddle points in the spherical, Hartree-
only potential� and compare its results to the present ap-
proach, where our results agree much better to that from
full-potential methods.

Due to their importance in stability and thermodynamics,
we will compare two types of energy difference: �i� the
formation energy, i.e., the alloy energy relative to the
concentration-weighted sum of the � constituent energies at
their equilibrium volumes, or

�Ef = Ealloy�V0;R��� − �
�=1

S

c�E��V�
0 ;R�

0� , �12�

and �ii� a planar defect energy, i.e., the energy per m defects
in an N-atom cell relative to the undefected cell with a planar
defect area of Adef, or

�def =
Edef

alloy�N;R��� − E0
alloy�N;R���

mAdef
. �13�

Defect energies are less dependent upon the exchange corre-
lation and other approximations used due to inherent cancel-
lations. Here the equations are written to convey that these
energy differences depend on the MT-SPR or ASA radii �i.e.,
R��� used in the basis. Clearly, in the definition of �Ef, there
is a different set of radii for the alloy R�� than that for the
elements R�

0 , whereas, for the defect energy, the defected and
undefected cases have the same composition and R��. Thus,
variational behavior is expected from Eq. �13�, as we show,
but not from Eq. �12�. So both will provide stringent com-
parison between equal-sphere and MT-SPR-sphere calcula-
tions. That is, one must know a priori the set of R�� that
will produce an optimally correct �Ef because it cannot be
chosen by direct variation. Also, while direct variation of �def
versus R�� is possible, the calculations are computationally
expensive, requiring several R�� each with many atoms per
unit cell. We use a �011� c domain in L10 CoPt, requiring 24
atoms/cell to give converged values for �cdb

011, to show direct
minimization with changes in sphere radii. Such defects are
of direct interest in temperature-dependent defect formation
in this magnetic storage alloy.

IV. RESULTS AND DISCUSSION

Our focus here is to show that the MT-SPR representation,
specifically in the ASA, provides a dramatic improvement
for energetics and structural properties, as well as site
charges. As such, we have considered A3B and AB alloys in
fcc, bcc, and hcp lattices. Two systems having significant
atomic size differences are addressed, namely, fcc CoPt �of
interest for high-density magnetic storage� that orders from
fcc �A1� into L10 at 1098 K, and bcc �A2� CrW that phase
segregates below 1950 K, whose constituents are in the same
column of the Periodic Table. There is limited calorimetry
data �e.g., formation enthalpies�, although phase transition
temperatures and structural parameters are well established.
In addition, we study hcp Ti3Al, whose DO19 ground

state73–75 exhibits a large c /a distortion.76,77 This distortion is
not a consequence of large difference in atomic sizes, but
rather the cell shape. In addition, DO19 is almost degenerate
with cubic L12 within DFT.78–83

Generally, the term charge transfer is not uniquely defined
as excess charge on a site depends on how space is parti-
tioned. In LAPW, for example, only excess charge in the
chosen MT spheres is often quoted. “Bader charge”19,20 is
more relevant but determined in nonconvex topological
partitions.17,18 Here, we consider the excess charge in the
atomic spheres, where the spherical part of the local charge
density is better represented with MT-SPR and the excess
charges in the MT-SPR ASA spheres reflect this; that is, for
systems composed of atoms within the same columns of the
Periodic Table, such as CrW, charges should be closer to
neutral.

Careful comparison has been done only twice between
various approximations to the disordered phase,84,85 i.e.,
CPA, structural inversion method �SIM�, and special quasir-
andom structures �SQS�. The KKR-CPA �which includes
�off-�diagonal disorder and multibody effects� performs an
approximate configurational average concomitant with
the charge self-consistency �scr-CPA adds local charge
correlations63�. The SIM �Refs. 86–89� attempts to construct
an effective cluster expansion90,91 to represent all configura-
tions using enthalpies from a set of ordered configurations; if
done correctly, then the SIM agrees with the CPA.84 The
SQS approximates �within a range smaller than the cell� the
pair correlations in a fully disordered alloy from a perfectly
ordered arrangement of atoms, in large �sometimes multiple�
unit cells92–95 that can experience large relaxations. The SQS
assumes that there are no multibody correlations determining
energetics, which could be important in the disordered
phase.84 Johnson and Asta85 showed that if all methods used
the same Lmax, exchange correlation, etc., then each approxi-
mation gave similar results in systems with pair dominant
interactions and similar sized atoms. We include SQS-N
�N-atom, ordered layered cells� results for comparison to the
faster one-atom-per-cell CPA results.

A. fcc CoPt

With large coercive fields and high magnetoanisotropy,
FM-L10 CoPt-type alloys are candidates for high-density,
magnetic storage media down to nanosize scale.96 However,
tetragonal �c /a� distortions inherent in the L10 compounds
result in competition of the FM and anti-FM states,97 de-
creasing the stability of the FM state with smaller system
size. Thus, the relative stability of the ordered, disordered,
and defected phases is key to the thermodynamic, structural,
and magnetic properties. For example, when ordering below
1098 K �from PM-A1 to PM-L10�, planar defects appear in
micrographs,98 such as c-domain and antiphase boundaries,
then, subsequently, a Curie transition occurs at 723 K to
FM-L10. Both of these transitions affect energy and forma-
tion of defect. Hence, the �Ef and planar defect energies,
like �cdb

011, are of technological importance. Therefore, we fo-
cus on the PM-A1 and FM-L10 CoPt, both energy and struc-
tural properties, and show that the MT-SPR representation
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provides a remarkable improvement. In the A1 phase, by
definition in Eq. �13�, �cdb

011 is zero.
In Fig. 2 for FM-L10 CoPt, we show the direct variation

of �Ef and �cdb
011 versus RPt /RCo �the ratio of ASA radii�. As

expected, �cdb
011 is variational, with a minimum of 148 mJ /m2

at 1.040, substantially less that 220 mJ /m2 at 1.0. The MT-
SPR from Eqs. �7� and �9� gives the ratio to be 1.042 yield-
ing �cdb

011 of 148 mJ /m2 also, the optimal value. The direct
variation was obtained from several 24-atoms/cell calcula-
tions, whereas the MT-SPR were obtained a priori and a
single calculation performed. While no experimental value of
�cdb

011 is available, the VASP value is 147 mJ /m2, confirming
the MT-SPR ASA value.

As shown in Fig. 2, �Ef
L10 varies dramatically �but lin-

early� with RPt /RCo, from −28 meV /atom at the ratio 1.0 to
−100 meV /atom at 1.04 �a factor of 3 decrease�. For the
MT-SPR basis, it is −95 meV /atom, now in better compari-
son to VASP. In this case, the touching MT-SPR, which sum
to a0

�2 /2, are 1.3861 and 1.2908 Å �ratio 1.074� for Pt and
Co, respectively, and the ASA radii are 1.5083 and 1.4475 Å
�ratio 1.042�, for �10% overlap. �Using the Stuttgart LMTO

code72 based on the saddle points in the spherical potentials,
we obtained −64 meV, where the MT radii were 1.3165 and
1.3378 Å leading to ASA radii of 1.459 and 1.482 Å for Co
and Pt, respectively.�

More surprisingly, as shown in Table I, the FM-A1 �Ef
dis

�scr-CPA� phase segregates �80 meV/atom� with equal
spheres, whereas it mixes �−70 meV /atom� for MT-SPR
case. The MT-SPR in this case are 1.41 and 1.2589 Å �ratio
1.12�, which give ASA radii of 1.52 and 1.4545 Å �ratio
1.045�. The change in sign for A1-CoPt is consistent with
that found by Singh and Gonis36 for NiPt when they adjusted

spheres to charge-neutral case. This dramatic swing in �Ef
dis

arises due to representing charge density better, but does not
require that the sphere be arbitrarily chosen as charge neu-
tral.

Besides being in agreement with VASP results, the FM L10
and A1 �Ef using the SPR-ASA are now consistent with
known measurements99,100 �made above the Curie point� in
sign and magnitude; see Table I. �In recent calorimetry mea-
surements on transition-metal binaries, it has been found that
�Ef values are in closer agreement to DFT than the older
values;104–106 however, there have been no new measure-
ments on Co-Pt systems, even with the renewed interest in
these systems.� Our results in Table I are also in agreement
with well-known models due to Miedema and co-workers101

and CALPHAD �Ref. 102�; in fact, our FM L10 and A1 �Ef
are a constant shift of about 16 meV from those PM results.

Besides dramatically improving the calculated �Ef, the
SPR shows, as expected, far less sensitivity to the Lmax used
within the spheres; see Table II for FM CoPt. Ordered and
disordered SPR �Ef lower slightly versus Lmax, as might be
expected keeping only monopole terms. However, the order-
ing energy �Eord, i.e., the difference in ordered and disor-
dered energies� versus Lmax remains unchanged, in contrast
to the non-SPR basis. All systems studied thus far show simi-
lar behavior. Moreover, this behavior will lead to a reduction,
e.g., in combined corrections in the LMTO-ASA. Of course,
with full VP integration using the MT-SPR, there will be no
need for any approximate corrections.

The FM-L10 magnetic moments for Co and Pt MT-SPR
spheres are 1.75 and 0.38 �B �2.13 �B /cell�, respectively,
and 1.86 and 0.38 �B for equal spheres �2.24 �B /cell�;
compare these to the VASP �2.10 �B /cell� and 1.7 and
0.25 �B �1.95 �B /cell� from the neutron-scattering results
of Cable, as discussed by van Laar107 when reporting his
magnetization measurements �1.90 �B /cell�. With equal
spheres, LMTO-ASA using combined corrections and Lmax
=2 found 1.85 and 0.38 �B �2.23 �B /cell�,108 the same as
our equal sphere results. ASW-ASA calculations32 found
1.69 and 0.37 �B using the experimental lattice parameters
with no energies reported; however, they fixed the Co
spheres from elemental hcp-Co results and then adjusted
only Pt spheres to conserve volume �due to sensitivity of
results on sphere sizes�. Clearly, such a choice helps make
Co spheres more Co like, but it is again not unique nor does
it change with environment or composition, in contrast to our
automated MT-SPR choice.

In Table III, we consider the local excess charge within
the ASA spheres. For transition-metal atoms within the same
column of the Periodic Table, one expects little charge trans-
fer, where the ordering is made favorable from band hybrid-
ization, as quantified in NiPt.109 Electronegativity of Pt
�2.20� and Co �1.88� suggest that charge should transfer from
Co to Pt. In the A1 phase, excess charge should be only
slightly different, whereas, in L10, an increase occurs due to
Madelung effects. In Table III, there is a change in sign of
�and drop in magnitude by roughly a factor of 2� the excess
charge between equal and MT-SPR spheres. Thus, in the MT-
SPR ASA �Wigner-Seitz�, the excess charges are now more
what is expected from the electronegativities.

For disordered metals, the scr-CPA better reproduces the
impurity screening arising from the charge correlations in the
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FIG. 2. �Color online� For L10 CoPt, �upper� �cdb
011 �in mJ /m2�

and �lower� �Ef �in meV/atom� versus ratio of ASA radii RPt /RCo.
KKR-ASA: direct variation �diamonds� and SPR calculation
�circle�, and VASP �horizontal line�. Direct variation finds optimal
RPt /RCo of 1.040 versus a priori SPR value of 1.042. The SPR-ASA
�cdb

011 is 148 versus 147 mJ /m2 from VASP, whereas equal sphere is
220 mJ /m2.
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local environmental averaging.63 This is evident in Table I
where the CPA is compared with the scr-CPA. For equal
spheres there is a large excess charge on all smaller atom
sites �see Table III� from the tails of the charge density of the
larger atom that have been arbitrarily cutoff at the smaller
radii. Hence, the effect of screening should be much bigger;
and, indeed, the �Ef drops by almost a factor of 2, from 155
to 80 meV/atom, but still remains positive. Whereas, for the
MT-SPR basis, the MT sphere reflect more appropriately the

extent of the charge density �see Table III� and the effect
of the screening is substantially less, from −67 to
−70 meV /atom, and now A1-CoPt is stable at high tempera-
tures, as observed.

Table I also shows the results of SQS calculated at the
scr-CPA lattice constant in Table IV. The A1 phase for 50%
binary is approximated as an average of two, eight-atom
configurations93 that are layered along �113� in a sequence of
A2B3A2B1. As a result, one must do two calculations �swap-
ping A and B atoms� and average them. These two configu-
rations can be dramatically different in energy, as we find for
FM CoPt; see footnote in Table I. Of course, the SQS-8
results, because they are layered cells, may exhibit very dif-
ferent relaxations for each sequence; and any internal relax-
ations, which can be significant,94 will move the SQS-8 to-
ward the scr-CPA results. We note that a comparison of SQS
and CPA with equal spheres has been done before,114 al-
though not using the same code nor approximations. The
SQS usually agreed with the much faster CPA, except in
cases where there were large differences in the size of the

TABLE I. KKR-ASA �Ef �in meV/atom� for �dis�ordered alloys with equal and SPR spheres, relative to
elements in parent phase of alloy, for FM A1 and L10 CoPt, A2 and B2 CrW, A3 and DO19Ti3Al. Disorder
is handled by �scr-�CPA. Other theory and experimental results are given for comparison including unrelaxed
SQS.

Alloy Method

Equal sphere SPR sphere

�Ef
ord �Ef

dis �Ef
ord �Ef

dis

KKR-CPA −28 155 −95 −65

KKR-scr-CPA −28 80 −95 −70

KKR-SQS-8̄ a 96 −66 a

Expt.b �Ref. 99� −140�22 −129�26

CoPt Expt. �assess.�b �Ref. 100� −102�26

Miedema �Ref. 101� −114

CALPHAD �Ref. 102� −88

VASP −79

VASP-GGA −89

KKR-CPA 51 446 31 97

KKR-scr-CPA 51 324 31 62

KKR-SQS-8 344 55

CrW KKR-SQS-16 379 116

CALPHAD �Ref. 102� 82

LAPW �Ref. 103� 33

LAPW-GGA �Ref. 103� 23

TB �Ref. 78�/EAM �Ref. 81� 110

KKR-scr-CPA −276 −161 −279 −146

Ti3Al Expt. �Refs. 73 and 74� −273�10 c

LAPW �Ref. 79�, LASTO �Ref. 82� −280 d

LAPW-GGA �Ref. 83� −300

aAverage of two layered cells �Ref. 93� 8a �−334.6 meV� and 8b �+210.3 meV�.
bL10 phase at 914 K and A1 at 1273 K �1173 K for assessed�.
c�Ef

DO19 is average of −260, −290, and −270��10� meV, respectively.
d�Ef

L12 is −270 �LAPW�, −280 �LASTO� vs −277 meV �KKR�.

TABLE II. KKR-ASA ordered and scr-CPA �Ef and Eord for
CoPt �in meV/atom� vs Lmax with equal and MT-SPR spheres,
showing less sensitivity to Lmax with MT-SPR basis.

Equal sphere SPR sphere

Lmax �Ef
ord �Ef

dis Eord �Ef
ord �Ef

dis Eord

2 7 130 123 −91 −65 26

3 −28 80 108 −95 −70 25

4 −11 100 111 −107 −81 26
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atoms. Present results show that it was due to representation
and not the CPA.

Trends in lattice constants are also better reproduced. In
Table IV, for the observed FM phase, aord �c /a� is 3.80 Å
�0.972�, compared to our calculated value of 3.784 Å
�0.984�. We find adis is 3.78 Å for the PM-A1 phase �in
parenthesis in Table IV�, compared to measured value of
3.81 Å. All our results are within the expected 0.5%–1.5%
LSDA error. Notice that for fictitious FM-A1 phase we find a
much smaller adis of 3.740 Å for the scr-CPA, so it is critical
to address more properly the A1-CoPt PM state. In particular,
the change in a0 from A1 to L10 is correctly reproduced.
Also, the L10 volume �i.e., �c /a�a3� is the same for both
theory and experiment. Thus, MT-SPR results compare sig-

nificantly better to the experiment for both the ordered and
disordered, especially for the scr-CPA that properly takes
into account the effect of charge correlation in the local en-
vironment. So past errors involving CPA calculations were
not due to an error in CPA description but the representation
of the density and potential.

B. bcc CrW

The A2 Cr50W50 exhibits segregation below 1950 K. To
compare with other methods, we calculated the fictitious B2
CrW, and SQS-8 and SQS-16 �unrelaxed� approximations to
A2 phase at the a0 from scr-CPA. The MT-SPR for B2 find
that W is 14% larger than Cr, i.e., RW /RCr is 1.14, see Fig. 1,

TABLE III. Excess ASA charges, large atom �first line� and small atom �second line� for �dis�ordered
alloys with equal and SPR spheres for same systems as in Table I.

System Method

Equal sphere SPR sphere

�Qf
ord �Qf

dis �Qf
ord �Qf

dis

KKR-CPA −0.113 +0.058

+0.113 −0.058

CoPt KKR-scr-CPA −0.277 −0.187 +0.163 +0.049

+0.277 +0.187 −0.163 −0.049

KKR-CPA −0.352 −0.090

+0.352 +0.090

CrW KKR-scr-CPA −0.662 −0.581 +0.162 −0.150

+0.662 +0.581 −0.162 +0.150

Ti3Al KKR-scr-CPA +0.222 +0.108 +0.216 −0.069

−0.074 −0.036 −0.072 +0.023

TABLE IV. KKR-ASA �T=0 K� and room temperature �RT� measured lattice parameters a �in Å� and
c /a �second line� for �dis�ordered alloys from equal and SPR spheres for systems given in Table I. For
A1-CoPt, there is a lattice constant for FM �PM� state. Experimental results are taken from Refs. 110 and 111
for CoPt, Refs. 112 and 113 for CrW, and Refs. 76 and 77 for Ti3Al.

System Method

Equal sphere SPR sphere Expt. Other theory

aord adis aord adis aord adis aord

KKR-CPA 3.70 �3.720� 3.726 �3.793�
1.00 1.00

CoPt KKR-scr-CPA 3.75 3.72 �3.735� 3.784 3.740 �3.780� 3.80 n /a�3.81� a 3.746b

0.988 1.00 0.984 1.00 0.972 1.00 0.967b

KKR-CPA 3.04 3.013

1.00 1.00

CrW KKR-scr-CPA 3.09 3.03 3.016 3.011 3.043c 2.98d

1.00 1.00 1.00 1.00 1.00 1.00d

Ti3Al KKR-scr-CPA 3.001 3.019 3.007 3.019 3.053 �3.059� 3.001d

0.803 0.803 0.803 0.803 0.801 �0.803� 0.807d

a1100 K PM phase with a�3.81 extrapolated to RT gives a�3.77 �Ref. 111�.
bVASP-LDA results: this work for L10 CoPt.
cAt 1700 K, two-phase quenched values are unchanged �Ref. 113�.
dFLAPW-LDA results: Ref. 103 for B2 CrW and Ref. 79 for DO19Ti3Al.
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compared to 1.077 in the A2 �scr-CPA� phase.
For B2 CrW, Table I shows that the energy from the SPR

basis is significantly improved compared to equal sphere,
with �Ef of 31 meV versus 33 meV in LAPW. �From the
Stuttgart LMTO code,72 we find 6 meV from their MT radii of
1.2147 and 1.3976 Å, which lead to ASA radii of 1.3745 and
1.5815 Å for Cr and W, respectively.� Empirical modeling
by Miedema and co-workers101 found 10 meV for the B2
phase. Even more dramatic is the effect on energy and struc-
ture in the observed A2 phase. For equal spheres, �Ef

dis is
324 meV �446 meV� in scr-CPA �CPA�, due to the large
�unphysical� excess charges in the spheres given by the bad
representation of density. In contrast, for the SPR represen-
tation, �Ef

dis is 62 meV �97 meV� for the scr-CPA �CPA� in
Table I; the SQS-8 �Ef

dis gives a similar result. The SQS-16
is significantly larger than the scr-CPA or SQS-8, perhaps
relaxations may lower �Ef

dis in this many layered cell. For
A2 CrW, 110 meV were reported for tight-binding78 and em-
bedded atom81 methods, see Table I, again too large.
CALPHAD modeling102 found 82 meV, but based on phase
diagram fitting rather than enthalpy data.

How good is our SPR-based A2 result? As no enthalpy
data is available, we use a mean-field estimate for the critical
temperature �i.e., kBTc�2�Ef

dis /�S, where �S is point en-
tropy�, validated in Ref. 115 as accurate for alloys with no
topological frustration. We obtain 2079 K for Cr50W50 from
the MT-SPR scr-CPA result, compare to the observed 1950
K, and verifying the quantitative improvement for the SPR
basis.

The trends in the lattice constants and charges are also
better reproduced. In Table IV, the MT-SPR scr-CPA result
gives adis of 3.011 Å compared to aord of 3.043 Å. Notably,
the MT-SPR lattice constant is less than experiment, as ex-
pected within LDA, in contrast to the equal sphere case.
Similarly, for the B2 phase, aord is 3.016 Å, which also com-
pares better to LAPW �2.98 Å�.

In Table III, the excess charges in the MT-SPR ASA
spheres now exhibit the physically expected more neutral
spheres, in contrast to the equal sphere case. Also, the sign of
the excess charges in ordered B2 has changed and now re-
flects the sign expected from electronegativities of W �1.70�
versus Cr �1.66�, i.e., more charge on W. For A2 CrW, al-
though spheres are much more charge neutral, the excess
charge does not have the same sign as B2 because they have
slightly smaller radii than B2, reflecting the various environ-
ments in the configuration average, giving 62 meV for �Ef

dis.
In contrast, fixing the radii of A2 to that of B2 increases the
�Ef

dis to 91 meV/atom, for a 50% increase to the critical
temperature, in disagreement with experiment. The excess
charges in A2 versus B2 reflect the changes in the saddle
points going from an averaged to a single environment �see
below�.

It is worth again comparing the MT or ASA radii. In the
fictitious B2 phase, the MT-SPR are 1.4238 and 1.1952 Å
�ratio 1.191� for W and Cr, respectively. The ASA radii are
then 1.5781 and 1.3790 Å �ratio 1.144�. Clearly in Fig. 1,
the origin for the energy improvements arises from adjusting
the MT radii to the saddle points to better represent the
charge density distribution around a site. More interesting
are the radii in the observed A2 phase, especially since the

excess charge has dramatically changed. The MT-SPR are
1.360 and 1.2308 Å �ratio 1.105� for W and Cr, respectively.
The ASA radii are then 1.535 and 1.4253 Å �ratio 1.077�.

For completeness, adjusted-ASA KKR-CPA
calculations116 were done early on by varying �Ef

CPA with
respect to Rbig /Rsmall while conserving volume and a mini-
mum was found for charge-neutral spheres. The same result
cannot be found in ordered phase because �Ef

ord is not varia-
tional versus Rbig /Rsmall; see Fig. 2. �Clearly, this is not the
same as finding the MT-SPR and approximating the Voronoi
polyhedra by the ASA, as done in Fig. 2.� This charge-
neutral-CPA method was abandoned because the �fictitious�
variational behavior was due only to the single-site approxi-
mation and the use of the ASA.116 That is, for A2 CrW, with
similar bulk moduli, Cr and W spheres trade off charge to
eliminate the electrostatic contribution to the formation en-
ergy and put it into band energy within a single site. One
could make an arbitrary choice for Rbig /Rsmall, such as
assuming the charge-neutrality condition for all
configurations.36 However, for alloys with constituents hav-
ing dissimilar bulk moduli �see end of Sec. I�, charge neu-
trality gives unphysical results, as in Al-Li.36,116 The
Rbig /Rsmall are different in the ordered and disordered phases,
and only the MT-SPR ASA properly reflects their different
bonding characteristics, giving unique and optimal descrip-
tion, as for A2 and B2 CrW.

C. hcp Ti3Al

DO19Ti3Al is included to show that even slight changes in
MT-SPR lead to improvements in comparison to LAPW and
experiment. The energetics are subtle, with DFT showing
that DO19 is almost degenerate with L12.78–83 The SPR basis
gives a slight reduction of 3 meV/atom, closer to LAPW. The
ASA �FLAPW� �Ef is −279 meV �−280 meV� for DO19, in
agreement with experiment; see Table I. We find L12 only 2
meV higher than DO19, whereas FLAPW finds 10 meV
higher.79 LASTO and LMTO find them as degenerate.79,82,83

Hence, even though the changes in ASA sphere sizes are
small �RAl /RTi=1.0022�, the SPR basis does improve the re-
sults. A similar reduction of 2 meV/atom is found for L12
from equal to MT-SPR ASA, leaving the DO19-L12 energy
difference unchanged. The A3 phase is also predicted to be
stable.

The a0 from MT-SPR ASA are within 1.7% from
experiment76,77 and 0.3% from the full-potential results,79

and c /a agrees with experiment; see Table IV. Similarly,
excess charges have little changes and in accord with Al
being more electronegative than Ti, except for the A3 phase
where the sign changes on Al. This finding indicates that the
average A3 environment does not favor the same �electro-
static� charge effects as DO19 and that the ordering is much
more favored, as evident in Table I.

V. CONCLUSION

Many electronic-structure methods use site-centered ex-
pansions of density and potential inside nonoverlapping,
“muffin-tin” �MT� spheres with an interstitial basis set. We
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have presented a numerically fast, site-shifted �spherical har-
monic� expansion of density to determine, before any calcu-
lation, the radii of the saddle points �SPR� in the total density
at each site using only the overlapping atomic charge den-
sity, easily implemented via standard Herman-Skillman
atomic-type calculations, for arbitrary number of sublattices
and alloying components, and for ordered and �CPA� disor-
dered alloys. The MT spheres given by the SPR in the total
density reflect the boundary separating the spherical and
nonspherical density between neighboring atoms, and, there-
fore, give the optimal region for expanding in spherical har-
monics, as we verified by direct variation.

We adapted the MT-SPR basis to the KKR-CPA in the
atomic sphere approximation �ASA� to study ordered and
disordered alloys with large atomic size differences. We
found that formation energies and structural parameters are
in strikingly better agreement with more exact ab initio or
experimental results, with no increase in computational cost,
and there is a much reduced sensitivity of the results on the
assumed angular momentum cutoff. Moreover, the excess
charges on a site are now more those expected from elec-
tronegativity. In the case of CPA, the SPR basis provides
reliable values, resolving outstanding issues; we showed that
former bad �or inconsistent� CPA results were not due to the
approximation itself but to the use of poorly represented den-
sities and potentials. For general systems, due to these im-
provements from the SPR basis, we now can predict accu-
rately the ordered, partially ordered, and fully disordered
states in the same code. Finally, we note that the MT-SPR
also uniquely guarantee convex, weighted Voronoi polyhedra
that may be found rapidly, permitting full integration over
each polyhedra via isoparametric integration, which we are
now implementing.
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APPENDIX: CALCULATION OF ASA RADII

Assume Ns sublattices and �s number of components in
each of the s sublattices in the unit cell. If V is the volume of
the unit cell, volume conservation within an ASA calculation
demands

V =
4

3

�

s=1

Ns

�
�=1

�s

c�,s�R�,s
ASA�3ns, �A1�

where ns is atomic degeneracy, and c�,s and R�,s
ASA are the

concentration and ASA radii of the � atom at the s sublattice.

If R�,s
MT are the calculated MT radii for the atom � on the

sublattice s, then we have

R�,s
ASA = R�,s

MT + �R�,s, �A2�

where �R�,s is increment to a MT radii to get a volume-
conserving ASA radii, which depend on both � and s. Let us
denote the smallest of R�,s

MT� as Rref, i.e., Rref�R�,s
MT �∀� ,s�.

For mathematical convenience we define the ratio

R�,s
MT

Rref
= X�,s. �A3�

At this point, a choice has to be made to conserve volume.
First, we could equally scale all spheres, fixing the only re-
maining single parameter; however, the largest R�,s

MT will in-
crease radially the most �increasing the ASA overlap error
more�. Second, noting that smaller atoms surrounded by
large atoms have more interstitial around them, we could
impose a restriction on the increment �R�,s such that the
larger atoms expand less as compared to the smaller ones; an
efficient and physical means to minimize the overlap be-
tween two very different sized atoms. We use the second
approach, which can be formulated by the condition that

�R�,s

�Rref
=

1

X�,s
, �A4�

i.e., �R�,s� �R�,s
MT�−1. Using Eqs. �A2�–�A4� in Eq. �A1�, we

get

V = A + B��Rref� + C��Rref�2 + D��Rref�3 �A5�

with coefficients

A =
4


3
Rref

3 �
�,s

nsc�,sX�,s
3 ,

B = 4
Rref
2 �

�,s
nsc�,sX�,s,

C = 4
Rref�
�,s

nsc�,sX�,s
−1 ,

D =
4


3 �
�,s

nsc�,sX�,s
−3 . �A6�

Because we know all R�,s
MT�, all the X�,s are known, as are all

of c�,s ,ns and V, and so we can solve Eq. �A5� for �Rref.
Once �Rref is evaluated, Eq. �A4� can be used to calculate
the increment �R�,s� and, hence, R�,s

ASA� from Eq. �A2�. If
the alloy is ordered, c�,s are 1 on each sublattice, otherwise
this is a single-site average.
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