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Electronic, magnetic, or structural inhomogeneities ranging in size from nanoscopic to mesoscopic scales
seem endemic and are possibly generic to colossal magnetoresistance manganites and other transition metal
oxides. They are hence of great current interest and understanding them is of fundamental importance. We
show here that an extension, to include long-range Coulomb interactions, of a quantum two-fluid �-b model
proposed recently for manganites �Phys. Rev. Lett. 92, 157203 �2004�� leads to an excellent description of
such inhomogeneities. In the �-b model two very different kinds of electronic states, one localized and
polaronic ��� and the other extended or broad band �b� coexist. For model parameters appropriate to manga-
nites and even within a simple dynamical mean-field theory �DMFT� framework, it describes many of the
unusual phenomena seen in manganites, including colossal magnetoresistance �CMR�, qualitatively and quan-
titatively. However, in the absence of long-ranged Coulomb interaction, a system described by such a model
would actually phase separate, into macroscopic regions of l and b electrons, respectively. As we show in this
paper, in the presence of Coulomb interactions, the macroscopic phase separation gets suppressed and instead
nanometer scale regions of polarons interspersed with band electron puddles appear, constituting a kind of
quantum Coulomb glass. We characterize the size scales and distribution of the inhomogeneity using computer
simulations. For realistic values of the long-range Coulomb interaction parameter V0, our results for the
thresholds for occupancy of the b states are in agreement with, and hence support, the earlier approach
mentioned above based on a configuration averaged DMFT treatment which neglects V0; but the present work
has features that cannot be addressed in the DMFT framework. Our work points to an interplay of strong
correlations, long-range Coulomb interaction, and dopant ion disorder, all inevitably present in transition metal
oxides as the origin of nanoscale inhomogeneities rather than disorder frustrated phase competition as is
generally believed. As regards manganites, it argues against explanations for CMR based on disorder frustrated
phase separation and for an intrinsic origin of CMR. Based on this, we argue that the observed micrometer
�meso� scale inhomogeneities owe their existence to extrinsic causes, e.g., strain due to cracks and defects. We
suggest possible experiments to validate our speculation.
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I. INTRODUCTION

In the last decade or so, a number of experiments on
several families of transition-metal oxides have provided
evidence1,2 that these often consist of patches of two
different kinds of electronic/structural/magnetic states. The
patches range in size from nanometers to micrometers
and can be static or dynamic. In doped manganites
�Re�1−x�AkxMnO3, with Re and Ak being rare-earth and
alkaline-earth ions, respectively� where this phenomenon
seems most widespread, one can have insulating locally lat-
tice distorted �in some cases charge ordered� regions coex-
isting with metallic lattice undistorted ones.3–11 In cuprates,
an antiferromagnetic �AF� insulating state and a metallic �or
superconducting� state seem close in energy and may coexist
under some conditions, e.g., as nanoscale stripes �see, for
example, the references in Ref. 12�. There is a view that the
proximity of two states with very different long-range orders
�LRO� is a defining characteristic of these systems. For ex-
ample, such a view has been most forcefully put forth in the
work of Dagotto and co-workers9,13–15 on the basis of nu-
merical simulations of finite-sized samples of simplified lat-
tice models capturing one or more key features of mangan-
ites. In Ref. 15, models with Mn eg electrons having Jahn-

Teller coupling to classical phonons and double exchange
coupling to Mn t2g core spins and antiferromagnetic interac-
tions JAF between the core spins are studied for x=0.25 on
lattices of size up to 12�12. The clean system has a first-
order transition �ending at a bicritical temperature from a
ferromagnetic metallic �F-M� phase for small JAF to an anti-
ferromagnetic �AF-I� charge ordered, insulating phase when
JAF crosses a threshold JAF−t�. The magnetoresistance exhib-
its colossal magnetoresistance �CMR�-like features when JAF

is tuned to be in the vicinity of the transition coupling JAF−t.
But the tuning becomes less of a requirement in the presence
of disorder, which further generates nanoscopic interpen-
etrating patches of the two regions. These are then argued to
be generic features responsible for �nanoscale� two “phase”
coexistence, colossal magnetoresistance �CMR� and other
phenomena observed in manganites. Larger length scale �mi-
cronscale� coexistence is also attributed to disorder effects
amplified by proximity to a critical value of competing
parameters.13 However, the existence of manganites with
negligible frozen disorder but showing CMR and other char-
acteristic phenomena16 suggests that these effects are intrin-
sic and that nanoscale and micronscale inhomogeneities
could arise from other intrinsic causes.
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In particular, the Coulomb interaction which is inevitably
present can play a significant role if the two phases involved
have different charge densities and will suppress phase sepa-
ration, leading to nanoscopic electronic inhomogeneity or
phase coexistence. This is the ubiquitous effect that we in-
vestigate here quantitatively in conjunction with the two
fluid
�-b model17–19 proposed recently for manganites. This model
invokes two very different types of electronic degrees of
freedom, one polaronic and localized �called �� with associ-
ated Jahn-Teller lattice distortion and the other �called b�
forming a broad band, with no lattice distortion and moving
around primarily on sites not occupied by the polarons. It has
been shown18,19 that this approach explains much of the un-
usual behavior of manganites qualitatively and quantita-
tively. The work here shows in detail how the inclusion of
electrostatic Coulomb interactions in the �-b model leads to
nanometer scale inhomogeneities and quantifies this effect.
More generally, our results describe the intrinsic emergence
of such nanoscale electronic inhomogeneities in any many
electron system with two very different microscopic states of
comparable energy. The model is different from disorder
based phase separation or domain formation as seen in com-
puter simulations of simple models9 or in statistical
Imry-Ma-type13,20 arguments. The frequently observed mi-
cron scale inhomogeneity in many manganites3,6,7 is prob-
ably related to strain effects, which are long ranged and un-
screened. There are no calculations of this effect although
simulations of elastic strain effects and inhomogeneities in
Jahn-Teller distorted lattice systems have been made21 on
simplified models.

Specifically, in the �-b model, at each lattice site there can
be two types of electrons, namely, a nearly localized po-
laronic one �called �� with site energy −EJT and a broad band
one �called b, with site energy zero �0� and hopping ampli-
tude t�. There is a strong local repulsion U �we consider U
→� in this work� present between the � polaron and the b
electron. The physical origin and parameters of this model
for manganites are mentioned below �Sec. II A� and have
been described in Refs. 17–19 and 22. If long-range Cou-
lomb interactions are neglected, the system described by the
model phase separates, i.e., the ground state consists of two
separate phases, one a macroscopic region entirely of � po-
larons at every site and the other consisting of occupied b
band states, the b density being fixed by the requirement of
uniformity of the chemical potential �, whence � must equal
−EJT. However, the two phases have very different charge
densities. With respect to ReMnO3, which has one eg elec-
tron per site, as the reference state, the polaronic phase is
neutral, while the b phase has a positive charge density of
1− n̄b per site. Furthermore, the doped alkaline-earth ions
�most likely randomly distributed on the lattice� supply unit
negative charge at each alkaline-earth site. The relevant “ex-
tended �b model” which includes long-range Coulomb inter-
action involving these charges is described in Sec. II B. It
leads to the suppression of macroscopic phase separation and
the formation of nanoscopic “puddles” of b electrons sur-
rounded by regions with only � polarons. We first present a
simple analytical estimate of the size of these regions, in
particular their dependence on V0, the energy parameter that

determines the strength of the long-range Coulomb interac-
tion �Sec. II C�. Next, we describe simulations that we have
carried out on finite systems of size up to 20�20�20, with
the energy levels of the b electron puddles calculated quan-
tum mechanically, and the Coulomb effects treated in the
Hartree approximation. The method for the ground state de-
termination is detailed in Sec. II D. The results of the simu-
lations are described and discussed in Sec. III. The � po-
larons are shown to form a Coulomb glass.23 Electronic
states in the b electron regions are occupied �up to the chemi-
cal potential �� for a critical hole concentration x�xc1; these
puddles connect percolatively and the system is a metal for
x�xc2�xc1. We analyze and discuss in detail xc1 and xc2 as
well as b clump size distributions as a function of V0 ,EJT and
the arrangement of the alkaline-earth ions. We exhibit several
examples of real-space inhomogeneous structures. The spa-
tial autocorrelation of holes �absence of polarons� and of
holes with alkaline-earth ions is also elaborated. We compare
the effective b bandwidth obtained from simulations which
have the intrinsic nanoscale inhomogeneity mentioned above
with results from single-site dynamical mean-field theory
�DMFT� �Ref. 17� neglecting long-range Coulomb interac-
tions but forcing homogeneity �“annealed disorder”� and find
very good agreement.

In the final part of this paper �Sec. IV� we discuss some of
the approximations made, e.g., the assumption of random
distribution of dopant ions, the effect of disorder, and its
modeling. We also mention a number of implications of our
results for manganites such as Coulomb glass behavior and
other signatures of nanoscale inhomogeneities on transport
properties. We place our results in the context of the inho-
mogeneities observed in experiments and suggest some ex-
periments to investigate long-range strain effects. A short
description of this work has been published.24

II. MODEL AND METHOD

This section contains four parts. In the first part �Sec.
II A�, the �b model17–19 is briefly described. The second part
�Sec. II B� contains a description of the extended �b Hamil-
tonian. A simplified analytical solution for the ground state
of the extended �b Hamiltonian is presented in the third part
�Sec. II C�. Finally, the determination of the ground state of
the extended �b Hamiltonian is described in the final part
�Sec. II D�.

A. Summary of the �b model

The Mn3+,4+ ions in Re�1−x�AkxMnO3 form a simple cubic
lattice �with lattice parameter taken as a, lattice sites indexed
by i�. Each manganese ion experiences the octahedral envi-
ronment of oxygen atoms and thus the d states are crystal
field split into t2g and eg orbitals. For the purposes of describ-
ing the low-energy physics of manganites one can treat the
t2g levels as always occupied by three electrons at every site,
with parallel spin because of a strong Hund’s rule, and hence
replace them by a S= 3

2 , “t2g—core spin,” and in the rest of

this paper we approximate this as a classical spin, S�̂ where

�̂ is a unit vector. The remaining �1−x� electrons per site
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move around among the eg orbitals with an average hopping
amplitude t. However, they have a strong Hund coupling JH
with the core spin, and there is a strong on-site Coulomb
repulsion U between the eg electrons. Furthermore, they have
a strong Jahn-Teller interaction with the modes of distortion
of the oxygen octahedron surrounding the Mn3+ ions. As a
consequence of this and phonon dynamics, two types of low-
energy effective eg electronic states called � and b emerge.
The polaronic � state is associated with a local lattice distor-
tion in which an eg electron can get self trapped, with a
binding energy EJT. The hopping of the � polaron gets sup-
pressed exponentially by the Huang-Rhys factor �
�=e−EJT/2	
0 �1 /200, where 
0 is the frequency of the local
lattice distortion�. The reduction arises from the fact that the
hop of the polaron from one site to a neighboring one, in
addition to the transfer of the electron, involves the relax-
ation of the lattice distortion at the original site and effecting
a similar lattice distortion at the neighboring site and the
exponentially small overlap of the corresponding phonon
wave functions. On the other hand, as t�
̄0, eg electrons can
also hop fast among empty, undistorted or weakly distorted
sites with essentially the bare amplitude t, leading to the b
states. The greatly diminished hopping of the polarons al-
lows for a useful approximation: at temperatures much larger
than �t, the polarons may be considered as static. The effec-
tive �b Hamiltonian can therefore be written as

H�b = − EJT�
i,�

�i�
† �i� − t�

�ij�
�bi�

† bj� + H.c.� − JH�
i

�si�

+ sib� · Si + U�
i

nilnib − ��
i

�nil + nib� − �JVDE

− JSE��
�ij�

Si · S j . �1�

Here si��ni�� and sib�nib� are spin �number� operators corre-
sponding to the � and b degrees of freedom at site i and � is
the chemical potential determined from the condition that
�nl+nb�=1−x. The last term contains the “virtual double ex-
change” ferromagnetic coupling with strength JVDE	x�1
−x�t2 /EJT. This coupling between the neighboring core spins
arises from fast virtual hopping processes of the � electron to
a neighboring vacant site. JSE is the antiferromagnetic super-
exchange. The above Hamiltonian treats all the main energy
scales that govern manganite physics. The three largest local
�strong correlation� energies are the on-site Coulomb or
Mott-Hubbard repulsion U�5 eV, the Hund’s rule ferro-
magnetic exchange coupling JH�2 eV and the Jahn-Teller
energy EJT ��0.6–1 eV�. The other important interactions
are the nearest neighboring hopping t�0.2 eV, the doping-
dependent virtual double exchange, and the superexchange
JSE�0.01 eV.

Several simplifying approximations have been made in
writing Hamiltonian �1�. The first is that the kinetic energy in
the Hamiltonian is “orbitally averaged,” i.e., the hopping am-
plitude t represents an average over the possible orbital con-
figurations at the two pertinent sites. Second, there are no
cooperative/long-range lattice effects, i.e., no intersite po-
laron correlations. Third, the virtual double exchange has
been approximated as a homogeneous interaction JVDE ; in

reality it acts only between pairs of sites where one is occu-
pied by a polaron and the other is empty. Fourth, the Jahn-
Teller interaction has been included only to the extent that it
leads to the formation of polarons. But its merit is that all the
important energy scales governing manganite physics are in-
cluded in Eq. �1�, at least in an approximate fashion. Much
of the previous work on manganites is based on simplified
models9,25,26 that neglect one or more of these energy scales.

Hamiltonian �1� closely resembles the Falicov-Kimball
model �FKM� �Ref. 27�; in fact, for JH→� and at T=0,
when all the spins are completely ferromagnetically aligned,
it is the same as the FKM. The model was solved17–19 using
the dynamical mean-field theory.28 It is successful in captur-
ing the colossal magnetoresistance effect, the ferromagnetic
insulating state found in low bandwidth manganites, the sys-
tematics of the role of R and Ak ion radii, etc. The key point
is that for small doping x the majority of the eg electrons get
localized as � polarons. Because of the strong on-site Cou-
lomb interaction U �the largest energy scale in the problem�
the b electrons avoid the polaronic sites, and this reduces the
effective half bandwidth of the b states from its bare value
D0 to Def f which is strongly �x� dependent. At zero tempera-
ture with U ,JH→� and a ferromagnetic ordering of the core
spins, the effective half bandwidth is given by17

Def f = 
xD0. �2�

Thus, at low doping, the effective band bottom is above the
polaronic energy level −EJT and therefore the b band is un-
occupied and the chemical potential � is pinned at −EJT.
Clearly, beyond a critical doping xc given by

xc = �EJT

D0
�2

, �3�

the b states begin to be occupied, leading to a insulator to
metal transition. Furthermore, for x�xc, starting from the
metallic state at T=0, the effective bandwidth reduces from
its zero temperature value with increase in temperature. This
is because the hopping of the b electrons is strongly inhibited
on account of their Hund coupling JH to the thermally disor-
dered core spins. Hence one gets a thermally induced ferro-
metal to parainsulator transition when the b band moves
above EJT. For T near Tc, the application of an external mag-
netic field causes the core spins to align and thus increases
the effective bandwidth, leading to increase in the number of
thermally excited carriers by orders of magnitude. This
causes colossal magnetoresistance. Away from the “orbital
liquid regime,” the �-b model can be extended in a straight-
forward way to include charge and orbital order particularly
near x=0.5.29,30

The work cited above did not address the issue of elec-
tronic inhomogeneities. In fact, an effective homogeneous
state was assumed in the dynamical mean-field solution. This
is a drastic assumption because from previous work on the
Falicov-Kimball model31 �and as confirmed by our computer
simulations �see Fig. 1�� the ground state of �b Hamiltonian
�1� �for the parameter ranges discussed above� is known to
be a macroscopically phase-separated state due to the strong
on-site Coulomb correlation U. All the polarons cluster on
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one side of the box; this allows band states �b� to optimize
their kinetic energy by moving among the vacant “hole” sites
in the other part of the box. But the two portions have dras-
tically different electron densities. The motivation for the
homogeneity assumption made in the DMFT work was that
the phase separation will of course be prevented by the long-
ranged Coulomb interactions which are always present in the
real system. In this work, we extend the �b model to include
long-ranged Coulomb interactions to address the issue of
electronic inhomogeneities and to check to what extent the
DMFT homogeneity assumption is valid.

B. Extended �b Hamiltonian

The Hamiltonian is most conveniently developed in terms
of hole operators hi

†=�i, which create vacant sites not occu-
pied by polarons. A hole carries a positive unit charge. The
charge is counterbalanced by the Ak+2 ions which have a
negative unit charge. The Ak ions occupy the sites � l

2 , m
2 , n

2 �,
where l ,m ,n are odd integers �mimicking the perovskite-
type structure of manganites�; the number of Ak ions is equal
to xN �N is the number of sites in the model�, and they are
placed randomly on the lattice sites indicated. In the orbital
liquid regime17–19 with large Hund coupling and on site Cou-
lomb repulsion discussed above, and at T=0, corresponding
to a fully ferromagnetic alignment of the core spins �spin
drops out of the problem in this limit�, the extended �b
Hamiltonian for fixed particle number is given by

H�b
ext = EAk + �

i


iq̂i + V0�

ij�

1

rij
q̂iqj − t�

�ij�
�bi

†bj + bj
†bi�

+ EJT�
i

hi
†hi, �4�

where

q̂i = hi
†hi − bi

†bi �5�

is the charge operator at hole site i �in units of �e��, EAk is the
Ak-Ak electrostatic interaction energy �a fixed number for a
given realization of Ak distribution in the lattice�, 
i is the
Coulomb potential at the hole site i due to Ak ions, V0 is the
strength of the Coulomb interaction between nearest-
neighbor holes �of the order of 0.02 eV, V0�0.01t−0.1t, see
discussion below�, and rij is the distance between holes i and
j in units of the lattice constant. Each hole has an energy
penalty of EJT. The sum 
i , j� is over all pairs of hole sites,
while �ij� denotes a sum only over nearest-neighbor hole
sites. The site charge operators satisfy the constraint

�
i

�q̂i� = xN . �6�

The U→� constraint implies that the b electrons can only
move among hole sites, where hi

†hi=1.
Hamiltonian �4� embodies the competition between long-

range Coulomb interaction which works to keep the holes as
far apart as possible, while the kinetic energy of band elec-
trons promotes the formation of “clumps.” A clump is a col-
lection of hole sites, each member of which can be reached
from any other member via a sequence of nearest-neighbor
hops which visit only the members of the clump. Thus every
configuration of holes can be broken up into a set of clumps
where each hole belongs to only one clump. Site delocalized
electronic b states are possible in a clump that has more than
one member �a one member clump is called a “singleton”�.
The kinetic-energy gain can possibly promote an � polaron
to occupy the b state in the clump leading to an electron
puddle, which creates an additional hole in the system at the
site from which the � polaron is removed, which changes the
electrostatic energies, etc. Thus the number of holes and
number of band electrons is not individually conserved, but
only the constraint �Eq. �6�� is satisfied. The key question is:
what is the ground state of the Hamiltonian for a realization
of the random distribution of the Ak ions? The determination
of this ground state requires an optimization of the number
of holes and their distribution �or equivalently, the configu-
ration of the on site � polarons, which exist at sites where the
holes are not there�, as well as the clump structure, the asso-
ciated b states, and their occupancy �constituting the b
puddles surrounded by the � polarons� so as to achieve the
lowest energy of Hamiltonian �4�. An exact solution of this
problem is beyond the available techniques of correlated
electron theory so approximations have to be resorted to. In
this paper we explore two alternate ways; the first one is
essentially analytic �and very approximate�, while the second
one is a full scale numerical treatment.

C. Simplified analytic treatment

A simple analytical approximation for the ground state
becomes possible if we assume that the Ak ions are distrib-
uted homogeneously in space, i.e., model the charge of the
Ak ions as a “jellium.” The approximation involved is a
variational calculation with an assumed ground state as
shown in Fig. 2, where clumps of size R �volume R3� are

V0 = 0.00, EJT = 2.0, x = 0.30

FIG. 1. �Color online� “Macroscopic phase separation” in the �b
model in absence of long-ranged Coulomb interaction. The lighter
regions correspond to holes that form a large clump �with occupied
b states�, the darker regions are occupied by � polarons. This simu-
lation is performed with a cube of size 16�16�16.
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taken to be spaced periodically with a spacing L. The regions
between the clumps—the “bulk,” is taken to have concentra-
tion of holes nh �the concentration of holes in the clump is, of
course, unity�. Charge conservation gives

�1 − nb�R3 + nh�L3 − R3� = xL3, �7�

whence

nh =
�3x + �b − 1�

�3 − 1
, �8�

with �=L /R. Clearly, the charge density �C in the clump is
�1−nb−x� and that in the bulk �B is nh−x, i.e.,

�C = 1 − nb − x, �B = nh − x = − �1 − nb − x�
1

�3 − 1
. �9�

Associated with this charge distribution, there is an electro-
static energy �per “unit cell” of volume L3=�3R3� given by

EES�nb,�,R� = V0E�nb,�,R/a� , �10�

where a is the lattice parameter of the underlying atomic
lattice, E�nb ,�� is the “Madelung function” accounting for
the net electrostatic energy in the system. Since a total num-
ber of nbR3 polarons have been promoted to delocalized b
electrons, there is a loss of polaron energy proportional to
this number, i.e.,

EP�nb,�,L� = EJTnbR3. �11�

Finally, there is the delocalized kinetic energy of the elec-
trons, which is expected to be of the form

EKE�nb,R� = tK�nb,R� , �12�

where K is a function of nb ,R. It can be evaluated by finding
the kinetic energy of bbR3 electrons in a clump of size R3.
Note that we do not take EKE to go as 1 /R2 as might be
expected from a free-electron picture since the lowest energy
that can be attained a tight binding scenario is bounded be-
low by −6t �for a cubic lattice�.

Putting everything together, we get

Etot�nb,�,R� = EES�nb,�,R� + EP�nb,R� + EKE�nb,R� .

�13�

We need to minimize this energy as a function of nb, �, and
R; this will give us the clump size, spacing, and charge dis-
tribution.

In the remainder of this section R stands for a dimension-
less number �clump size normalized by lattice parameter a�.
Similarly charge densities are all dimensionless. We shall
now proceed to estimate the different energy functions noted
above.

We estimate the electrostatic energy by assuming the box
is “spherical.” In this case the total charge in the box is zero,
and hence the electric field outside the sphere vanishes,
hence to a very crude approximation one box does not affect
the energy of the neighbor. This is expected to be quite rea-
sonable when the Ak ions are distributed homogeneously �as
we have assumed in this calculation� since the electrostatic
interaction is expected to be well screened. With these as-
sumptions, we find

EES�nb,�,R� =
�4��2

45
V0�1 − nb − x�2R5f��� , �14�

where f��� is the function

f��� = 1 +
1

�
� ��6 − 5�3 + 9� − 5�

��3 − 1�2 −
5�� − 1�2�� + 2�

��3 − 1�

+ 5�� − 1�� . �15�

The function f is such that f�1�=1 and f���=6, a very
slowly varying function of � and always of order unity.

The polaron energy �again for a spherical clump� is

EP�nb,�,L� =
4�

3
EJTnbR3. �16�

The estimation of the kinetic energy entails probably the
crudest approximation of this analysis. We assume that the
density of states is “flat”

g��� =
1

12t
, − 6t � � � 6t . �17�

With this assumption we estimate the kinetic energy �for a
spherical clump� to be

“bulk”

L

R

clump

nh − x

1 − nb − x

FIG. 2. �Color online� Schematic of the ground state used in the
analytical calculation of Sec. II C. Phase separation takes the sys-
tem to two distinct type of regions called the bulk �regions with �
polarons� and the clump. The dashed lines indicate the assumed
periodic nature of the clump distribution—clumps of size R �vol-
ume R3� are assumed to be arranged in a periodic fashion �period L�
with intervening bulk regions. Site delocalized electronic states are
found in the clumps. The initial hole density is x �also equal to the
background negative charge density�. The charge density in the
clump is �1−nb−x� and that in the bulk is nh−x. nb is the fraction of
electrons that are promoted to delocalized states, and nh is the frac-
tion of holes created in the bulk. The fractions x, nb, and nh are
related via charge balance.
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EKE�nb,R� = −
4�

3
R3�6t�nb�1 − nb� . �18�

The total energy is given by

E�nb,�,R� =
4�

3
�4�

15
V0�1 − nb − x�2R5f��� + EJTnbR3

− 6tnb�1 − nb�R3� . �19�

The analysis of the minima of the above function shows that
EJT�6t is a necessary condition for the existence of a
clump. If EJT�6t, then the coefficients of R5 and R3 are both
positive �for any value of b� and hence R will vanish for
energy minimum. Inspecting Eq. �7� we see that this will
result in a homogeneous distribution of the holes in the
“bulk” equal to the cation charge density—the bulk becomes
neutral.

We now consider EJT�6t. Furthermore, �1� the b electron
density in the clump is determined by chemical potential
balance. For the case of a flat band density of states, this will
imply that the “chemical potential” is EJT and

�
−6t

−EJT 1

12t
de = nb ⇒ nb =

1

2
�1 −

EJT

6t
� . �20�

�2� The factor � is determined from the condition that the
hole density in the bulk vanishes �charge conservation result-
ing in Eq. �8��

�3 =
1 − nb

x
. �21�

Within this framework, we minimize Eq. �19� with respect to
R to obtain

R2 =
9nb�6t�1 − nb� − EJT�
4�f���V0�1 − nb − x�2 . �22�

Note that the clump size varies as 1 /
V0.
We take EJT�2.5t, x�0.3 to study the clump size as a

function of V0. The result is shown in Fig. 3. For these val-
ues, the centers of the clumps are spaced at a distance of

about two and a half times the clump size ��=1.33�. A rea-
sonable estimate of V0 in manganites is about 0.1t �V0 is
likely to be between 0.01 and 0.1, see discussion below�. In
this range we see that the clump size is between 5 and 10
lattice spacings �taking a=5 Å, we get R=2–5 nm�, in sur-
prisingly good agreement with available experiments. We
must emphasize that we really do not have tight control of
the constants �such as 9 /4� appearing in the equation for R�.
However, the main point that we learn is that the clump size
is a few lattice spacings, much as what the Coulomb inter-
action is expected to do. We note here that there has been a
recent calculation32 of “phase separation” in doped mangan-
ites adding in Coulomb effects to the two fluid �-b model of
Ref. 19 along lines similar to those discussed above. How-
ever, that calculation does not uncover the dependence of the
clump size on the long-ranged Coulomb interaction as we
have done here.

We note again that the key assumption of the above analy-
sis is the homogeneous distribution of the Ak ions. A more
realistic solution that takes into account the inhomogeneous
random distribution of the Ak ions requires a full scale nu-
merical treatment of Eq. �4�, and we turn to this next.

D. Approximate determination of the ground state

The key approximation that permits a numerical determi-
nation of the ground state of Hamiltonian Eq. �4� is a
Hartree-like treatment of the Coulomb interactions between
the b electrons. This allows us to treat all the electrostatic
energy contributions in a classical fashion, i.e., replace the
site charge operators q̂i by their expectation values qi in the
ground state � �:

qi = � �hi
†hi − bi

†bi� � . �23�

In the absence of b states the problem reduces to the Cou-
lomb glass problem23,33—a fully classical problem. The pres-
ence of the b states makes the system a new kind of quantum
Coulomb glass—the h-b glass—with coexisting localized
and delocalized states, in contrast to usual quantum Cou-
lomb glasses.34 Since the Ak ions are randomly distributed,
and in addition the density of b electrons is very low, a
Hartree approximation is likely to be reasonably accurate.
We do indeed find �see below� that the interaction is well
screened and the charge distribution is almost homogeneous
at scales larger than a few lattice spacings.

Our method of determination of the ground state is based
on a generalization of the method previously used in finding
ground states of the classical Coulomb glass.35,36 Here, the
ground state is obtained by starting from a trial configuration
�usually a random state� and “performing” transfers of elec-
trons that lower energy until no transfer is possible that can
lower the energy. In the classical Coulomb glass each trans-
fer involves moving an electron from its current position to a
vacant site, creating a particle hole “excitation.” To follow a
strategy similar to the one above in the present context, we
investigate the energetics of possible transfers in the h-b
glass.

The following definitions are useful to understand excita-
tions in the h-b glass. Each clump � has many delocalized
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FIG. 3. �Color online� Electron puddle size �normalized by lat-
tice parameter a� as a function of the Coulomb interaction param-
eter V0 �normalized by t� for EJT=2.5t and x=0.3.
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one particle levels �obtained by diagonalizing the kinetic en-
ergy on this clump�; we label these one particle levels by r
and denote their kinetic energy by ��,r. The operator

b�,r
† = �

i���
�i

�,rbi
† �24�

creates a b electron in the rth band state of the clump �,
where �i

�,r is the associated single particle wave function
spread out over the clump �i runs over all hole sites in the
clump � as indicated by i����. Clearly, for a hole at site i

qi = 1 − �
r

��i
�,r�2��� − ��r� . �25�

Here � is the clump to which the hole i belongs, and r runs
over all the occupied band states in the clump �. The poten-
tial �i at hole site i is defined as

�i = V0�
j�i

1

rij
qj . �26�

Consider, for a given x, a configuration containing Nh holes
and Nb band electrons �obviously, �iqi=Nh−Nb=xN�, with
Nc clumps. The extra energy Ei

h in the system due to the
addition of a hole at a hole-vacant site i without changing the
clump structure is

Ei
h = 
i + �i + EJT. �27�

The addition of a hole can, in general, change the clump
structure since the new hole can modify existing clumps or
create new clumps. If the modified clumps contain band
electrons, then their energies will change. We ignore these
effects in writing Eq. �27�. A similar definition of E�,r

b , the
energy increment for the addition of a band electron in the
vacant-band state � ,r, is

E�,r
b = ��,r − �

i

�
i + �i���i
�,r�2 + V0 �

�i,j�i�j��

1

rij
��i

�,r�2�� j
�,r�2,

�28�

where i , j run over all the hole sites in clump �. The defini-
tions Ei

h and E�,r
b serve as the equivalent of the “single par-

ticle levels” in the present context �Hartree approximation�.
These definitions allow us to determine energies of exci-

tations in the h-b glass corresponding to the creation/
annihilation of holes or b /� electrons. Strictly, the clump
structure changes in an excitation; as mentioned earlier we
ignore this and our excitations are “frozen-clump excita-
tions.”

Three types of excitations are possible in the h-b glass:
�1� “�-h” excitations: here a hole-occupied site j obtains

an electron from a hole-vacant site �� occupied site� i. The
energy for this excitation is

Ei;j
�-h = Ei

h − Ej
h −

V0

rij
. �29�

This type of excitations can affect the clump structure. This
arises from the fact that the clump structure is determined by
the position of the holes.

�2� “�-b” excitations: here a hole-vacant site i �containing
an � electron� donates an electron to a vacant band state
�� ,r�. The energy of this type of excitation is

E�,r;i
�-b = E�,r

b + Ei
h − V0�

j

1

rij
�� j

�,r�2, �30�

where j run over all the hole sites in clump �. Again, this
type of excitation can change the clump structure. It must be
noted that the reverse of this process is also a possible exci-
tation �a b-� excitation�, in that a band electron annihilates a
hole, the energy of which is negative of Eq. �30�. Again,
since both �-b and b-� excitations change the position of the
holes, they can affect the clump structure.

�3� “b-b” excitations: Here a b-electron transfers from
�� ,r� b state to the vacant �� ,s� b state. The energy of this
excitation is

E�,s;�,r
b-b = E�,s

b − E�,r
b − V0�

i,j

1

rij
��i

�,s�2�� j
�,r�2, �31�

where i , j run over � and � �the last term requires obvious
modifications if �=��. Note that this type of excitation will
not affect the clump structure since it does not affect the
position of the holes.

For a given doping, the ground state is obtained in two
stages. In the first stage, b states are not accounted for and
the classical Coulomb glass ground state of the holes in pres-
ence of the electrostatic potential from the Ak ions is ob-
tained. This is achieved by performing a series of �-h exci-
tations until a minimum energy configuration is achieved. In
the second stage, starting from the classical Coulomb glass
state, all possible excitations are performed iteratively. Each
iteration consists of the following steps:

�1� Find best excitation: from the definition of the single
particle levels Ei

h, E�,r
b , and the excitation energies defined

above, the best possible excitation �the one that reduces the
energy the most� is determined.

�2� Perform the excitation: if it is an �-h excitation, then
one hole is removed and one is added. If it is an �-b or b-�
excitation, then either a hole is removed or added. If it is b-b
excitation, holes do not change. Thus, �-h and �-b excita-
tions change the clump structure.

�3� Update clump structure: if the clumps with occupied
band states are not disturbed, then no update is required. If
some of the clumps have been disturbed, then the intersec-
tion of the old clumps and new clumps is found, and elec-
trons are distributed in the new clumps so that the charge
distribution is as close as possible to that of the previous
distribution. After update, the number of band electrons must
be same as before, unless isolated holes in the new clump
structure are annihilated by band electrons. All energies are
recalculated on update.

Iterations are carried out until an energy minimum is
achieved. It must be noted that the ground state that we ob-
tain is based on single particle excitations. In general, the
stability of the ground state must be checked for two �and
multi� particle excitations.36 This process is computationally
intensive. The correctness of the ground state obtained in our
case is affirmed by the energies of the highest occupied states

LONG-RANGE COULOMB INTERACTIONS AND… PHYSICAL REVIEW B 80, 125121 �2009�

125121-7



of the � electrons and the b electrons—if the ground state
calculation is correct, then the highest occupied states of
both types of electrons will correspond to the chemical po-
tential �. We have never found serious violation of this cri-
terion in several ten thousand simulations; we therefore be-
lieve that our scheme is robust enough to determine the
ground state of the h-b glass.

The electrostatic energy is calculated using the Ewald
technique37 using fast Fourier transform routines made pos-
sible by the use of periodic boundary conditions. The other
computationally intensive step is the calculation of energies
and wave functions of the b states in a clump. This is the
most CPU intensive step which limits the size of the simu-
lation cell. The size of the cell that can be calculated depends
on the doping. For x=0.2 we have calculated with cells as
large as 20�20�20.

Some other points regarding our simulations may be
noted. First, the strong correlation U that induces many body
effects is treated almost exactly �since U in the real system is
very large, the U=� limit is accurate�; the b-electron quan-
tum dynamics is treated almost exactly �b electrons do not
hop to sites with � polarons�. In our calculation, the long-
ranged Coulomb energy �within the Hartree approximation�
is treated accurately using Ewald techniques �as mentioned

above�, and no further approximations are made in the cal-
culation of the long-ranged electrostatic energy. Further, we
note that the Hamiltonian we study and the method we de-
velop here to find the ground state is a generalization �both
model and method� of the quantum Coulomb glass. The key
point is that our model consists of two types of electronic
states, one localized polaronic �classical� and other delocal-
ized bandlike �quantum�, and our treatment accounts for both
of these on an equal footing.

III. RESULTS

This section contains the results of our study of the ex-
tended �b Hamiltonian �4�. The key parameters in the Hamil-
tonian are energies t ,EJT ,V0 and the doping x. The hopping
amplitude t is taken as the basic energy scale, and EJT and V0
henceforth stand for the dimensionless values of the Jahn-
Teller energy and the long-range Coulomb interaction
strength parameter normalized by t. Further all length scales
are normalized by the lattice parameter a. We have checked
for the size dependence of the results and found that results
for cubes larger than 8�8�8 are essentially independent of
the size. We checked densities of states, clump size distribu-
tion, etc., calculated in some cases up to cubes of size 20
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FIG. 4. �Color online� Density of states �DOS� of � polarons and b electrons, where their respective energies are defined by Eqs. �27� and
�28�. The occupied states are shaded. The chemical potential � and the center of the b-band Eb are indicated. The different panels �a�–�d�
show the variation in the densities of states as a function of V0 for EJT=1.0 and x=0.3. The polaron density of states shows a Coulomb gap
at the chemical potential for all values of V0 including V0=0.01 �graph �a�, top-left�.
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�20�20. We found that results followed essentially the
same trends, independent of size. All the results shown here
are averages from calculations obtained with one hundred
random initial conditions using 10�10�10 cells unless
stated otherwise.

The density of states obtained from simulations is dis-
cussed first. The energies of the single particle states are
defined in Eq. �27� for a hole �with a similar expression for
an � polaron� and Eq. �28� for the band electron. Figures 4–6
show plots of densities of states for various values of V0, EJT,
and x with the chemical potential � and b band center Eb
indicated in each case. Figure 4 shows the variation in the
density of states with the parameter V0, Fig. 6 shows the
variation in the density of states with the parameter EJT �V0
and x fixed� and Fig. 5 shows the effect of doping on the
density of sates for fixed values of V0 and EJT. From a study
of these figures we observe the following: the chemical po-
tential is given by

� = − EJT + A�x�V0, �32�

where A�x� is a “very weak” function of x, with size of order
unity; the physics behind this will be discussed later.

We now discuss the � polaron states: as discussed in Sec.
II B, the polarons with long-range Coulomb interaction form
a Coulomb glass.23 A Coulomb glass possesses a “soft gap”
at the chemical potential �, in that the density of states scales
as

���� − �� 	 �� − ��2, �33�

as is seen in Fig. 4. It is also evident that the width �energy
spread� of the two lobes in the polaron density of states sepa-
rated by the chemical potential increases with increasing V0.
Thus the polaron energies do not have a single value −EJT
but have a distribution whose width scales with V0. The en-
ergy spread arises out of fluctuations in the local electrostatic
potential. This is the basic reason why though the polarons
form a narrow band, there are no heavy fermionlike specific-
heat effects. The occupied polaron states �indicated by
shaded portion below the chemical potential in Fig. 5� per
unit volume are proportional to �1−x� for large values of
V0��1.0�. For lower values of the V0, the occupied spectral
weight is less, owing to the fact that some electrons are pro-
moted to the b states. The effect of EJT on the polaron den-
sity of states is shown in Fig. 6. Since EJT determines the
chemical potential via Eq. �32�, it does not affect the width
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of the distribution but only affects the � occupancy �amount
of spectral weight in each lobe�.

Next, we turn to the b electron density of states. Several
points may be noted. First, it is clear from Fig. 4 that for
V0�1.0, the b band is centered at Eb=B�x�V0 �B�x� is of
order unity�. The b band center is independent of EJT �see
Fig. 6�. Second, as is evident from Fig. 5, the bandwidth of
the b states increases with increasing x �in fact, as 	
x as we
shall discuss below� and again essentially independent of V0
�Fig. 4� as well as of EJT �Fig. 6�. Finally, the number of
occupied b states �shown by shaded region in the figures�
decreases with increasing V0 and EJT.

The physics underlying these observations may be under-
stood by studying the real-space structure of the ground
state, for example, by studying the positional correlation of
the holes present in the system �including the holes that ap-
pear due to promotion of the � polarons to b electrons as well
as the ones already present due to doping�. Figure 7 shows
both the h-Ak and the h-h correlation functions, which mea-
sure, respectively, the probability of finding a hole at a rela-
tive distance r from an Ak ion or from another hole. �Note
that the Ak ions are placed randomly in the A sites of the
perovskite lattice.� If the system were purely random, the

probability for any given value of r will be equal to the
doping level x. When V0 is small �V0=0.01 in Fig. 7�, we see
the hole-hole correlation function reaches a plateau at a dis-
tance r�2 with a value larger than x. This latter is because
of the increased number of holes in the system due to �
polaron to b electron promotion. At larger V0, the plateau in
the hole-hole correlation function appears at x. The hole-Ak
ion correlation function reaches a plateau of x, independent
of V0, as expected. The most important feature of the corre-
lation function appears at r�2. We see that the probability
of finding a hole in the neighboring shells is nonzero and is
highest at r=
3. Further, the probability of finding the Ak
ions near the hole is also increased although the increase is
smaller than that of finding a hole. This suggests that there is
a natural clustering tendency in the h-b glass where the holes
tend to cluster around Ak ions. Clearly, this is due to their
opposite charge causing gain in electrostatic energy. How-
ever, the competing, repulsive electrostatic energy between
the holes contributes to control this clustering tendency.
Since the distance between the Ak ions and holes is smaller
than that between two � polarons, the clustering of holes near
Ak ions will offset the energy penalty of � polarons coming
together—the short �angstrom sized� clustering scale is result
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FIG. 6. �Color online� DOS � polarons and b electrons, where their respective energies are defined by Eqs. �27� and �28�. The occupied
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of this competition. Strong screening effects are evident in
the correlation functions of Fig. 7—the correlation functions
reaches a plateau at about 2–3 lattice spacings.

The observations above allow us to obtain the chemical
potential of the system. The hole clustering caused by the
hole-Ak ion interaction causes an additional effective elec-
trostatic potential at an � electron site which can be written
as A�x�V0, where A�x� is a �here undetermined� doping-
dependent factor of order unity. The quantity A�x�V0 can be
interpreted as the average electrostatic potential at � polaron
sites. The actual energies at the sites fluctuates about the
mean total energies of the � polarons given by −EJT
+A�x�V0. From the Coulomb glass problem it is known that
the chemical potential will be equal to the average
energy23,33 and Eq. �32� follows.

We now discuss the energetics and the nature of the b
states, since the transport properties depend crucially on the
nature of the b states and whether they are occupied. In case
they are not occupied or if all the occupied b states are lo-
calized, the system is an insulator; on the other hand if ex-
tended b states are occupied one has a metal. We summarize
our results in this regard and compare them where ever pos-
sible with those obtained in single-site DMFT.17–19

The hole site has an average electrostatic potential energy
B�x�V0 where B�x��1; this follows from arguments very
similar to those used earlier for the electrostatic �Hartree�
energy of the �-polaron sites. Since the b electrons occupy
clumps consisting of hole sites, they too sense this average
repulsive potential B�x�V0 and thus the band center Eb shifts
to this value �as is seen in the simulation, see Figs. 4–6�. The
simulations indicate that the effective bandwidth Def f of the
b states depends only on the doping x. To understand this

result, we calculated Def f as a function of x using clumps
obtained from a Coulomb glass calculation of the holes in-
cluding the random distribution of the Ak ions �thus the cal-
culation was performed with only �-h excitations�. The result
of this calculation is shown in Fig. 8 along the DMFT result
for the bandwidth. It is evident that the agreement is excel-
lent for a wide range of x. Note that the half bandwidth is
provided by the clump structure determined by long-ranged
Coulomb interactions and the random distribution of the Ak
ions which induce the clustering tendency of holes around
them �as discussed above�. Thus the result for the effective
bandwidth �Eq. �2�� seems to arise out of two key factors: �a�
the large U limit which disallows simultaneous b and � oc-
cupancy, and �b� the clumps of holes induced by the random
distribution of the Ak ions. This is interesting since it implies

r

g(
r)

0 2 4 6 8 100.0

0.1

0.2

0.3

h-h

h-Ak

V0 = 0.01, EJT = 1.0, x = 0.20

Ak random

r

g(
r)

0 2 4 6 8 100.0

0.1

0.2

0.3

h-h

h-Ak

V0 = 2.00, EJT = 1.0, x = 0.20

Ak random

r

g(
r)

0 2 4 6 8 100.0

0.1

0.2

0.3

h-h

h-Ak

V0 = 0.01, EJT = 1.0, x = 0.20

Ak uniform

r
g(

r)
0 2 4 6 8 100.0

0.1

0.2

0.3

h-h

h-Ak

V0 = 2.0, EJT = 1.0, x = 0.20

Ak uniform

FIG. 7. �Color online� Position correlation function for h-h and h-Ak. The figures in the left column are for random distribution of Ak
ions, while those in the right column are for uniform distribution of Ak ions �uniform distribution means that the total charge of the Ak ions
is distributed equally among the Ak sites�. The result is from simulations with a 20�20�20 cube �for a single realization of the random
distribution of the Ak ions in the left-side graphs�.

x

D
ef

f

0.1 0.2 0.3 0.4 0.5
1

2

3

4

Simulation

DMFT (U = ∞)

FIG. 8. �Color online� The effective half bandwidth Def f ob-
tained from simulations compared with the DMFT prediction �Eq.
�2��. The half bandwidth in the simulation is calculated by using the
clump structure obtained by minimizing the energy of the Coulomb
glass. One hundred initial configuration are averaged over to obtain
the simulation curve with the standard deviation bars indicated.
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that the single-site DMFT, which neglects long-range Cou-
lomb interactions and consequent nanoscale inhomogeneities
or clumping and replaces it with a self consistent annealed
random medium in which all sites are equivalent, is accurate
for such purposes. We also note here that in the DMFT, the �
polaron is a single level while in the simulations the occu-
pied levels, though localized, have a distribution of energies.

We now discuss the doping/hole density xc1 at which b
states are occupied. In the DMFT, for U=� and at T=0, the
critical concentration xc at which the lowest energy b state is
occupied is xc1= �EJT /D0�2, where D0 is the bare half
bandwidth.17 From our simulations, the � chemical potential
� �i.e., the energy of the last occupied � state� is −EJT
+A�x�V0. At the onset of the occupation of the b states, equi-
librium demands that the bottom of the b band has to just
equal the chemical potential �. Noting that the effective half
bandwidth of the b band is D0


x and the band center Eb
=B�x�V0, one obtains on equating the b band bottom to the
chemical potential a result for the critical doping


xc1 =
EJT

D0
+ �A�xc� − B�xc��

V0

D0
. �34�

Since A�x��B�x��1, and V0 /D0�0.05 �typically� xc1 is ex-
pected to be very close to the DMFT value. In Fig. 9, we
notice that as expected, for small/realistic values of V0, there
is good agreement with DMFT and the simulation results.
For larger values of V0 �of the order of D0�, b state occu-
pancy needs much larger hole density x than implied in the
DMFT. Indeed, there is critical value of V0�V0

c �1.2� above

which there is no band occupancy for EJT�1; the system
becomes a Coulomb glass of � polarons.

Furthermore, unlike in the DMFT, in the present context
the fact that b states are occupied does not in itself make the
system a metal. Even when x�xc1, the hole sites where b
states exist form compact clumps in our simulations. The b
levels within the bigger clumps which are below the chemi-
cal potential and are occupied are hence still localized. Fig-
ure 10 shows the clumps with both the occupied and unoc-
cupied b state regions indicated. We notice that the clumps
and hence the b puddles are generally isolated. Hence the
system is still an insulator. The system becomes metallic for
x�xc2 when the b puddles percolate, which requires as a
necessary condition that the clumps with the b states occu-
pied percolate. xc2 can be estimated by calculating the in-
verse participation ratio38 and by checking for the geometric
percolation of the clump. The differences among xc1
�DMFT�, xc1 �simulations�, xc2 �simulations�, or in the nature
of the b states and their occupancy are due to the fact that the
single-site DMFT of the �b model �1� and the numerical
simulation of the extended �b model �4� are very different
approximations. In the former, the static � polarons are re-
pulsive �potential U� scattering centers for b electrons,
present randomly and independently at each site with a self-
consistently determined probability close to �1−x�. The scat-
tering is treated in coherent potential approximation �CPA�
so that there is no Anderson localization of the b electron
states; there are diffusive and extended. By contrast, in the
simulation, the b electrons are completely excluded from �
polaron sites and can hop freely from site to site only among
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FIG. 9. �Color online� Critical doping levels xc1 and xc2 obtained from simulations. The lightest region in the contour plot contains no b
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contiguous hole sites �clumps�. So unless the clumps are
connected percolatively, the system is an insulator. Further-
more, even when the clumps percolate, if the � polaron dis-
tribution and the b electron propagation in such an � polaron
medium could be treated realistically, one will find that in
contrast to single-site DMFT, a fraction of the occupied b
states are Anderson localized due to the � polaron disorder
and the repulsion Un�inbi. Hence xc2 is larger than the value
of x at which the clumps just percolate, as the highest occu-
pied b state could still be Anderson localized within the per-
colating clump; hence xc2 signifies the value of x at which
the mobility edge in the b band crosses the chemical poten-
tial.

We have confirmed this by calculating the contribution of
the b states to the dc conductivity using the standard Kubo
formalism39—the results, in the form of contours of constant
dc conductivity in the EJT, x plane, are shown in Fig. 11.
Again, it is clear that the metal-insulator boundary �the xc2�
curve is independent of the long-range Coulomb parameter
V0 when V0 is small. However, the dc conductivity com-
pletely vanishes for larger values of V0 greater than V0

m of
about 0.6 and the system is an insulator �due to both strong
local disorder potential from the Ak ions and Coulomb re-
pulsion�. Not unexpectedly, this critical value V0

m is much
smaller than the value V0

c that forbids b state occupancy.
Finally, we discuss the clump size distribution. The size of

a clump is defined in terms of a radius of gyration R calcu-
lated as R=

 1

n�i=1
n �r�i�−r�2�, where r is the center of mass

of the clump and i runs over all the holes in the clump. We
investigate the distribution of the quantity �1 /R� as a func-
tion of the system parameters for clumps with b states occu-
pied. For a percolating clump the quantity 1 /R→0 and for
the smallest clump with two holes 1 /R=2.0. Figures 12–14
show the concentration �number per lattice site� of the occu-
pied clumps as a function of their inverse size. For a given
doping x and EJT, there are many more larger clumps for
smaller V0 �Fig. 12�. At high enough V0 �V0=2.0� there are
no b electron puddles. The effect of doping x is also as ex-
pected. At small doping, there are clumps of various sizes,
while at larger doping, there is only one percolating clump
�see Fig. 13�. The effect of EJT is more interesting �Fig. 14�.
For EJT=1.50 there is a percolating clump together with iso-
lated small puddles. On increase in EJT �EJT=2.0�, the iso-
lated electron puddles are larger in size and on further in-
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FIG. 10. Real-space structure of the electronic state. The darkest
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pied b electrons, the lightest �white� denote hole clumps with no b
electrons, the second lighter shade �cyan� denote singleton holes,
and the second darkest shade �light blue� represents regions with �
polarons. The simulations for each V0 are for the same realization of
the random distribution of Ak ions. The cell size is 16�16�16.
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FIG. 11. �Color online� Dc conductivity ��
�0� as a function
of system parameters. For long long-range Coulomb parameter V0

greater than 0.4, the conductivity is zero for the indicated range of
EJT and x. The darkest shade of the contour corresponds to a di-
mensionless conductivity ��10, the next darkest 5���10, the
lightest 0���5.
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crease in EJT �EJT=3.0�, there is essentially a single large
percolating puddle. This is due to the fact that occupancy of
a clump requires that the gain in kinetic-energy offsets the
loss in the Jahn-Teller energy EJT at the least, thus larger EJT
requires larger clumps to be occupied for sufficient gain in
kinetic energy. Figure 15 shows the dependence of the aver-
age inverse size �1 /Roc�av on the parameters; the results are
as expected, in that the average size of clumps is about a few
lattice spacings for small doping �x�0.25�, followed by a
regime of percolating clumps. A result of particular interest
is the dependence of the average clump size on the long-
range Coulomb parameter V0. This result is plotted in Fig.
16; we see that the clump size is essentially insensitive to V0
until V0 approaches t. This may be contrasted with the simple
analytical result obtained earlier �see Fig. 3�. It is evident
that the real system, any finite V0 will prevent phase separa-
tion, but the final details of the ground state is strongly de-
termined by the random distribution of the Ak ions, which
also determines the size scale of the clumps �and hence their

insensitivity to V0 for small values of V0�. We have investi-
gated the size dependence of the clump size on the size of the
simulation cube and found that there is no significant size
dependence.

Our study therefore indicates that for small doping
�x�0.25�, electronic inhomogeneities in the form of local-
ized b electron puddles exist in a background of polarons
�see Fig. 10� while for larger doping, the system consists of
intermingled states of percolating delocalized b electron
puddles coexisting with regions of localized � polarons. The
scale of the inhomogeneities is that of the local Ak ion dis-
order and not much larger. The study therefore confirms that
long-range electrostatic interactions gives rise to only nano-
meter �or lattice scale� electronic inhomogeneities as was
anticipated in earlier literature.9 The key point is that this
nanometric scale arises not out of phase competition but due
to strong correlation effects of two types of states that appear
at the atomic scale, whose spatial arrangement is then con-
trolled by the long-range Coulomb interaction and the ran-
dom distribution of the Ak ion disorder.
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FIG. 12. �Color online� Size distribution of clumps with occu-
pied b electrons. Clump concentration is number of clumps per
lattice site �simulated with a 10�10�10 box�. Size of the clump R
is the “radius of gyration” of the clump �see text�, ordinate is in-
verse clump size. 1 /R=0 corresponds to a percolating clump, while
1 /R=2 corresponds to the smallest clump with two sites. The plots
show the effect of the Coulomb interaction V0 on the distribution
for x=0.3 and EJT=2.5. For V0=2.00 there are no clumps with
occupied b electrons.

1/R (Inverse Clump Size)

C
lu

m
p

C
on

ce
nt

ra
ti

on

0.0 0.5 1.0 1.5 2.00.000

0.001

0.002

0.003

0.004

0.005

V0 = 0.10
EJT= 2.50
x= 0.20

1/R (Inverse Clump Size)

C
lu

m
p

C
on

ce
nt

ra
ti

on

0.0 0.5 1.0 1.5 2.00.000

0.001

0.002

0.003

0.004

0.005

V0 = 0.10
EJT= 2.50
x= 0.35

1/R (Inverse Clump Size)

C
lu

m
p

C
on

ce
nt

ra
ti

on

0.0 0.5 1.0 1.5 2.00.000

0.001

0.002

0.003

0.004

0.005

V0 = 0.10
EJT= 2.50
x= 0.40

(b)

(a)

(c)

FIG. 13. �Color online� Size distribution of clumps with occu-
pied b electrons. Clump concentration is number of clumps per
lattice site �simulated with a 10�10�10 box�. Size of the clump R
is the radius of gyration of the clump �see text�, ordinate is inverse
clump size. 1 /R=0 corresponds to a percolating clump, while
1 /R=2 corresponds to the smallest clump with two sites. The plots
show the effect of the doping x on the distribution for V0=0.1 and
EJT=1.0. For x�0.4 there is only one percolating clump.
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IV. DISCUSSION

Our study of the extended �b model has established that
long-ranged Coulomb interaction gives rise to nanoscale
electronic inhomogeneities. A key point is that even a very
small V0 completely eliminates the macroscopic phase-
separation tendency of the Falicov-Kimball-like �b model
�compare Fig. 1 with Fig. 10�. By using a dielectric constant
of about 20, we estimate an upper bound for V0 in mangan-
ites to be about 0.02 eV and thus well within the small V0
regime; for t�0.2 eV, the dimensionless V0 is about 0.1.
Furthermore, for a given set of energy parameters �V0 and
EJT�, we have shown the existence of two important doping
thresholds: xc1 which corresponding to the occupancy of the
b states, and xc2�xc1 at which there is an insulator to metal
transition. Our results for xc1 are close those of the earlier
DMFT prediction; however, the present work predicts the
existence of xc2, a feature that is absent in DMFT �in DMFT
xc2=xc1�. The key physics behind the agreement of xc1 is the
large U condition �no simultaneous occupancy of � polaron

and b electron on one site�, and the random distribution of
the Ak ions. As we have shown, the random distribution of
Ak ions produces local clustering of holes around them
which eventually causes electron puddles and subsequent
percolating clumps at higher doping. The main consequence
is that the electronic inhomogeneities are all at the nanoscale
and the material appears homogeneous at microscale.

How important is the random distribution of Ak ions?
This question was answered by distributing the charge of the
Ak ions equally among all the Ak sites. The physics of the
problem is changed completely by this step. First, the clus-
tering tendency of the holes is completely suppressed. This is
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FIG. 14. �Color online� Size distribution of clumps with occu-
pied b electrons. Clump concentration is number of clumps per
lattice site �simulated with a 10�10�10 box�. Size of the clump R
is the radius of gyration of the clump �see text�, ordinate is inverse
clump size. 1 /R=0 corresponds to a percolating clump, while
1 /R=2 corresponds to the smallest clump with two sites. The plots
show the effect of EJT on the distribution for V0=0.1 and x=0.3.
For EJT=3.5 there are no occupied clumps.
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FIG. 15. �Color online� Average inverse size �1 /Ro�a of the
clumps with at least one b state occupancy. Clump size R is defined
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there are no occupied clumps at V0=2.0 �not shown�. At larger x,
there is one percolating clump for V0�1.0. At larger EJT, again,
there are no occupied clumps.
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evident from Fig. 7 �right column� where it is seen that the
probability of finding a hole neighboring a hole is nearly
reduced to zero. In such a case, for a given set of energetic
parameters, much larger doping levels would be required for
b state occupancy, and for the insulator to metal transition.
Indeed, these observations are borne out in the full scale
simulations, see Fig. 17. Thus the physically more realistic
random distribution of Ak ions is key to the agreement with
the DMFT calculation. In other words, the earlier DMFT
calculation, although it did not take into account the long-
range Coulomb interactions, premised a homogeneous state
�on a “macroscopic” scale�, thereby effectively incorporating
the key effect of the long-ranged Coulomb interaction.

It may be argued that effects of the random distribution of
Ak ions �that help the clustering of holes� is equivalent to a
local disorder potential. The results of the �b Hamiltonian
�1� with an additional disorder potential �but no long-range
Coulomb interactions�,

Hdis = �
i

wi�i
†� + �

j

wjbj
†bj , �35�

where wj are distributed uniformly between −W and W,
should be roughly similar to those of the extended �b Hamil-

tonian �1�. The premise is that since � electrons will occupy
sites of low wi, holes are likely to clump with a probability
proportional to xn where n is the size of the clump. This is
similar to the probability of finding clustering together of Ak
ions. Thus the clumps that appear in the disorder only model
may be expected to have similar nature as that of the case
with random distribution of Ak ions. The results of the
disorder-only Hamiltonian are shown in Fig. 18. Clearly, the
result of xc1 is close to that of the DMFT and the extended �b
results. Also, the clump sizes, etc. are also quite similar as
expected. There is, however, a crucial difference—the den-
sity of states of the � electrons does not have a Coulomb-
type gap in the purely disordered model just discussed. In the
real system both disorder and long-ranged Coulomb interac-
tions are present, and the extended �-b model includes both
in a realistic way, in contrast to the disorder only model.

We now discuss further predictions and inferences from
the model. Our model is particularly suited to study the low
bandwidth manganites such as Pr based compounds which
have a large ferroinsulating regime as a function of doping.
Most of the inferences made hinge on the coexistence of
localized and delocalized states—the key physical idea of the
�b model. It may be inferred from the extended �b model
that the low-temperature conductivity in the low-temperature
regime for doping x�xc1 will be governed by the polaron
Coulomb glass. Thus, the low-temperature conductivity is
expected to be that predicted by for the Coulomb glass,23 i.e.,
��T�	e−a/
T, where a is a constant. Further, above xc2�x
�xc1, several excitations contribute to the conductivity.
These will include polaron hopping, variable range hopping
of the b-state electrons from one puddle to the other, even
two step processes where a b-state in an intermediate for an
�-polaron to hop from one site to another. Transport in this
regime is therefore expected to be involved and further in-
vestigation is necessary to uncover the temperature depen-
dence. We note that transport measurements40 on doped man-
ganites do show the features that we deduce from our model.
For x�xc2, the low-temperature conductivity will be metallic
with large residual resistivity. An important contribution to
this resistivity arises from the Coulomb potentials of the Ak
ions as has been noted earlier.41 At higher temperatures, scat-
tering from the thermally disordered t2g spins will cause a
decrease in the effective bandwidth of the b states and can
lead to the opening up of a gap between the � states and the
b states above the ferromagnetic transition temperature. In
this high-temperature regime the conductivity will have con-
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=0.3 obtained from simulations.
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tributions both from polaron hopping and thermal excitations
of the � polarons to the b states similar to that of a semicon-
ductor.

The present model does not explicitly include the t2g core
spins as degrees of freedom. A simple minded approach of
including these degrees of freedom will lead to intractable
computational complexities. Novel approaches to treat both
Coulomb interactions, b state quantum effects, and core
spins need to be developed to attain a final understanding of
the manganite puzzle.

We conclude the paper with a discussion of the important
issue of phase separation and electronic inhomogeneities. As
noted in the introductory section several groups have implied
that the presence of electronic inhomogeneities is essential
for the occurrence of the colossal magnetoresistance. Our
work suggests that inhomogeneities are only present at the
nanometer scale and a theory that averages over these with-
out explicit treatment of these inhomogeneities can and does
reproduce colossal magnetoresistance.17–19 Indeed, very re-
cent experimental work16 shows that materials with no de-
tectable phase separation show colossal magnetoresistance.
Further, we find that nanoscale inhomogeneities are a direct
result of long-range Coulomb interaction frustrating phase
separation induced by strong correlation—nanoscale elec-
tronic inhomogeneities are not a result of phase competition
in our model. Although similar mechanisms based on long-
range coulomb interactions has been discussed earlier,9,42–45

we believe that this is the first detailed quantitative treatment
of a realistic model any correlated oxide.

The large length scale �micrometer sized� inhomogene-
ities seen in experiments remain to be explained in the
present framework. To the best of our knowledge, the coex-
istence of metallic and insulating regions have all been seen
only in surface probe measurements or measurements with
thin films �for electron microscopy�. Creation of a surface
introduces defects such as cracks and steps all of which have
long-ranged elastic fields. As is well known, the phase of
manganites is strongly influenced by pressure �stresses�.46

Thus the large scale inhomogeneities are likely to be a result
of pre-existing strain sources as is indicated by recent pho-
toemission experiments.7 It is possible to explicitly test this
in an experiment �see Fig. 19� with a precracked manganite
sample—on loading the cracked sample the motion of the

metal-insulator boundary is expected to be observed. Similar
experiments47 �without cracks, etc.� do indeed suggest the
strong effects of strains.

A second possibility for the existence of micronscale clus-
ters could be due to “kinetic arrest” as seen recently in some
rare-earth compounds.48 Thus the patches that appear could
arise to an “incomplete phase transition” and likely to show
“glassy” behavior. Indeed many manganites are known to
show glassy behavior,2 and this is possibly another important
line of further investigation.
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