
Correlated electron physics in two-level quantum dots:
Phase transitions, transport, and experiment

David E. Logan, Christopher J. Wright, and Martin R. Galpin
Oxford University, Chemistry Department, Physical & Theoretical Chemistry, South Parks Road, Oxford OX1 3QZ, United Kingdom

�Received 27 May 2009; revised manuscript received 17 August 2009; published 18 September 2009�

We study correlated two-level quantum dots, coupled in effective one-channel fashion to metallic leads, with
electron interactions including on-level and interlevel Coulomb repulsions, as well as the interorbital Hund’s
rule exchange favoring the spin-1 state in the relevant sector of the free dot. For arbitrary dot occupancy, the
underlying phases, quantum phase transitions �QPTs�, thermodynamics, single-particle dynamics, and elec-
tronic transport properties are considered, and direct comparison is made to conductance experiments on lateral
quantum dots. Two distinct phases arise generically, one characterized by a normal Fermi liquid fixed point
�FP� and the other by an underscreened �USC� spin-1 FP. Associated QPTs, which occur in general in a mixed
valent regime of nonintegral dot charge, are found to consist of continuous lines of Kosterlitz-Thouless
transitions, separated by first-order level-crossing transitions at high symmetry points. A “Friedel-Luttinger
sum rule” is derived and, together with a deduced generalization of Luttinger’s theorem to the USC phase �a
singular Fermi liquid�, is used to obtain a general result for the T=0 zero-bias conductance, expressed solely
in terms of the dot occupancy and applicable to both phases. Relatedly, dynamical signatures of the QPT show
two broad classes of behavior, corresponding to the collapse of either a Kondo resonance, or antiresonance, as
the transition is approached from the Fermi liquid phase, the latter behavior being apparent in experimental
differential conductance maps. The problem is studied using the numerical renormalization group method,
combined with analytical arguments.
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I. INTRODUCTION

The Kondo effect is one of the enduring paradigms of
quantum many-body theory.1 For most of its history it has
been associated with bulk condensed matter, notably transi-
tion metal impurities dissolved in clean metals and certain
heavy fermion rare-earth compounds.1 In recent years, how-
ever, the advent of quantum dot systems—with the impres-
sive control and tunability possible for “artificial atoms”—
has generated a strong resurgence of interest in Kondo and
related physics in nanoscale devices �for reviews see, e.g.,
Refs. 2 and 3�.

In odd-electron quantum dots the spin-1
2 Kondo effect

arises. Manifest experimentally4,5 as a strong low-
temperature enhancement of the zero bias conductance, indi-
cating the formation of the local Kondo singlet below a char-
acteristic Kondo temperature, the basic theoretical model
here is of course the Anderson impurity model:6 a single dot
level, with a single on-level Coulomb interaction, tunnel
coupled to noninteracting metallic leads. Moreover the
Anderson model captures not only the Kondo regime—
arising toward the center of the associated Coulomb-
blockade valley where the dot level is singly occupied—but
also the mixed valent regimes of nonintegral occupancy oc-
curring toward the edges of the valley. As such, it encom-
passes essentially all the physics associated with a single
“active” dot level.

The situation is naturally more complex, and richer, if two
active dot levels are integral to electronic transport. For ex-
ample, higher dot spin states now become possible, in this
case a two-electron triplet stabilized by the interorbital
Hund’s rule exchange.7,8 This state has been observed experi-
mentally in even-electron dots for both lateral9–12 and

vertical13 devices �as well as in a single-molecule dot14�. It
too is manifest in a strong enhancement of the zero-bias con-
ductance, indicative15,16 of proximity to an underscreened
spin-1 fixed point17 in which the spin 1 is quenched to an
effective spin-1

2 on coupling to the leads.
Much important theoretical work on the problem has en-

sued, including both the one-channel case �see, e.g., Refs. 16
and 18–24� where the single screening channel yields under-
screened �USC� spin 1 as the stable low-temperature fixed
point, and the two-channel case15,16,23,25–27 where the spin-1
local moment �LM� is fully screened at the lowest tempera-
tures. Further, since the USC spin-1 fixed point is clearly
distinct from that characteristic of a normal Fermi liquid
�FL�—the USC phase being a “singular Fermi
liquid”28—quantum phase transitions from a normal Fermi
liquid to the USC phase are expected and found to arise in
the one-channel case �with pristine transitions broadened into
crossovers for two-channel screening�. This too has been
studied quite extensively.18–20,22,24–27 However the large ma-
jority of previous work on these “singlet-triplet” transitions
has focused on a somewhat particular case—the middle of
the two-electron Coulomb-blockade valley where, through-
out both phases, the dot occupancy/charge remains close to
2. A notable exception is the work of Pustilnik and Borda,22

in which low-temperature transport is considered in a region
separating two adjacent Coulomb-blockade valleys with
spins S= 1

2 and S=1 on the dot, and where the resultant quan-
tum phase transition, driven by gate voltage and arising in
the limit B→0+ of vanishing magnetic field, occurs in a
mixed valent regime of nonintegral dot charge.

In view of the above our aim here is to consider a rather
general model of a two-level quantum dot, coupled in a one-
channel fashion to metallic leads; to consider its underlying
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phases, thermodynamics, single-particle dynamics, and asso-
ciated low-temperature �T� electronic transport for arbitrary
dot charge—spanning as such the full range of possible
behavior—and ultimately to make tangible comparison to
experiment.11 The model itself is specified in Sec. II and
reflects the natural complexity of a two-level dot, where in
addition to the one-electron dot levels electron interactions
include both on-level and interlevel Coulomb repulsions, to-
gether with interorbital spin exchange. We study it using
Wilson’s numerical renormalization group �NRG�
technique29–31 as the method of choice, employing the full
density matrix formulation of the method32,33 �for a recent
review see Ref. 34�, together where possible with analytical
arguments.

The intrinsic phases and associated thermodynamics are
considered in Sec. III. With �1 and �2 denoting the one-
electron level energies, the general structure of the phase
diagrams in the ��1 ,�2� plane is found to consist of a closed
continuous line of quantum phase transitions �QPTs� separat-
ing an USC spin-1 phase from a continuously connected nor-
mal Fermi liquid phase; although more complex topologies
arise as the exchange coupling is driven weakly antiferro-
magnetic �AF� �Sec. III B�, leading ultimately to the destruc-
tion of the USC phase. The transitions are found in general to
be of Kosterlitz-Thouless �KT� type, except for particular
lines of symmetry where first-order level-crossing transitions
arise �Sec. III A�.

Section IV focuses on the T=0 zero-bias conductance Gc
and associated static phase shift �. A “Friedel-Luttinger sum
rule” for � is derived, applicable to both the normal Fermi
liquid and the USC spin-1 phases, and reducing to the usual
Friedel sum rule1,35 in the Fermi liquid phase. Since the USC
phase is a singular Fermi liquid,28 and as such not perturba-
tively connected to the noninteracting limit of the model, one
does not expect Luttinger’s �integral� theorem36 to apply. A
generalization of it for the USC phase is however deduced,
and its important consequences for the zero-bias conductance
considered, leading to a simple result which, for both the
normal Fermi liquid and USC phases, gives Gc in terms of
the dot occupancy/charge �or, strictly, the “excess impurity
charge”1�.

Single-particle dynamics for both phases are detailed in
Sec. V. In particular, dynamical signatures of the QPT on
approaching it from the normal Fermi liquid are found to fall
into two broad classes, corresponding respectively to an “on
the spot” vanishing of either a Kondo resonance, or a Kondo
antiresonance, in the single-particle spectrum; the spectral
collapse in either case being associated with a vanishing
Kondo scale TK as the transition is approached, and in terms
of which universal scaling of dynamics is found to occur.

Finally, in Sec. VI we make explicit comparison to the
experiments of Ref. 11 on a lateral dot, in which, on continu-
ous tuning of a gate voltage at zero magnetic field, both the
normal spin-1

2 Fermi liquid and the USC spin-1 phase are
observed in adjacent Coulomb-blockade valleys. Both the
zero-bias conductance as a function of gate voltage and �in
this case inevitably approximate� the differential conduc-
tance maps as a function of both gate and bias voltages are
compared to experiment, and the features observed related to
the dynamics considered in Secs. IV and V. We believe it fair

to say that the underlying theory accounts rather well for
experiment.

II. MODEL

Interacting quantum dots and other nanodevices are de-

scribed generally by the dot ĤD, a pair of noninteracting

leads ĤL, and a tunnel coupling between the subsystems: Ĥ

= ĤD+ ĤL+ ĤT. We consider in this work a two-level inter-
acting quantum dot of the form

ĤD = �
i,�

��i +
1

2
Un̂i−��n̂i� + U�n̂1n̂2 − JHŝ1 · ŝ2. �1�

Here n̂i�=di�
† di�, where di�

† creates a � �= ↑ , ↓ � spin electron
in level i �=1,2�, n̂i=��n̂i� is the total number operator for
level i, and ŝi is the local spin operator with components ŝi

�

=��,��di�
† ����

��� di�� and ���� the Pauli matrices. The single-
particle levels have energies �i, the on-level Coulomb inter-
action �taken to be the same for both levels� is denoted by U,
and the interlevel interaction by U�. Finally JH is the ex-
change coupling, taken in accordance with Hund’s rule to be
ferromagnetic �JH�0, although we also comment in Sec.
III B on the weakly antiferromagnetic case�. The states aris-

ing from ĤD itself will be discussed in Sec. II B below.
The Hamiltonian for the two equivalent noninteracting

leads ��=L ,R� is given by ĤL=���k,��kak��
† ak��. Tunnel

coupling to the leads is described generally by ĤT
=���i,k,�Vi��di�

† ak��+H.c. �, where Vi� is the tunnel coupling
matrix element between dot level i and lead �. We consider
explicitly in this paper the case of an effective one-channel
setup, in which the ratio V2� /V1��V2 /V1 is independent of
the lead index �; i.e., the tunnel couplings are of form ViL
=�Vi and ViR=�Vi �with �2+�2=1�, as illustrated schemati-
cally in Fig. 1. A simple canonical transformation to new
lead orbitals may then be performed, ck�=�akL�+�akR� and
c̃k�=−�akL�+�akR�, such that solely the bonding combina-
tion of lead states �ck�� couples to the dot,

ĤT = �
i,k,�

Vi�di�
† ck� + H.c.� . �2�

We can thus drop the lead index � and consider one effective
lead,

1

2

L R

αV2

αV1

β V2

β V1

≡
1

2

V2

V1

FIG. 1. Schematic of the two-level dot �levels 1 and 2� coupled
to the �=L ,R leads with the tunnel couplings V2� /V1��V2 /V1 in-
dependent of �, leading to the equivalent one-lead description
indicated.
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ĤL = �
k,�

�kck�
† ck�. �3�

Hence the effective one-channel description is illustrated in
Fig. 1. In practice we consider the standard case1 of a sym-
metric flat-band conduction band with half bandwidth D; i.e.,
the lead density of states �per conduction orbital� is 1 / �2D�.

It need hardly be added that the tunnel coupling pattern
considered �Fig. 1� is not the most general case, which would
by contrast involve an irreducibly two-channel description,15

in general, with strong channel anisotropy.15,16 The richness
of the physics arising in the case considered, with its associ-
ated pristine QPTs, is nonetheless more than ample to justify
its study �indeed for NRG calculations in practice, we focus
largely on the case V2=V1�. It has moreover been argued
�see, e.g., Refs. 19 and 20� that the one-channel case is gen-
erally appropriate to lateral quantum dots, while a two-
channel model is appropriate for vertical dots.

In considering equilibrium electronic transport per se, the
central quantity is of course the zero-bias conductance,
Gc�T�, across the L /R leads �Fig. 1�. An expression for it is
readily obtained following Meir and Wingreen37 and is

Gc�T� =
2e2

h
G0�

−	

	

d

− �f�
�

�

���11 + �22�Dee�
� . �4�

Here f�
�= �e
/T+1	−1 �kB�1� is the Fermi function and

�ii = �
Vi
2 �5�

is the hybridization strength for level i �
 is the lead density
of states�. The dimensionless conductance prefactor G0
= �2���2—or equivalently G0=4�L�R / ��L+�R�2 with ��

=�
�iVi�
2 —reflects the relative asymmetry in tunnel cou-

pling to the L /R leads. It is naturally maximal, G0=1, for
symmetric coupling where �Fig. 1� �=1 /
2=� �i.e., �R
=�L�. The key quantity determining the conductance Eq. �4�,
which we analyze in detail in later sections, is the “even-
even” single-particle spectrum: Dee�
�=− 1

� Im Gee�
� in
terms of the �retarded� Green’s function Gee�
� �↔Gee�t�=
−i��t���de��t� ,de�

† 
�	. The e-orbital creation operator is given
generally by

de�
† =

1

�11 + �22

�
�11d1�
† + 
�22d2�

† � �6�

in terms of the level creation operators, such that

Gee�
� =
1

�11 + �22
�
i,j

�ijGij�
� �7�

in terms of the corresponding propagators for the dot levels,
Gij�
� �i , j� �1,2
�, and where

�12 = �
V1V2 � 
�11�22 �8�

is the interlevel hybridization strength.
For the case V2=V1 all hybridization strengths coincide,

�ij � � �V2 = V1� �9�

�and the e-e propagator then reduces simply to Gee�
�
= 1

2 �G11�
�+G22�
�+2G12�
�		. It is convenient in this case

to specify the “bare” parameters of ĤD in terms of �, defin-
ing

�̃i =
�i

�
, Ũ =

U

�
, Ũ� =

U�

�
, J̃H =

JH

�
. �10�

A. Symmetries

We will subsequently consider different phases of the dot-
lead coupled system in the ��1 ,�2� plane for given values of

the interaction parameters U, U�, and JH entering ĤD �Eq.
�1�	. To this end it is economical to exploit symmetry. Rather
than the bare levels �1 and �2 it is often helpful to employ

x = �1 + 1
2U + U�, �11a�

y = �2 + 1
2U + U�. �11b�

Their significance arises from a particle-hole transformation

�p-ht� of Ĥ= ĤD+ ĤL+ ĤT �Eqs. �1�–�3�	, namely,30

di� → di�
† , ck� → − c−k�

† . �12�

Ĥ� Ĥ�x ,y� transforms under the p-ht as Ĥ�x ,y�→2�x+y�
+ Ĥ�−x ,−y� and is hence invariant at the p-h symmetric point
x=0=y. Use of x ,y thus specifies the level energies relative
to this point. All physical properties, thermodynamic and dy-
namic, have characteristic symmetries under the p-ht, which
we exploit many times in the paper. For example, the free

energy F�x ,y�=−T ln�Tr e−�Ĥ�x,y�
 is, modulo an irrelevant
constant, equivalent to its p-ht counterpart �F�x ,y�=2�x
+y�+F�−x ,−y�	, whence, e.g., phase boundaries �Secs. II B
and III	 are invariant under inversion �x ,y�→ �−x ,−y�, and
thus only y�x need in practice be considered.

The second symmetry exploited is a “1–2” transforma-
tion, viz., the trivial canonical transformation,

�d1�,d2�� → �d2�,d1�� , �13�

under which the dot Hamiltonian ĤD�x ,y�→ ĤD�y ,x�. The

same symmetry applies to the full Ĥ for V2=V1, whence,
e.g., F�x ,y�=F�y ,x� is invariant to reflection about the line
y=x, and in consequence phase boundaries need overall be
considered only for y� �x�.

B. Ground-state phases: Overview

It is first instructive to consider briefly the states of the
isolated dot in the �x ,y� plane, as determined by the ground

states of ĤD �Eq. �1�	. We label the dot states as �n1 ,n2� �with
ni= �n̂i� the ground-state charge for level i�, with energies
ED�n1 ,n2�. For all JH�0, the �1,1� two-electron dot ground
state is the spin triplet with energy ET ��ED�1,1�=�1+�2

+U�− 1
4JH	, centred on the p-h symmetric point �x ,y�

= �0,0�, as illustrated in Fig. 2�a� for the representative case
U=20, U�=7.5, and JH=5. All other ground states, indicated
in the figure, are either spin singlets or doublets.

Considering in particular y� �x�—phase boundaries being
invariant to inversion and reflection as above—the �1,1� trip-
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let is bordered both by another two-electron state, viz., the
spin singlet �2,0�, and by a one-electron spin doublet �1,0�
�the bounding lines for which are given by y=x+U−U�
+ 1

4JH and y= 1
2U+ 1

4JH, respectively�. The dashed line in Fig.
2�a� shows a typical “trajectory,” y=x+�� �i.e., �2=�1+���,
expected from experiment on application of a gate voltage Vg
to the dot, with �1�Vg and fixed level spacing ��=�2−�1.
Note that the two-electron �1,1� triplet is thereby accessed
from the one-electron state �1,0� �Ref. 22� �as relevant to
comparison with experiment, Sec. VI�.

Figures 2�b� and 2�c� show the isolated dot ground states
arising for interlevel Coulomb repulsion U�=0 and U�=U,
respectively. For y� �x� in the former case, the �1,1� triplet
state is bordered almost exclusively by the one-electron state
�1,0�, while in the latter case it is bordered almost exclu-
sively by the two-electron singlet �2,0�. These two cases are
of course extremes, and although aspects of the model have
been considered previously for the case U�=U,18,19,22 we
know of no compelling reason why the intralevel and inter-
level Coulomb repulsions should in general be near coinci-
dent for reasonably small dots �indeed we argue in Sec. VI
that comparison to the experiment of Ref. 11 is consistent
with the contrary�.

The states of the dot per se are of course quite trivial. We
now consider the full lead-coupled system, our aim here be-
ing to give simple qualitative arguments for the general form
of the phase diagram in the �x ,y� plane.

On coupling to the leads, the effective low-energy model
deep in the spin-1 regime centred on �x ,y�= �0,0� is natu-
rally a one-channel spin-1 Kondo model15,16 �obtained for-
mally by a Schrieffer-Wolff �SW� transformation1,38 retain-
ing only the triplet �1,1� state of the dot itself, see also
Appendix A�. Its low-energy physics is well known:17 half
the spin-1 is screened by the conduction electrons, leading to
a free spin 1

2 with weak residual ferromagnetic coupling to
the metallic lead, which results in nonanalytic �logarithmic�
corrections to Fermi liquid behavior; the resultant state is
classified as a singular Fermi liquid.28 The associated low-

energy fixed point �FP� is of course the underscreened spin-1
�USC� FP of Nozières and Blandin.17

By contrast, deep in the one-electron �1,0� regime �Fig.
2�, the effective low-energy model is obviously spin-1

2
Kondo, a normal Fermi liquid with a fully quenched spin and
a strong coupling �SC� low-energy FP.1,29,30 Since the under-
lying stable FPs �USC and SC� associated with these two
regimes are fundamentally distinct, a QPT somewhere be-
tween the two must therefore occur.22

But what of the other isolated dot states, encircling the
spin-1 state as illustrated in Figs. 2�a�–2�c� �and all of which
as noted above are either spin singlets or doublets�? The
salient point here is that, on coupling to the leads, all such
give rise to Fermi liquid states with local singlet ground
states: their stable low-energy FPs form a continuous line
connecting the SC FP arising for the spin-1

2 Kondo model to
the generic case of the frozen impurity �FI� FP �Ref. 31�
arising when the dot charge is nonintegral �as follows from
the original work of Krishnamurthy et al.31 on the asymmet-
ric single-level Anderson model�. No phase transitions be-
tween these states can therefore occur, the “transitions” aris-
ing in the isolated dot limit �dotted lines in Figs. 2�a�–2�c�	
being replaced by continuous crossovers.

In consequence, one expects the general structure of the
phase diagram in the �x ,y� plane to consist of a closed con-
tinuous line of QPTs separating an USC spin-1 phase from a
continuously connected normal Fermi liquid phase. This is
indeed as found from detailed NRG analysis, as will be seen
in the following sections. A typical resultant phase diagram
is shown in Fig. 2�d� �for the same bare parameters as Fig.
2�a�, the phase boundary occurring close to the border of the
�1,1� state of the isolated dot as one might expect	. It consists
of a line of continuous QPTs, together with two first order
level-crossing QPTs on the line y=x �indicated by dots in
Fig. 2�d�	, which are equivalent to each other under the p-h
transformation x→−x.

The transitions will be discussed in detail below, but we
add here that the occurrence of first order transitions along
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FIG. 2. �a�–�c� show ground states of the isolated dot in the �x ,y� plane for U=20 and JH=5 �in units of ��1�, with �a� U�=7.5, �b�
U�=0, and �c� U�=U. States are labeled as �n1 ,n2�, with ni= �n̂i� the charge on level i. Phase boundaries surrounding the two-electron triplet
state �n1 ,n2�= �1,1� are indicated by solid lines, and all others by dotted lines. The dashed arrowed line in �a� shows the form of an
experimental “trajectory” on application of a gate voltage �see text�. For the same bare parameters as �a�, �d� shows the phase diagram
obtained via NRG for the lead-coupled dot system �with V2=V1�, as detailed in Sec. III. It consists of a line of continuous quantum phase
transitions �thick solid line� and two first-order level-crossing transitions on the line y=x �shown as dots�, separating a singular Fermi liquid
phase �Ref. 28� characterized by an underscreened spin-1 fixed point �Ref. 17� �interior, “USC”� from a normal “FL” characterized in general
by a frozen impurity FP �Ref. 31�. The hexagonal boundary of the �1,1� triplet state for the isolated dot �a� is also shown for comparison.
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the y=x line ��2=�1� is a general consequence of symmetry.

As noted in Sec. II A, for V2=V1 the full Ĥ transforms under

the 1–2 transformation as Ĥ�x ,y�→ Ĥ�y ,x� and is hence in-
variant on the line y=x. Along that line all states of the entire
system thus have definite parity under the 1–2 transforma-

tion, with the Hilbert space of Ĥ strictly separable into dis-
joint parity sectors. A level-crossing transition must thus oc-
cur when the global many-body ground state changes parity
�further discussion of it will be given below�.

III. PHASES AND THERMODYNAMICS

Dynamics and transport properties will be discussed in
Sec. IV, but we begin with thermodynamics, in particular, the
temperature �T� dependence of two standard quantities1,34

which provide clear signatures of the various FPs reached
under renormalization on decreasing the temperature/energy
scale, namely, the entropy Simp�T� and the uniform spin sus-

ceptibility �imp�T�= ��Ŝz�2�imp /T �where Ŝz refers to the spin

of the entire system, and ��̂�imp= ��̂�− ��̂�0 with ��̂�0 denot-
ing a thermal average in the absence of the dot�.

We also consider briefly the usual T=0 “excess impurity
charge” nimp, viz., the difference in charge of the entire sys-

tem with and without the dot present ��̂� N̂=�k,�ck�
† ck�

+�in̂i in the above�, and which in practice corresponds
closely to the net dot charge, nimp��n̂1+ n̂2�, see also Sec.
IV A. Prosaic though nimp is, we show later that it plays a
key role in understanding the zero-bias conductance in both
the USC and FL phases and relatedly the Friedel-Luttinger
sum rule of Sec. IV B. Under the p-h and 1–2 transforma-
tions of Sec. II A, nimp�nimp�x ,y� transforms, respectively,
as

nimp�x,y� = 4 − nimp�− x,− y� , �14a�

=nimp�y,x� . �14b�

Results shown are obtained using the full density matrix
formulation32,33 of Wilson’s nonperturbative NRG
technique,29–31 employing a complete basis set of the Wilson
chain; for a recent review see Ref. 34. Calculations are typi-
cally performed for an NRG discretization parameter �=3,
retaining the lowest 2000 states per iteration. We here con-
sider explicitly the case V2=V1 �Sec. II�, with the hybridiza-
tion � �Eq. �9�	 as the basic energy unit, choosing the lead
bandwidth D /�=100 ��1, such that results are independent
of D for all practical purposes�.

Figure 3 shows the T /� dependence of Simp�T� �top� and

T�imp�T� �bottom� for fixed Ũ=20, U�˜ =7, and J̃H=2, taking
a vertical cut through the �x ,y�-phase diagram: the energy of

level 1 is fixed at �̃1=− 1
2Ũ−U�˜ �−17 �i.e., x=0�, and �̃2 �or

equivalently y� is progressively decreased from deep in the
FL phase, toward and through the transition, and down to the
p-h symmetric point at the center of the USC phase; the
transition occurring at �̃2c=−6.536¯ �close to the value of
−6.5 expected from the isolated dot limit�.

In all cases the highest T behavior is naturally governed
by the free orbital FP,30,31 with all 42 states of the two-level

dot thermally accessible; hence Simp=ln 16 �and T�imp=2
�

1
8 �. For case �a�, �̃2=+5 is sufficiently large that level 2 is

in essence irrelevant �provided T /���̃2− �̃1�, the model thus
reducing in effect to a single-level Anderson model.30,31

Hence, on decreasing T, Simp�T� first flows toward the spin-1
2

LM FP corresponding to Simp=ln 2 �evident in this case as a
relatively weak plateau at T /��1, reflecting the modest
minimum thermal excitation of �ED�2,0�−ED�1,0�=�1+U
=3�	. On further decreasing T, the system then flows to the
stable FI FP symptomatic of the Fermi liquid ground state
with vanishing entropy Simp �likewise T�imp=0�. A Kondo
scale TK may be identified from the crossover between the
marginally unstable LM FP and the stable FI FP �we define it
in practice via Simp�TK�=0.1	. On further decreasing �̃2, cases
�b�–�e� in Fig. 3, the same essential behavior is found, the FI
FP remaining the stable low-T FP, but the Simp=ln 2 �and
T�imp� 1

4 � LM plateau progressively lengthens and the asso-
ciated TK correspondingly diminishes, vanishing as the tran-
sition is approached from the Fermi liquid side �Fig. 4�.

The behavior on the other side of the transition �̃2��̃2c
�cases �f�–�h� in Fig. 2	 is qualitatively distinct. Here the T
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FIG. 3. T dependence of the entropy Simp�T� �top panel� and
spin susceptibility T�imp�T� �bottom� for fixed level energy �̃1=

− 1
2Ũ−U�˜ �i.e., x=0� on progressively decreasing �̃2 from deep in

the FL phase across the QPT �at �̃2c=−6.536¯� and through to the
p-h symmetric point at the center of the USC phase. Shown for

Ũ=20, U�˜ =7 �i.e., �̃1=−17�, and J̃H=2 with �a� �̃2=+5, �b� −5, �c�
−6, �d� −6.3, �e� −6.43, �f� −7, �g� −10, and �h� −17. �Labels �f� and
�g� are omitted for clarity from the top panel but are easily identi-
fied from the bottom.	 Inset, top panel: the corresponding T=0 im-
purity charge nimp vs �̃2. It changes continuously as the QPT is
crossed at �̃2c �dashed vertical line�, at which point nimp�1.4.
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=0 entropy is in all cases ln 2 �with T�imp= 1
4 �, characteristic

of an unquenched doublet ground state. The stable FP is the
spin- 1

2 LM FP—or equivalently the USC spin-1 FP,17 there
being no distinction between them as FPs per se.

The QPT itself is of KT type. This is evident for example
from NRG flows, which indicate no separate unstable critical
FP, distinct from one of the stable FPs mentioned above. It is
also evident in the behavior of the scale TK, which as shown
in Fig. 4 �inset� vanishes exponentially in ��̃2− �̃2c�−1 �rather
than as a power law� as the QPT is approached from the
Fermi liquid side, and by the absence of a low-energy scale
in the USC phase which vanishes as the transition is ap-
proached from that side. We add that the latter does not of
course imply the inherent absence of a low-energy scale in
the USC phase. For deep inside this phase �where nimp�2�
the effective low-energy model is spin-1 Kondo, as evident,
e.g., in case �h� of Fig. 3 from both the emergence of a near
free spin-1 susceptibility with decreasing T ��imp�S�S
+1� /3T with S=1	, and from the intermediate Simp=ln 3 pla-
teau indicative of a spin-1 local moment FP, reached before
the crossover to the stable USC FP with Simp=ln 2, and from
which a characteristic spin-1 Kondo scale TK

S=1 may be iden-
tified �in parallel to that above for the Fermi liquid Kondo
scale TK�. But this scale plays no role in the QPT per se, and
in contrast to the approach from the Fermi liquid phase, there
is no vanishing scale on approaching the QPT from the USC
side.

The behavior outlined above is not confined to the ex-
ample illustrated: all continuous transitions are found to be
of KT form. This is in fact to be expected. Hofstetter and
Schoeller19 considered the model �with U�=U� in the regime
where the dot is doubly occupied by electrons, i.e.,
nimp�2—where from Eq. �14�, nimp=2 arises by symmetry
along the line y=−x in the phase plane �or close enough to it,
in practice�. A KT transition is likewise found in this case,19

and by continuity one would thus expect the same behavior
to arise generally in the �x ,y� plane.

We also note that the transition itself occurs generically in
a mixed-valent regime of nonintegral nimp; see, e.g., Fig. 3
�top, inset� where nimp varies continuously as the transition is
crossed, with nimp�1.4 at the transition itself. This in turn

means that even in a strongly correlated regime it is not in
general possible to construct via a �SW� �Ref. 38� transfor-
mation from the original Anderson-like model, an effective
low-energy spin model applicable in the vicinity of the QPT.
An exception to this is the vicinity of the line y=−x along
which, as above, nimp=2 is guaranteed by symmetry. In this
case, as shown in Ref. 19, a SW transformation retaining
solely the two-electron �1, 1� triplet and �2, 0� singlet states
of the isolated dot yields an effective two-spin spin-1

2 Kondo
model known20 to exhibit a KT transition.

Phase diagrams obtained via NRG are shown in Fig. 5.
The top panel shows the effect of varying the interlevel in-
teraction U� for fixed U and JH, with behavior that parallels
expectations from the isolated dot limit �Sec. II B and Fig.
2�. The bottom panel by contrast shows the effect of varying

the exchange coupling JH for fixed U and U�, including J̃H

=0 and an AF J̃H=−0.5. Note that even for weakly AF ex-
change the USC spin-1 phase still persists, as considered
further in Sec. II B, reflecting a ferromagnetic effective
�Ruderman-Kittel-Kasuya-Yosida �RKKY�	 spin-spin inter-
action induced on coupling to the lead.
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FIG. 4. Evolution of the Kondo scale in the FL phase �̃2��̃2c

for the same parameters as Fig. 3: log�TK /�� vs �̃2− �̃2c. Inset: TK

vanishes exponentially as the QPT is approached, TK�exp�−a / ��̃2

− �̃2c�� �with a�O�1�	, characteristic of a Kosterlitz-Thouless
transition.
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FIG. 5. Phase boundaries in the �x ,y� plane, separating the
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=20 and J̃H=5, varying U�˜ = �a� 0, �b� 7.5, and �c� 20. First-order

transitions on the line y=x are indicated by dots. Bottom: For Ũ

=10 and U�˜ =5.25, varying the exchange coupling J̃H=5, 1, 0, and
−0.5 �outside to inside, respectively�. Note the continued persis-
tence of the USC spin-1 phase, even for weak antiferromagnetic
exchange �see text�.
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A. First-order transitions on y=x line

We turn now to the first-order transitions permitted by
symmetry �Secs. II A and II B on the line y=x ��̃2= �̃1� �̃
=� /��. To illustrate this, Fig. 6 shows the T dependence of

Simp�T� and T�imp�T�, again for fixed Ũ=20, U�˜ =7, and J̃H
=2 �cf. Fig. 3�, as �̃ is varied and the transition is approached
from both sides: �̃= �̃c�10−n with n=4, 6, 8, and 10 ��b�–�e�,
respectively	, as well as �̃= �̃c�−4.7 itself �f�. Shown for
comparison are the cases �a� �̃=+5 deep in the Fermi liquid
regime, with �̃ here sufficiently large that the degenerate lev-
els are barely occupied �nimp�0.25, see top inset�, and �̃=
−17 at the p-h symmetric point deep in the USC phase �g�.

The stable low-temperature FPs remain of course as be-
fore, viz., the FI FP for the Fermi liquid phase �̃��̃c where
the global ground state is a singlet, and the USC FP for �̃
��̃c, with a doublet ground state. Close to the transition

however—where the energy separation between these states
is tending to zero �we denote its magnitude by T*�—the sin-
glet and doublet states will appear effectively degenerate for
temperatures T�T*, giving rise in consequence to an en-
tropy plateau of Simp=ln 3 seen clearly in Fig. 6, with a cor-
responding plateau in the magnetic susceptibility of T�imp

= 1
6 �readily understood as the mean ��Sz�2�� 1

3 �1�0+2
�

1
4 � for the quasidegenerate states�. These are signatures of

the “transition fixed point” �TFP�, characteristic of systems
exhibiting a level-crossing transition �see e.g., Ref. 39�. On
further reducing T below �T*, the system is seen to cross
over from the TFP to one or other of the stable FPs �which
crossover in effect defines T* �Ref. 40�	. Moreover, as the
transition is approached, the low-energy scale T* vanishes—
linearly in ��̃− �̃c� as shown in Fig. 6 �bottom inset�, reflect-
ing the level crossing character of the QPT. And since T*
=0 precisely at the transition, the TFP naturally persists
down to T=0 �Ref. 30� �where the ground state consists of
precisely degenerate global singlet and doublet states�, as
evident in case �f� of Fig. 6.

The behavior of the �T=0� excess impurity charge nimp is
also shown in Fig. 6 �top inset�. In contrast to the continuous
KT transitions, nimp is seen to change discontinuously as the
transition is crossed, commensurate with the first-order na-
ture of the level-crossing transition.

A partial progenitor of the latter behavior is in fact appar-
ent in the trivial noninteracting limit, U=0=U�=JH. Taking
even �e� and odd �o� combinations of the dot levels 1 and 2,
viz., de�= �d1�+d2�� /
2 and do�= �d1�−d2�� /
2 �cf. Eq. �6�
with �ii��, Eq. �9�	, only the e-orbital tunnel couples di-

rectly to the lead and the noninteracting Hamiltonian Ĥ0 re-
duces to

Ĥ0 =
1

2
��1 + �2��n̂e + n̂o� + �

k,�


2V�ck�
† de� + H.c.�

+ �
�

1

2
��1 − �2��de�

† do� + H.c.� + ĤL �15�

�with ĤL the lead Hamiltonian Eq. �3�	. In general, the e and
o orbitals are coupled by the penultimate term in Eq. �15�.
But for the case �2=�1�� of present interest the Hamil-

tonian is separable, Ĥ0= Ĥe
0+ Ĥo

0, with Ĥo
0=�n̂o a free orbital

with energy �. The transition in this case thus occurs trivially
for �=0 �the p-h symmetric point in the noninteracting limit�
as the o-orbital—which is unoccupied for ��0—moves
across the Fermi level, becoming singly occupied precisely
at �=0 and doubly occupied for all ��0, such that nimp
changes discontinuously from 1 to 3 as �=0 is crossed.

With interactions present the situation is of course much
less simple. For although the o-orbital remains uncoupled
from the lead when �2=�1, it is then coupled to the e orbital

via the nontrivial interaction terms in ĤD �Eq. �1�	, which
acquire a rather complex �and physically unenlightening�
form when expressed in terms of e and o operators. We will
return again to this case in Sec. V B from the perspective of
dynamics and single-particle “renormalized levels.”
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FIG. 6. T dependence of the entropy Simp�T� �top panel� and
spin susceptibility T�imp�T� �bottom� as the first-order transition on
the line �̃2= �̃1� �̃ is approached and crossed from both sides of the

transition; for fixed Ũ=20, U�˜ =7, and J̃H=2, the transition here
occurring at �̃c=−4.738 648 563 029 29. Solid lines refer to the
USC phase ��̃��̃c� and dashed lines to the FL phase. Shown for �a�
�̃=+5 deep in the FL phase; �b�–�e� �̃= �̃c�10−n with n=4, 6, 8, and
10, respectively, �f� �̃= �̃c, as well as for �g� �̃=−17 at the p-h
symmetric point deep in the USC phase. The transition FP has a
characteristic Simp=ln 3 and T�imp= 1

6 , as indicated, and persists
down to T=0 precisely at the transition �f�. Inset, top panel: T=0
impurity charge nimp vs �̃1� �̃. It changes discontinuously as the
transition is crossed �dashed vertical line� from nimp�0.95 to 1.31.
Inset, bottom panel: the low-energy scale T* �see text� vanishes
linearly in ��̃− �̃c� as the transition is approached, symptomatic of
the level-crossing nature of the transition.
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B. Weakly antiferromagnetic JH

As noted above �Fig. 5�, the USC spin-1 phase survives
even for weak AF coupling JH�0, reflecting an effective
ferromagnetic RKKY interaction induced on coupling to the
lead. For large enough AF �JH� however, the situation is
clearly different. Only the singlet state of the dot in the �1, 1�
sector is relevant here, and on coupling to the leads one
expects a global singlet ground state with a stable FI FP
which is continuously connected to that of the normal FL
phases: no phase transitions then arise, and the USC phase is
eliminated.

So how is the USC spin-1 phase destroyed as the strength
of the AF coupling is progressively increased? This is illus-
trated in Fig. 7, showing phase boundaries in the �x ,y� plane

for fixed Ũ=10 and U�˜ =5.25 �as in Fig. 5� for AF J̃H=

−0.55, −0.558, −0.56, and −0.6. For J̃H=−0.55, the phase
boundary has the same form as in Fig. 5, consisting of the
USC phase centred on �x ,y�= �0,0�, separated from the ex-
terior Fermi liquid phase by a single boundary line of KT
transitions except on the line y=x where a first order QPT
arises.

On decreasing J̃H slightly to −0.558, however, the USC
phase is seen to split into four distinct domains—symmetric
as expected under both inversion and reflection about
y=x—with the p-h symmetric point in particular now being

in the FL phase. With a further slight decrease to J̃H=
−0.56, the two USC domains straddling y=x are now elimi-
nated, leaving two USC regions straddling the line y=−x.

This behavior persists on further decreasing J̃H, the remain-

ing USC domains diminishing in extent until by J̃H�−1 they
too evaporate and the USC phase is eliminated entirely.

Strikingly, as indicated in Fig. 7, one also sees that as the
USC phase fractionates, first-order level-crossing transitions
arise not only along y=x �as expected on general grounds

and discussed in Sec. III A� but also along the line y=−x.
To gain some insight into the above, note that the differ-

ence in energy �under ĤD� between the �1, 1� singlet and
triplet states of the isolated dot is �ES−ET�= �JH�. So for �JH�
=−JH�O���, and at least close enough to p-h symmetry
�x ,y�= �0,0� �where nimp=2�, one expects it necessary to in-
clude both the �1, 1� triplet and singlet states in the low-
energy dot manifold �higher dot states, such as �2, 0�, lie
considerably higher in energy provided U� is not within
O�JH� of U	. An effective low-energy model within this sub-
space may then be constructed via a Schrieffer-Wolff
transformation,38 the appropriate local unity operator being

1̂= 1̂T+ 1̂S with 1̂T=�Sz�S=1,Sz��S=1,Sz� and 1̂S
= �0,0��0,0� �with �S ,Sz� referring to the �1, 1� triplet or sin-
glet dot states	. As discussed in Appendix A, the resultant
effective model is

Ĥeff = J1ŝ1 · ŝ0 + J2ŝ2 · ŝ0 − Iŝ1 · ŝ2 + ĤL �16�

where as usual ŝ1 and ŝ2 are the spin-1
2 operators for levels 1

and 2, and ŝ0=��,��f0�
† ����f0�� is the spin density of the

conduction channel at the dot �with f0�
† = 1


N
�kck�

† the cre-
ation operator for the 0 orbital of the Wilson chain30,31 and N
the number of k states in the lead�. Only exchange scattering
contributions to Eq. �16� are shown explicitly, potential scat-
tering being omitted for clarity. The effective exchange
couplings—viz., the Ji�0 coupling spin i=1 or 2 to the lead,
and the direct spin exchange I—are naturally functions of x
and y; expressions for them are given in Appendix A.

Equation �16� is a two-spin Kondo model of the form
studied in Ref. 20, so its physics is understood.19,20 A QPT,
occurring at a critical Ic, is obviously driven by the direct
exchange I: for ferromagnetic �I= I− Ic�0, spins 1 and 2
form a spin 1 which is underscreened on coupling to the
lead, resulting in a residual free spin 1

2 , while for AF �I= I
− Ic�0 by contrast, the local singlet Fermi liquid phase natu-
rally arises. The resultant QPT is in general of KT form, with
one pertinent exception:20 if J2=J1 in Eq. �16�, then the
Hamiltonian is separable into distinct singlet and triplet sec-

tors for the spin Ŝ= ŝ1+ ŝ2, specifically

Ĥeff − ĤL = 1̂T�J1Ŝ · ŝ0 − 1
4 I�1̂T + 3

4 I1̂S �J2 = J1� �17�

�on projecting Eq. �16� with 1̂= 1̂T+ 1̂S and using ŝ1 · ŝ2

� 1
2 �Ŝ2− 3

2 � together with Ŝ1̂S�0 for all components of Ŝ	.
The resultant separability of the Hilbert space for J2=J1

means of course that a first order level-crossing transition
can occur in this case. As shown in Appendix A �Eq. �A14�	,
this is precisely the situation arising for the present problem
along �and only along� the lines y=x and y=−x, explaining
thereby the level-crossing transitions found in Fig. 7.41

IV. DYNAMICS AND TRANSPORT

We now consider dynamics and transport, focussing on
the T=0 zero-bias conductance and associated phase shift, �.
A Friedel-Luttinger sum rule for � is derived, applicable to
both the FL and USC spin-1 phases �Sec. IV B�. A generali-
zation of Luttinger’s integral theorem for the USC phase is
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FIG. 7. Evolution of phase boundaries in the �x ,y� plane for

antiferromagnetic J̃H�0. Shown for fixed Ũ=10 and U�˜ =5.25 �cf.

Fig. 5, bottom� with J̃H=−0.55 �long dash line�, −0.558 �solid�,
−0.56 �short dash�, and −0.6 �dotted�. Interior regions in each case
are the USC phase exterior regions, the Fermi liquid. First-order
transitions are indicated by dots and occur on the lines y=x and y
=−x.
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deduced, and its significant implications for the zero-bias
conductance determined �Sec. IV C�.

A. Single-particle propagators

We first summarize basic results for the local single-
particle propagators, embodied in the 2�2 matrix G�
�. Its
elements Gij�
� are the retarded Green’s functions for the
dot levels, i , j� �1,2
 �as in Sec. II�, related to the corre-
sponding noninteracting propagators G0�
� by the Dyson
equation

�G�
�	−1 = �G0�
�	−1 − ��
� , �18�

where ��
� is the 2�2 self-energy matrix �with elements
�ij�
�=�ij

R�
�− i�ij
I �
�	. Using equation of motion

methods1,42 the elements of �G0�
�	−1 are given by

��G0�
�	−1�ij = �
+ − �i��ij − �ij�
� , �19�

where 
+=
+ i0+, and �ij�
� is the hybridization function

�ij�
� = �
k

ViVj


+ − �k
� �ij

R�
� − i�ij
I �
� , �20�

such that �12
2 �
�=�11�
��22�
� �for generality we allow

here for arbitrary V2 and V1�. For the standard1 flat-band
conduction spectrum/lead considered �Secs. II and III�, the
imaginary part of the hybridization function �ij

I �
�=�ij �Eqs.
�5� and �8�	 for �
��D and zero otherwise, and the corre-
sponding real part �ij

R�
=0�=0 at the Fermi level �
=0�.
From Eqs. �18� and �19� it follows that G�
� has precisely

the same algebraic structure as G0�
� but with �ij�
� re-

placed by �̃ij�
� defined by

�̃ij�
� = �ij�
� + �ij�
� . �21�

Using Eq. �19� the propagators Gij�
� thus follow as

G11�
� = „
+ − �2 − �̃22�
�…det G�
� , �22a�

G22�
� = „
+ − �1 − �̃11�
�…det G�
� , �22b�

G12�
� = �̃12�
�det G�
�� = G21�
�	 , �22c�

with the determinant given explicitly by

det G�
�

= �„
+ − �1 − �̃11�
�…„
+ − �2 − �̃22�
�… − �̃12
2 �
�	−1.

�23�

These equations enable the propagators and their spectral
densities Dij�
�=− 1

� Im Gij�
� to be determined, with self-
energies obtained in practice via a matrix generalization of
the standard NRG method,34,43 as outlined in Appendix B
and discussed further in Sec. V.

It is also convenient at this point to note an expression for
the �T=0� excess impurity charge nimp, defined as the differ-
ence in charge of the entire system with/without the dot, and
hence nimp=2 �−1�

� Im �−	
0 d
��kGkk�
�+G11�
�+G22�
�

−�kGkk
0 �
�	 in terms of the level propagators Gii�
�, the

propagators Gkk�
� for the lead k states, and their counter-
parts in the absence of the dot, Gkk

0 �
�= �
+−�k	−1. Using
equation of motion methods it is simple to show that
Gkk�
�=Gkk

0 �
�+Gkk
0 �
��i,jViGij�
�VjGkk

0 �
�, i.e., �via Eq.
�20�	 �k�Gkk�
�−Gkk

0 �
�	=−�i,j���ij�
� /�
	Gij�
�, and
hence

nimp = 2
�− 1�

�
Im �

−	

0

d
�
i,j

Gij�
���ij −
��ij�
�

�

� .

�24�

For the commonly considered case1 of an infinitely wide flat
band/lead, where ��ij�
� /�
=0 for all 
, nimp reduces to
nimp=2�−	

0 d
�D11�
�+D22�
�	��n̂1+ n̂2�—i.e., to the
charge on the dot. For a finite lead bandwidth D �as consid-
ered here� nimp is in practice very close to the dot charge,
although does not coincide identically with it.

We focus now on the T=0 zero-bias conductance, given
from Eq. �4� by

Gc�T = 0�
G0

=
2e2

h
���11 + �22�Dee�
 = 0� �25�

and determined by the Fermi level value of the ee-spectrum,
��11+�22�Dee�
�=�ij�ij

�−1�
� Im Gij�
� �Eq. �7�	, an explicit

expression for which can be obtained using Eqs. �22� and

�23� and the 
=0 behavior of the �̃ij�
�. For both the normal
Fermi liquid phase and the USC phase, the imaginary part of
the self-energy vanishes at the Fermi level,

�ij
I �
 = 0� = 0. �26�

For the normal FL phase this is of course wholly familiar.1

For the USC phase, we have established it by direct NRG
calculation of the �ij

I �
� �it is also consistent with purely
elastic scattering at the Fermi level for a singular Fermi

liquid28�. Given Eq. �26�, �̃ij�0� follows from Eqs. �20� and

�21� as �̃ij�0�=−i�ij +�ij
R�0�. Using this in Eqs. �22� and �23�

and defining renormalized single-particle levels in the usual
way1 by

�
i
* = �i + �ii

R�0� , �27�

a simple if tedious calculation gives

���11 + �22�Dee�0� =
1

1 + � �1
*�2

* − „�12
R �0�…2

�1
*�22 + �2

*�11 − 2�12�12
R �0��2 ,

or equivalently

���11 + �22�Dee�0� = sin2 � , �28�

with � given explicitly by

� = arctan� �1
*�22 + �2

*�11 − 2�12�12
R �0�

�1
*�2

* − ��12
R �0�	2 � . �29�

B. Friedel-Luttinger sum rule

The quantity � appearing in Eqs. �28� and �29� is simply
the static scattering phase shift, given alternatively by
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� = Im ln�det G�0�	 � Im ln��det G�
�	�
=−	

=0 �30�

�the equivalence of Eqs. �29� and �30� is readily shown using
Eq. �23�	; the right hand side of Eq. �30� also uses
arg�det G�
=−	�	=0, as follows from Eq. �23� together
with the fact that as �
�→	, �I�
� vanishes while the �ij

R�
�
tend to constants �the Hartree contributions�.

We now point out a general result for the phase shift �.
From Eqs. �23� and �22�, it follows that

�

�

ln�det G�
�	 = − �

i,j
��ij −

�

�

�̃ij�
��Gji�
� .

Integrating this from 
=−	 to 0 �and noting Eq. �21�	 then
gives directly from Eq. �30� that

� =
�

2
nimp + IL, �31�

where nimp is given by Eq. �24�, and �with Tr denoting a
trace�

IL = Im Tr�
−	

0

d

���
�

�

G�
� �32�

is the Luttinger integral36,44 �which is dimensionless�.
We emphasize that Eq. �31� is entirely general: applicable

to both the normal Fermi liquid and the USC phases �indeed
its derivation does not even require a knowledge of Eq.
�26�	. For the particular case of the FL phase, Luttinger’s
theorem gives IL=0,36,44 IL vanishing order by order in per-
turbation theory about the noninteracting limit, reflecting
adiabatic continuity to the noninteracting limit. In this case
Eq. �31� reduces to the Friedel sum rule,1,35 �= �

2 nimp, relat-
ing the scattering phase shift to the excess �“displaced”�
charged induced on addition of the dot/impurity to the sys-
tem �and with �� �0,2�	 for a two-level dot since nimp
� �0,4	�. More generally, however, � and nimp are related by
Eq. �31�, which we refer to as a Friedel-Luttinger sum rule.

The Luttinger integral for the normal Fermi liquid phase
is an intrinsic characteristic of it; IL=0 holding indepen-
dently of the underlying bare model parameters, provided
only the system is a FL.36,44 As such, the Luttinger integral is
the hallmark of the phase in a rather deep sense.

The USC spin-1 phase by contrast is a singular Fermi
liquid.28 There is no reason here to suppose IL=0, and indeed
it can be shown that the USC phase is not perturbatively
connected to the noninteracting limit of the model. But the
obvious question arises: as for the FL, does an analogous
situation arise for the USC phase whereby the Luttinger in-
tegral has a characteristic value for that phase?

We answer this question affirmatively, by direct numerical
calculation �and in several distinct ways�. Since the self-
energies ��
� and Green’s functions G�
� are calculable
from NRG, we can calculate IL directly �Eq. �32�	 as an 

integral. Alternatively, nimp may be obtained from thermody-
namic calculation �as in Sec. III� and � from calculation of
the ee-spectrum at the Fermi level alone �as in Eq. �28� or
alternatively Eq. �29�	; their difference then giving the Lut-
tinger integral, IL=�− �

2 nimp from Eq. �31�. We have con-
firmed that the same answer emerges in either way �and for

the FL phase that IL=0 thereby results�. Namely, for any
region of the �x ,y� plane where the system is in the USC
phase, the magnitude of the Luttinger integral is a constant,
specifically

�IL� =
�

2
�USC� . �33�

We have repeated the calculations for many different values

of the bare interaction parameters Ũ, Ũ�, and J̃H. The same
result emerges, and while the numerics obviously cannot
amount to a proof, we are confident in the validity of Eq.
�33�.

Although the magnitude of IL is constant throughout the
USC phase, its sign is not. This is a natural consequence of
symmetry. By considering the symmetries of the propagators
G�
��G�
 ;x ,y� and self-energies ��
 ;x ,y� under a
particle-hole transformation �Sec. II A�, it can be shown that
the Luttinger integral IL� IL�x ,y� is odd under inversion,

IL�x,y� = − IL�− x,− y� . �34�

In addition, as appropriate to the case V2=V1, the symmetries
of G and � under the 1–2 transformation �Eq. �13�	 lead to
the rather obvious invariance under reflection about the line
y=x,

IL�x,y� = IL�y,x� . �35�

With �IL�= �
2 , Eq. �34� implies the existence of at least one

bounding curve, of form yb= f�x� with f�x�=−f�−x�, across
which IL changes sign from + �

2 to − �
2 , while Eq. �35� for the

case V2=V1 implies that bounding curve to be the line y=
−x. In practice �by direct calculation, as above� only one
bounding line is found, and for the case V2=V1 in particular
we find

IL�x,y� = +
�

2
�y � − x� , �36a�

=−
�

2
�y � − x� . �36b�

C. Zero-bias conductance

As above, �IL�= �
2 is ubiquitous throughout the USC phase,

as �IL�=0 is throughout the normal FL phase. This has imme-
diate consequences for the behavior of the T=0 zero-bias
conductance, given from Eqs. �25�, �28�, and �31� by

Gc�T = 0�
G0

=
2e2

h
sin2��

2
nimp + IL� . �37�

Since sin2� �
2 �nimp�1	�=cos2� �

2 nimp�, it follows that
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Gc�T = 0�

�2e2 � h�G0

= sin2��

2
nimp� �FL� , �38a�

=cos2��

2
nimp� �USC� �38b�

for the FL and USC phases, respectively. But as found in
Sec. III �see, e.g., Fig. 3�, nimp varies continuously on cross-
ing the line of Kosterlitz-Thouless transitions from the FL to
the USC phase. Hence from Eq. �38� it follows that the zero-
bias conductance must jump discontinuously on crossing the
QPT; the discontinuity on crossing from the FL to the USC
phase being cos��nimp�, with its sign determined by the
value of nimp at the QPT. From direct calculation of single-
particle spectra we will verify explicitly in Sec. V �see, e.g.,
Fig. 11� that Eqs. �38a� and �38b� are satsified throughout the
two phases. Equation �38� is of course equally applicable to
the first order level-crossing transitions �Sec. III A�, although
in this case nimp itself changes discontinuously as the transi-
tion is crossed �Fig. 6, top inset�.

V. SINGLE-PARTICLE DYNAMICS

We turn now to 
-dependent single-particle dynamics,
here focusing primarily on the Dee�
� spectrum at T=0. The
self-energies ��
� are obtained from NRG via a generaliza-
tion of the basic method34,43 to the case of multilevel
impurities/dots, as outlined in Appendix B. � is thereby cal-
culated from

��
� = F�
��G�
�	−1, �39�

where the 2�2 matrix F�
� has elements

Fij�
� = ���di�,ĤI	;dj�
† �� �40�

�using conventional notation1,42 for the 
-dependent Fourier
transform of a generic retarded correlation function

��Â�t1� ; B̂�t2���=−i��t1− t2���Â�t1� , B̂�t2�
�	, and where ĤI de-
notes the interacting part of the dot Hamiltonian, given ex-

plicitly for the present problem by �Eq. �1�	 ĤI=U�in̂i↑n̂i↓
+U�n̂1n̂2−JHŝ1 · ŝ2. Using the self-energies, the fully interact-
ing propagators are then obtained from the Dyson equation
�Eq. �18�	. As for single-level problems, calculation of G�
�
in this way is numerically stable and accurate and guarantees
satisfaction of spectral sum rules, �−	

	 d
Dii�
�=1 �Refs. 34
and 43� �interleaved NRG “z averaging”45 also being used
for optimal calculational accuracy�.

As in Sec. III we consider explicitly V2=V1, for which
�ij �� �Eq. �9�	, with the ee spectrum thus given �Eq. �7�	
by

Dee�
� = 1
2 �D11�
� + D22�
� + 2D12�
�	 . �41�

Figure 8 shows an “all scales” overview of 2��Dee�
� vs


̃�
 /� for fixed Ũ=20, Ũ�=7, and J̃H=2 �as in Fig. 3 for
thermodynamics�, taking a vertical cut through the
�x ,y�-phase diagram: the energy of level 1 is fixed at

�̃1=− 1
2Ũ− Ũ��−17 �i.e., x=0� and �̃2 is progressively de-

creased through the Fermi liquid phase toward the transition
��̃2c=−6.536¯ �.

The most important spectral feature is of course the clear
Kondo resonance straddling the Fermi level. We consider it
below, but first comment on the qualitative origin of the
high-energy spectral features, evident most clearly in the
three arrowed peaks shown in Fig. 8 for �̃2=+1. The corre-
sponding evolution of nimp vs �̃2 is shown in Fig. 3 �inset�,
from which it is seen than nimp�1.2 for �̃2=+1—sufficiently
close to unity that we can interpret the high-energy spectral
features as removal or addition excitations from the singly
occupied �n1 ,n2�= �1,0� state of the isolated dot. The re-
moval excitation from dot level 1, contributing as such to the
D11�
� constituent of Dee�
� �Eq. �41�	, thus corresponds
trivially to ED�1,0�−ED�0,0�=�1 �in the notation of Sec.
II B�, i.e., lies below the Fermi level at �
 /�= �
̃= �̃1�−17
here, generating the lower “Hubbard satellite” seen clearly in
Fig. 8; its position, dependent at this crude level of descrip-
tion only on �̃1, varies only slightly on further decreasing �̃2
in the FL regime.

Two addition excitations lying above the Fermi level are
also seen in Fig. 8 for �̃2=+1 �arrowed�. The lowest corre-
sponds to electron addition to level 1 and hence shows up
�again via D11�
�	 as an excitation at ED�2,0�−ED�1,0�
=�1+U, thus lying at 
̃= 
̃+= �̃1+ Ũ=+3 as seen in the fig-
ure. The second excitation corresponds to addition to level 2,
contributes as such to the D22�
� constituent of Dee�
�, and
thus corresponds to ED�1,1�−ED�1,0�. Since there are two
distinct �1,1� dot states—triplet and singlet—two such exci-

tations in principle arise, separated in energy by J̃H and oc-

curring at 
̃= 
̃T= �̃2+U�˜ − 1
4 J̃H �for triplet �1,1�	 and 
̃= 
̃S

= �̃2+U�˜ + 3
4 J̃H for the singlet. As evident from the figure,

coupling to the leads in practice blurs these excitations so
that only a single spectral feature is seen.

On decreasing �̃2 from +1 the 
̃S/T excitations �which as
above depend on �̃2� decrease and become comparable in
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FIG. 8. Single-particle spectrum 2��Dee�
� vs 
 /� in the

Fermi liquid phase for fixed level energy �̃1=− 1
2Ũ− Ũ� �i.e., x=0�

on progressively decreasing �̃2 toward the QPT �occurring at �̃2c=

−6.536¯�. For Ũ=20, Ũ�=7 �i.e., �̃1=−17�, and J̃H=2, as in Fig. 3,
with �̃2=+1 �solid line�, −3 �long dash�, and −6 �short dash�. Note
that all three cases contain a narrow Kondo resonance straddling the
Fermi level 
=0. For vertical arrows, see text. Inset: spectrum for
�̃2=−6.6 on just entering the USC phase, showing the absence of a
Kondo resonance.
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energy to the 
̃+�=+3� excitation so that as seen in Fig. 8 the
high-energy addition excitations in practice merge to a form
a single peak, which on decreasing �̃2 through the FL phase
moves toward—but does not reach—the Fermi level. In-
stead, the single-particle spectrum in the immediate vicinity
of the Fermi level 
=0 is naturally dominated by the narrow
low-energy Kondo resonance evident in Fig. 8.

The evolution of the Kondo resonance itself is shown in
close-up in Fig. 9. As �̃2→ �̃2c+ from the FL side, it narrows
progressively—reflecting the incipient vanishing of the
Kondo scale TK known from thermodynamics �Sec. III, Figs.
3 and 4�—and collapses “on the spot” at the transition itself,
where TK vanishes. As a corollary, in the USC phase just on
the other side of the transition the Kondo resonance is simply
absent, as seen in Fig. 9 �for �̃2=−6.54� where the USC
spectrum is constant on the low 
̃=
 /� scales shown. The
inset to Fig. 8 also shows this USC spectrum on an all scales
level, showing that while the Kondo resonance is absent
here, the high-energy features discussed above evolve in a
smooth way from those arising in the FL phase, leading to a
resonance above the Fermi level whose width, O���, reflects
the mixed valent nature of the USC phase at this point.

Since the Kondo scale TK vanishes as the QPT is ap-
proached from the FL side, one expects the Kondo resonance
to exhibit universal scaling in terms of it. That this is so is
seen in Fig. 9 �inset�, where both FL spectra shown in the
main figure collapse to a universal scaling form as a function
of 
 /TK. Note also that while we have scaled the spectra
here in terms of TK obtained from Simp�T� �as in Sec. III�, we
could equally have defined TK spectrally—e.g., via the width
of the Kondo resonance—and likewise obtained universal
scaling behavior. The essential point is simply that there is
only one vanishing low-energy scale as the QPT is ap-
proached, and different practical definitions of it are all fun-
damentally equivalent.

The subsequent evolution of the spectrum in the USC
phase is shown in Fig. 10. Not far into the USC phase ��̃2
=−7�, the spectrum lacks a Kondo resonance, as above.
However on further decreasing �̃2, a second Kondo reso-
nance straddling the Fermi level is seen to arise. It is in fact
well developed already by �̃2=−10 and narrows progres-
sively as �̃2 decreases towards the center of the USC phase at
the p-h-symmetric point �̃2=−17. The origin of this behavior
is readily guessed from nimp vs �̃2 �Fig. 3, inset�. For al-
though the transition itself corresponds to a “mixed valent”
nimp�1.4 on entering the USC phase nimp increases quite
rapidly, such that even by �̃2=−10, nimp is close to 2. Here
one expects the system at low energies to be described as-
ymptotically by a spin-1 Kondo model, and hence the second
Kondo resonance to be of that ilk. This is indeed so; we
discuss it further in the context of Fig. 13 below. High-
energy spectral features in this regime are also naturally in-
terpretable in terms of single-electron excitations to/from the
�1,1� triplet ground state of the isolated dot; e.g., at the p-h
symmetric point, all addition/removal excitations to/from

both levels 1 and 2 have the same magnitude, ��̃1+ Ũ�

− 1
4 J̃H�, giving rise to the symmetrically disposed Hubbard

satellites at �
̃��10.5 seen in Fig. 10.
Finally and importantly, Fig. 11 verifies the predictions of

Sec. IV C for the behavior of the zero-bias conductance on
crossing the QPT. The Fermi level spectrum 2��Dee�0� vs �̃2
is shown in both phases and compared explicitly to Eq. �38�
with nimp obtained from an independent thermodynamic
NRG calculation; the agreement is excellent.

A. Kondo antiresonances

In the example considered above the QPT is associated
with a collapsing Kondo resonance in the FL phase, and
hence naturally with a decrease in the zero-bias conductance
on crossing into the USC phase. From Eq. �38�, the latter
behavior is generic provided nimp at the transition lies in the
interval nimp� � 1

2 , 3
2 	 �by symmetry Eq. �14� we can consider

nimp� �0,2	 rather than the full range �0,4		. If however nimp
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FIG. 9. For same parameters as Fig. 8, showing a close-up of the
Kondo resonance on approaching the transition �at �̃2c=−6.536¯�
from the FL side: 2��Dee�
� vs 
 /� for �̃2=−6.1 �solid line� and
−6.2 �long dash�. The Kondo resonance collapses on the spot as the
QPT is approached and the Kondo scale TK→0. The short dashed
line shows the spectrum for �̃2=−6.54 on just entering the USC
phase; it is featureless on these scales with no Kondo resonance.
Inset: Scaling of the Kondo resonance on approaching the QPT
from the FL side. Both FL spectra in the main figure collapse to a
universal scaling resonance as a function of 
 /TK �their individual
TK’s differ by more than an order of magnitude�.
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FIG. 10. USC phase. For same parameters as Figs. 8 and 9,
2��Dee�
� vs 
 /� for �̃2=−7 �short dash line�, −10 �dashed�, and
the center of the USC phase �̃2=−17 �p-h symmetric point, solid
line�. The Kondo resonance which develops here is that for a spin-1
Kondo model �Ref. 21�; see also Sec. V A �Fig. 13�.
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at the QPT lies in the range � 3
2 ,2	 or �0, 1

2 	, then Eq. �38�
predicts generically an increase in the conductance on cross-
ing from the FL to the USC phase. One might thus intuitively
expect such behavior to be associated with a vanishing
Kondo antiresonance as the transition is approached from
the FL side.

That this indeed arises19 is illustrated in Fig. 12, where
dynamics on the line y=−x are considered, along which, by
symmetry �Eq. �14�	, nimp=2 regardless of phase �the spectra
are likewise readily shown to be symmetric in 
�. For bare

interaction parameters Ũ=20, Ũ�=7, and J̃H=2, we decrease

�y /���ỹ= �̃2+ 1
2Ũ+ Ũ� �Eq. 11	 across the transition occur-

ring at the critical ỹc=6.36¯ from the FL side �y� ỹc� to the
USC phase.

As shown in the main figure Dee�
� indeed contains a
Kondo antiresonance in the FL phase; here with 2��Dee�

=0�=0 throughout. This antiresonance likewise vanishes on
the spot as the transition is approached and the Kondo scale
TK→0, and as it does so exhibits scaling as a function of

 /TK �Fig. 12, right inset�, the low-frequency spectral be-
havior being 2��Dee�
�� �
 /TK�2, symptomatic of a normal
Fermi liquid.

Note that the general predictions of Sec. IV are neatly
exemplified by the above results: since nimp=2 everywhere
along the y=−x line, Eqs. �25� and �38� yield 2��Dee�0�
=1 in the USC phase and 0 in the FL phase �as confirmed by
direct calculation, Figs. 12 and 13, and hence that the zero-
bias conductance Gc�T=0� /G0 in this case increases by pre-
cisely the conductance quantum 2e2 /h on crossing the QPT
into the USC phase.

Figure 13 continues Fig. 12 into the USC phase, showing
the ee spectra for ỹ=5, 3, and 0. As for its counterpart in Fig.
10, the Kondo resonance which develops in the USC phase is
that for a spin-1 Kondo model.21 As shown in Appendix A,
its low-energy scale TK

S=1 varies with the bare interaction pa-
rameters as �modulo an immaterial prefactor�

TK
S=1 � exp�−

�

8��Ũ + 1
2 J̃H�2

− ỹ2

Ũ + 1
2 J̃H

�� . �42�

Hence on decreasing ỹ through the USC phase, the Kondo
resonance becomes increasingly narrow as TK

S=1 decreases to-
ward its smallest �but nonzero� value occurring at the p-h
symmetric point ỹ=0�= x̃�, and as shown in Fig. 13, univer-
sal spectral scaling as a function of 
 /TK

S=1 thereby arises.
Figure 13 �inset� also shows the clear cusplike behavior of

the spin-1 Kondo resonance as �
�→0, known from study of
the spin-1 Kondo model itself21 �with spectra inferred from
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FIG. 11. 2��Dee�
=0� �equivalently the zero-bias conduc-
tance, see Eqs. �25� and �38�	 vs �̃2 in both phases on either side of
the Kostelitz-Thouless transition �dashed vertical line at �̃2c=
−6.536¯, same bare parameters as Figs. 8–10�. Crosses show the

=0 spectra determined from NRG, while solid lines show
sin2� �

2 nimp� �in FL phase� and cos2� �

2 nimp� �in USC phase� with nimp

obtained from a thermodynamic NRG calculation, verifying the
predictions of Eq. �38�. At the QPT, nimp=1.43, whence the
spectrum/conductance decreases discontinuously on crossing from
the FL to the USC phase, nimp itself evolving continuously �Fig. 3,
inset�.
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FIG. 12. 2��Dee�
� vs 
 /� along the line y=−x �for same

interaction parameters as Figs. 8–11, decreasing ỹ= �̃2+ 1
2Ũ+U�˜

through the QPT �at ỹc=6.36¯� from the FL side y� ỹc. Shown for
ỹ=6.55 �short dash� and 6.40 �long dash� in the FL phase, and ỹ
=6.30 �solid� just into the USC phase. A clear Kondo antiresonance
at the Fermi level in the FL phase is seen �with 2��Dee�0�=0	. It
collapses on the spot as TK→0 and the QPT is approached and
exhibits scaling as a function of 
 /TK as it does so �right inset�.
Left inset: as main figure, on an expanded 
 /� scale.
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FIG. 13. Continuing Fig. 12 into the USC phase along the line
y=−x: 2��Dee�
� vs 
 /� for ỹ=5 �short dash�, 3 �dash�, and the
p-h symmetric point ỹ=0= x̃ �solid�. The Kondo resonance devel-
oping in the USC phase is that for the spin-1 Kondo model;21 and
�inset� the three spectra in the main figure show low-energy univer-
sal scaling as a function of 
 /TK

S=1 with TK
S=1 the spin-1 Kondo scale

�see text�.
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the t-matrix of the Kondo model�. This behavior is charac-
teristic of the singular Fermi liquid28 nature of the under-
screened spin-1 phase, specifically the weak ferromagnetic
coupling of the residual spin-1

2 to the metallic lead, resulting
in logarithmic corrections to Fermi liquid behavior. As
�
� /TK

S=1→0 we find

2��Dee�
 = 0� � 1 −
b

ln2��
�/TK
S=1�

�43�

�with b a constant�, the leading logarithmic correction here
stemming from the leading low-
 behavior of the self-
energies �ij

I �
��1 / ln2��
� /TK
S=1�, and which form is in

agreement with that of Ref. 21 for the spin-1 Kondo model
itself.

B. y=x line

As considered in Sec. III A in regard to thermodynamics,
the transition occurring along the line �2=�1 �i.e., y=x� is a
first-order level-crossing transition, as permitted by symme-
try for V2=V1. Here we consider the �2=�1 line again, from
the perspective of dynamics, and the resultant channel sepa-
rability arising in the “even/odd” representation as now dis-
cussed.

1. Even/odd basis

In previous sections the elements of the Green’s function
matrix G�
� have been considered as the propagators for the
dot levels, viz., Gij�
� with i , j� �1,2
. Equally, one can take
even/odd combinations of the dot levels, viz., de�= �d1�

+d2�� /
2 and do�= �d1�−d2�� /
2, and consider G�
� in an
e /o representation, with elements G���
� given explicitly by
Gee

oo
�
�= 1

2 �G11�
�+G22�
��2G12�
�	 with Geo�
�
= 1

2 �G11�
�−G22�
�	 �=Goe�
�	 for the off-diagonal ele-
ments. For �2��1 in general, there is no particular advantage
in working with the e /o representation. However along the
line �2=�1 where levels 1 and 2 are equivalent by symmetry,
G11�
�=G22�
� and hence the off-diagonal Geo�
�=0. G�
�
in the e /o representation is then purely diagonal for all 
,
with elements

Gee
oo

�
� = G11�
� � G12�
� . �44�

Using Eqs. �21�–�23�, one obtains

Gee�
� = �
+ − � − 2��
� − �ee�
�	−1, �45a�

Goo�
� = �
+ − � − �oo�
�	−1, �45b�

where ���1=�2 denotes the common level energy, the hy-
bridization function is ��
� ���ij�
�, Eq. �20� with V2=V1	,
and the ee /oo self-energies are given simply by

� ee
oo

�
� = �11�
� � �12�
� . �46�

Notice from Eq. �45b� that there is no direct hybridization
���
�	 contribution to Goo�
�, reflecting the fact �Sec. III A�
that for �2=�1 the o-orbital is not directly coupled to the lead.
In the noninteracting limit the o level is thus entirely free,

Goo
0 �
�= �
+−�	−1, but in general the o /e levels are coupled

via interactions, as embodied in �oo�
��0.
Since G�
� is diagonal in the e /o representation,

det G�
�=Gee�
�Goo�
�, and hence from Eq. �30� the static
phase shift � is separable into e and o channels,

� = �e + �o. �47�

A short calculation using Eq. �30� �together with ���
I �


=0�=0 from Eq. �26�	 then gives

�e = arctan�2�

�
e
* � , �48a�

�o = arctan�0+

�
o
* � � ���− �

o
*� , �48b�

where each ��� �0,�	, � �=�I�
=0�	 is the usual hybrid-
ization strength �Eq. �9�	, and ��u� is the unit step function.
The �

�
* denote the renormalized e /o levels given by �cf. Eq.

�27�	

�
�
* = � + ���

R �0� , �49�

with �
�
*��

�
*�x� such that �

�
*�x�=−�

�
*�−x� �via a p-h transfor-

mation, Sec. II A�. Likewise, considering � ln G���
� /�

and repeating the calculation leading to Eq. �31� give

�� =
�

2
nimp,� + IL

�, �50�

where �cf. Eq. �32�	

IL
� = Im �

−	

0

d

�����
�

�

G���
� �51�

is a Luttinger integral for channel �=e or o �with IL
�

� IL
��x� such that IL

��x�=−IL
��−x� under inversion	, and nimp,�

is the excess impurity charge associated with channel �
given by

nimp,e = 2
�− 1�

�
Im �

−	

0

d
Gee�
��1 − 2
���
�

�

� ,

�52a�

nimp,o = 2
�− 1�

�
Im �

−	

0

d
Goo�
� , �52b�

such that the overall nimp=nimp,e+nimp,o �Eq. �24�	 and with
nimp,��x�=2−nimp,��−x�. Since the behavior of relevant quan-
tities under inversion x→−x is as specified above, we can
focus on x=�+ 1

2U+U��0, and do so in the following.

2. Results

The charges nimp,� may be calculated directly from NRG.
Their evolution with x̃=x /� is illustrated in Fig. 14 �inset�,
on decreasing �̃=� /� with Ũ, Ũ�, and J̃H fixed at the same
values used in Fig. 6 for thermodynamics; the level-crossing
transition here occurring at x̃c=12.26¯ ��̃c=−4.73¯ �. On
crossing the transition from the FL side �x̃� x̃c� to the USC
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phase, nimp,o increases discontinuously from 0—found to be
its value for all x̃� x̃c—to nimp,o=1, which constant value is
likewise found throughout the USC phase x̃� x̃c. For the e
channel by contrast nimp,e is not fixed in either phase, but it
too jumps discontinuously, decreasing as the FL→USC tran-
sition is crossed. The latter behavior is physically natural
since the piling of charge into the o orbital which accompa-
nies the transition increases Coulomb repulsions with elec-
trons in the e orbital, which the concomitant reduction in
nimp,e acts to offset. The two effects do not however cancel,
the overall nimp=nimp,o+nimp,e �shown in Fig. 6, top inset�
increasing as the transition is crossed. The behavior just de-
scribed is redolent of, but distinct from, that occurring in the
noninteracting limit discussed in Sec. III A, where at the
transition, in that case occurring for �̃c=0, nimp,o jumps dis-
continuously from 0 to 2 but with no concomitant change in
nimp,e since there are no interactions present. Moreover since
the transition is generically accompanied by occupancy of
the o orbital, one intuitively expects the requisite critical �̃c
for the transition with interactions present to be reduced be-
low its noninteracting counterpart �̃c=0 in order to offset the
increased interactions, as indeed is found. We also add that
the behavior found is not specific to the interaction param-
eters used for illustration, in particular, that

nimp,o = 0 �FL, x̃ � x̃c� , �53a�

=1 �USC, x̃ � x̃c� �53b�

is found to occur ubiquitously.
We consider now the static renormalized levels, calcu-

lable from Eq. �49�, or, for �
o
*, equivalently from

�
o
* =

�

1 + Foo
R �
 = 0�

, �54�

where Foo�
�=F11�
�−F12�
� �with Foo
R �
� its real part	,

and the Fij�
�’s are given by Eq. �40� and calculated directly
via NRG �Eq. �54� follows from Eq. �49� together with Eq.
�B5� in the diagonal e /o representation	. The generic x̃ de-
pendence of �̃

o
*=�

o
* /� is illustrated in Fig. 14. It evolves

continuously for all x̃�0 �the divergence on approaching the
p-h symmetric point x̃=0 at the center of the USC phase
reflects via Eq. �54� the fact that Foo

R �0�→−1� as x→0�	. In
particular, in the USC phase 0� x̃� x̃c, the renormalized
level �

o
*�0, while for x̃� x̃c in the FL phase, �

o
*�0, the

level vanishing linearly as the QPT is crossed,

�
o
* �

x→xc

x − xc � � − �c. �55�

And for large enough �̃�1, where both the e and o levels are
in practice empty and interaction effects embodied in �oo are
thus irrelevant, �

o
*→� �the “bare” level energy, see Eq. �49�	.

The above results then enable the o-channel Luttinger in-
tegral IL

o �Eq. �51�	 to be deduced. Since �
o
*�0 ��0	 in the

USC �FL	 phase, Eq. �48b� gives a phase shift �o=� in the
USC phase 0� x̃� x̃c, and �o=0 in the FL phase x̃� x̃c.
Combining this with Eq. �53� for nimp,o, the Luttinger integral
IL

o =�o− �
2 nimp,o �Eq. �50�	 follows directly as

IL
o = 0 �FL, x̃ � x̃c� , �56a�

=
�

2
�USC, 0 � x̃ � x̃c� , �56b�

which result we have also verified by direct computation of
IL

o itself, Eq. �51�.
For the e channel by contrast, direct calculation of IL

e

gives IL
e =0 in both the FL phase and the USC phase,

IL
e = 0 �FL and USC� . �57�

The total Luttinger integral IL= IL
o + IL

e thus vanishes as
required36,44 throughout the FL phase, while for the USC
phase Eqs. �56b� and �57� agree as they must with the gen-
eral result Eq. �36a� for IL�x ,y� �which is not confined to the
y=x line�. Note further, using Eq. �57�, that Eqs. �48a� and
�50� give

�
e
* = 2� tan��

2
�1 − nimp,e	� �FL and USC� �58�

independently of the phase �as again verified by separate
calculation of �

e
* and nimp,e�. From the x̃ dependence of nimp,e

illustrated in Fig. 14 �inset�, Eq. �58� shows that �
e
* progres-

sively decreases as x̃ is decreased through the FL phase,
increases discontinuously as the FL→USC transition is
crossed, and in the USC phase decreases monotonically as x̃
is decreased toward the p-h symmetric point x̃=0, where
nimp,e=1 and hence �

e
*=0 �and with �

e
*�x� for x̃�0 following

from the symmetry �
e
*�x�=−�

e
*�−x�	.

As a brief illustration of single-particle dynamics along
the y=x line, Fig. 15 shows the evolution of the o-orbital
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FIG. 14. Renormalized odd level �
o
* /� �Eqs. �49� and �54�	 vs

x̃=x /�= �̃+ 1
2Ũ+ Ũ� �for fixed Ũ=20, Ũ�=7, and J̃H=2�. The level-

crossing transition at x̃c=12.26¯ is marked by an arrow; �
o
*�x

−xc��−�c vanishes linearly as the transition is approached. Inset:
Behavior of nimp,o �solid line� and nimp,e �dashed� on crossing from
the FL phase �x̃� x̃c� to the USC phase. Both jump discontinuously
on crossing the transition FL→USC, nimp,o upward from 0 to 1 and
nimp,e downward as indicated; such that the overall nimp=nimp,o

+nimp,e increases as shown in Fig. 6 �top inset�.
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spectrum Doo�
�=− 1
� Im Goo�
� on decreasing x̃ through the

FL phase �main panel�, across the transition, and into the
USC phase �right inset�. In the vicinity of the QPT coming
from the FL side, a strong low-frequency spectral resonance
�for 
�0� is seen to develop, becoming a pole at the Fermi
level precisely at the transition and crossing smoothly to 

�0 in the USC phase. The position of the resonance tracks
the vanishing renormalized level �

o
* �Eq. �55�	, the 
=0 pole

at the transition reflecting �
o
*=0 �from Eq. �45b�, using

�oo�
=0���oo
R �0� together with Eq. �49�, the Fermi level

spectrum is given generally by Doo�
=0�=���
o
*�	. In the vi-

cinity of the transition, the renormalized level �
o
* is the coun-

terpart of the low-energy scale T* introduced in Sec. III A in
respect of thermodynamics �see, e.g., Fig. 6�; T* and �

o
* both

vanishing linearly as the transition is approached and con-
trolling the low-energy behavior of appropriate thermody-
namics and single-particle dynamics, respectively.

We also add that, as expected on physical grounds, the
vanishing o-orbital renormalized level does not show up in
the corresponding e-channel spectrum Dee�
�, which as il-
lustrated in Fig. 15 �left inset� changes in a wholly discon-
tinuous fashion on crossing the transition, commensurate
with the inherently first-order nature of the transition along
the y=x line.

VI. EXPERIMENT

We now consider the experiments of Kogan et al.11 on a
GaAs-based single-electron transistor at low temperature �T�,

embodied in the differential conductance as a function of
gate voltage �Vg �measured relative to a reference voltage�,
and also the bias �or source-drain� voltage Vsd. On varying
the gate voltage, the resultant conductance maps shown, e.g.,
in Fig. 1 of Ref. 11 �see also the theoretical Fig. 16 below�
show clear zero-bias Kondo peaks arising in the centers of
adjacent Coulomb-blockade valleys, one valley thus being
associated with an odd number of dot electrons and the other
with an even number. The former valley, which extends over
a relatively wide �Vg range, is naturally interpreted11 as the
normal FL, or “singlet phase,” while the latter, extending
over a narrower �Vg range, is interpreted11 as the “triplet
phase” �i.e., the USC phase�.

In considering theoretically the conductance,
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FIG. 15. o-orbital spectrum �Doo�
� vs 
 /� on decreasing x̃
=x /� in the FL phase �for same interaction parameters as Fig. 14,
with the critical x̃c=12.26¯�. Shown for x̃=18, 17, 16, 15, 14, 13,
and 12.5 �from right to left�. Right inset: as main figure, but in the
USC phase for x̃=12 �dotted line�, 7 �dashed�, and at the p-h sym-
metric point x̃=0 �solid�. The o-spectrum evolves continuously as
the transition is crossed, a pole occurring at the Fermi level pre-
cisely at the transition where �

o
* vanishes. Left inset: e-orbital spec-

trum 2��Dee�
� vs 
 /� just on either side of the QPT for x̃
=12.261 351 440 in the FL phase �solid line� and x̃
=12.261 351 420 in the USC phase �dashed�. Here the entire spec-
trum changes abruptly on crossing the transition.
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FIG. 16. Middle panel: Experimental zero-bias conductance
�Refs. 11 and 46� �crosses� vs �Vg �in mV�. Theoretical results
obtained as described in text are also shown for T /�=0 �solid line�,
5�10−3 �long dash� and 10−2 �short dash�; for �=0.5 meV these
correspond, respectively, to T=0, 30, and 60 mK. The positions of
the theoretical phase boundaries �T=0� between the USC triplet �T�
and Fermi liquid singlet �S� phases are as indicated. Upper panel:
Kondo scales determined as in Sec. III and shown as log�TK /�� vs
�Vg �for the T phase, TK�TK

S=1�. Bottom panel: Theoretical differ-
ential conductance map in the �Vsd ,�Vg� plane with the gray-scale
code indicated �in units of 2e2 /h�. Shown for T=30 mK, choosing
�=0.5 meV �see text�. The experimental counterpart is shown in
Fig. 1 of Ref. 11.

LOGAN, WRIGHT, AND GALPIN PHYSICAL REVIEW B 80, 125117 �2009�

125117-16



Gc�T,Vsd = 0�
�2e2/h�G0

= �
−	

	

d

− �f�
�

�

2��Dee�
� �59�

is exact37 at zero-bias �as before we consider explicitly V2
=V1�, with Dee�
� the spectrum at the temperature of inter-
est. At finite bias by contrast, nothing exact can be said with
the methods at hand. To treat approximately Vsd�0 we ne-
glect explicit dependence of the self-energies on Vsd. With
this standard approximation Gc�Gc�T ,Vsd� is readily shown
to be

Gc�T,Vsd�
�2e2/h�G0

�
1

2
�

−	

	

d
�− �fL�
�
�


+
− �fR�
�

�

�2��Dee�
� ,

�60�

where f��
�= f�
�
1
2eVsd� for lead �=R /L, respectively

�f�
�= �e
/T+1	−1	. For Vsd=0, Eq. �60� reduces correctly to
Eq. �59�, while for T=0 it yields

Gc�T = 0,Vsd�
�2e2/h�G0

� ���Dee�
 =
1

2
eVsd� + Dee�
 = −

1

2
eVsd��

�61�

in terms of the T=0 spectra. In the above we have taken a
symmetric voltage split between the R /L leads. From Eq.
�60� this gives Gc�T ,Vsd�=Gc�T ,−Vsd�, which symmetry is
rather well satisfied in experiment �Fig. 1 of Ref. 11�.

Under application of a gate voltage, the level energy �1
��Vg, and one expects the level spacing ��=�2−�1 to be
essentially fixed.47 The experimental trajectory in the ��1 ,�2�
�or �x ,y�	 plane upon varying �Vg is then as indicated sche-
matically in Fig. 2�a�, viz., y=x+�� �i.e., �2=�1+���. In this
regard an interesting symmetry arises. Indicating explicitly
the x ,y dependence of Dee�
��Dee�
 ;x ,y�, it is readily
shown that under the p-h and 1–2 transformations of Sec.
II A, Dee�
 ;x ,y�=Dee�−
 ;−y ,−x�. Employing this in Eq.
�60�, noting that ��fL�
� /�
+�fR�
� /�
	 is even in 
, gives

Gc�T,Vsd;x,y� = Gc�T,Vsd;− y,− x� �62�

for the conductance Gc�T ,Vsd��Gc�T ,Vsd ;x ,y�. That is, the
conductance is symmetric under reflection about the line y
=−x. Now the trajectory y=x+�� is perpendicular to the line
y=−x and intersects it for x=− 1

2��, i.e., �since x=�1+ 1
2U

+U�� for �1=− 1
2��− 1

2U−U���1,m. Since the phase bound-
aries are also symmetric under reflection about the line y=
−x �Figs. 2, 5, and 7, this value �1=�1,m—and hence the
corresponding �Vg,m ��1��Vg�—is thus the midpoint of the
triplet phase, such that the conductance should be an even
function of �1−�1,m, or equivalently of �Vg−�Vg,m. This
symmetry is quite well satisfied in experiment �and is of
course obeyed precisely in the theoretical results�. Figure 16
�middle panel� shows the experimental zero-bias
conductance11,46 �crosses� as a function of �Vg �in mV�, to-
gether with corresponding theoretical results �as detailed be-
low�. The midpoint of the triplet �T� phase is readily identi-
fied as �Vg,m=−10 mV, about which the experimental
conductance is indeed seen to be quite symmetric. And the
experimental conductance map shown in Fig. 1 of Ref. 11

�cf. Fig. 16, bottom panel� is also clearly rather symmetric
about �Vg,m.

To compare directly to experiment we must specify the
dimensionless interactions Ũ, Ũ�, and J̃H �Eq. �10�	, ��̃
=�� /�, the relation between �̃1=�1 /� and �Vg, and finally
the hybridization strength �. This is obviously a large param-
eter space, and our intent here is simply to employ what we
regard as a reasonable set of “bare” parameters. For a typical

dot the relative hierarchy of energies satisfies3 �J̃H����̃

� Ũ, with which the specific parameters we use here concur,

�J̃H�=0.5, ��̃=4.5, and Ũ=12 �and with Ũ and ��̃ in excess
of unity, consistent with the occurrence of charge quantiza-
tion toward the centers of the Coulomb-blockade valleys�.
No attempt to explain experiment on the assumption Ũ�= Ũ
was found to be successful, even qualitatively, on varying the
bare parameters. The main reason �as evident from inspec-
tion, e.g., of Fig. 2�c� or Fig. 5 �top, �c�	 is that the resultant
width of the T phase �in �̃1 or �Vg� is much too large com-
pared to that of the singlet �S� phase, and as such not quali-
tatively consistent with experiment11 �Fig. 16�. For the re-

sults shown here we have used Ũ�=6= Ũ /2 �although
tolerable variations from this value give comparable agree-
ment with experiment�.

From the discussion above, the relation between �Vg and
�̃1 is of form �Vg=c��̃1− �̃1,m	+�Vg,m where the proportion-
ality constant c is to be determined �as above, �Vg,m=

−10 mV and �̃1,m=− 1
2��̃− 1

2Ũ− Ũ��. For a chosen set of Ũ,

Ũ�, J̃H, and ��̃, the theoretical zero-bias conductance at T
=0 is calculated from Eq. �59� as a function of �̃1. It is then
scaled onto the experimental results shown in Fig. 16
�middle�, over the �Vg range above �35–40 mV. We
choose this range because here the system is beginning the
approach to the “empty orbital” regime of nimp�1, where
one does not expect any appreciable T dependence to the
conductance �the experimental T is not known with
certainty,46 for although the experiments were performed at
the refrigerator base temperature of �12 mK, the electron
temperature, T, was not determined, although it is believed to
be �40 mK �Ref. 46�. With this procedure we determine the
constant c, which is then fixed and used for all �Vg �and T�,
as well as the dimensionless constant G0 reflecting �Sec. II�
the relative asymmetry in tunnel coupling to the leads �from
scaling the vertical axis in Fig. 16, and leading to
G0�0.8—as is obviously reasonable even from cursory in-
spection of the experimental data�.

In comparing to experiment, an obvious key element is
the relative widths �in �̃1 or �Vg� of the S and T phases, the
former being considerably wider than the latter in experi-
ment. This we naturally find to be influenced significantly by

the exchange J̃H �and to a lesser extent by ��̃�, which is
optimized accordingly. For the results shown here, we find

J̃H=−0.5 to be optimal. Its magnitude is small, as expected,
although its sign is antiferromagnetic. This is not however
unreasonable, for on coupling to the leads as mentioned in

Sec. III, an AF bare J̃H still generates an effective ferromag-
netic spin coupling via an RKKY interaction �as evident in
the very existence of the USC triplet phase for weakly AF
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bare J̃H, and which effect is in fact largest for the case V2
=V1 we consider explicitly�.

With the above we calculate the T=0 zero-bias conduc-
tance, shown in the middle panel �solid line� of Fig. 16 for

Ũ=12, Ũ�=6, ��̃=4.5, and J̃H=−0.5, with the two T/S phase
boundaries indicated in the figure. The T phase, symmetri-
cally disposed about the midpoint �Vg,m=−10 mV, occurs in
the interval −13.45��Vg�−6.55 mV �corresponding to
−15.2��̃1�−13.3�, with nimp at the phase boundaries of
nimp=1.87 �upper boundary at �Vg=−6.55 mV� and nimp=4
−1.87=2.13 �lower boundary�, such that in accordance with
Eq. �38� of Sec. IV C the zero-bias conductance increases on
crossing from the S �FL� to the T �USC� phase.

The resultant Kondo scales as a function of �Vg are
shown in the top panel of Fig. 16 �obtained as specified in
Sec. III, and with TK�TK

S=1 for the T phase�. Since TK van-
ishes as the QPT is approached from the S �FL� side, finite-
temperature effects will obviously be most significant in the
vicinity of the transition. Figure 16 thus shows the zero-bias
conductance at two nonzero temperatures, T /�=0.005 and
0.01. While there is not much net difference between the
two, each has the effect of significantly increasing the con-
ductance in the vicinity of the transition and leads to what we
regard as rather good overall agreement with experiment.
Over the T range shown the conductance “inside” the T
phase does not erode as rapidly as one might like, reflecting
the fact that TK�TK

S=1 therein is in excess of the T’s shown,
although one could likely improve on this with a bare param-
eter set for which TK

S=1 inside the T phase is somewhat
smaller. The temperature range considered here is also en-
tirely reasonable in relation to the experimental T discussed
above,11,46 with �=0.5 meV �as employed below� the tem-
peratures shown correspond to T=30 and 60 mK, respec-
tively.

Conductance maps

The bare parameters specified above are fixed. Using Eq.
�60� the differential conductance, as a function of gate and
bias voltages, may now be calculated and compared to ex-
periment. For this we must finally specify the hybridization
strength �; in the following we take �=0.5 meV �noting that
comparison to experiment is not critically dependent on this
choice, with values in the range of �0.3–0.6 meV being
found quite acceptable�. The resultant differential conduc-
tance map for T=30 mK is shown in Fig. 16 �bottom panel�
and is in rather good agreement with the experimental results
reported in Fig. 1 of Ref. 11.

In addition to the clear zero-bias Kondo ridges associated
with both the T and S phases, the conductance map shows
other features noted in experiment.11 In particular, looking at
the far left side of the conductance plot, one sees two dark
ridges positioned symmetrically around Vsd=0. As �Vg is
increased the two ridges move together until they merge to
form the zero-bias Kondo ridge associated with the T phase.
The latter persists for a range of �Vg, and then the two ridges
separate again �the pattern being in other words symmetrical
about �Vg,m=−10 mV for the reasons explained following

Eq. �62�	. The obvious question arises as to the origin of
these ridges, which we now consider.

As seen in Fig. 16, the T=0 zero-bias conductance in-
creases on passing from the S �FL� to the T �USC� phase, and
in Sec. V A we showed that such behavior was indicative of
a vanishing Kondo antiresonance in the single-particle spec-
trum, as the transition is approached from the S side.

This is the origin of the ridges seen in the conductance
maps, as now shown by considering cuts through the con-
ductance map of Fig. 16 for a sequence of different fixed
gate voltages �Vg. The top panel in Fig. 17 accordingly
shows the conductance vs bias voltage Vsd for five different
values of �Vg: −10 mV �at the midpoint of the T phase�, and
�Vg=−6,−5,−3, and +2 mV as one moves into the S phase
�which at T=0 occurs for �Vg −6.5 mV�. For �Vg=
−10 mV the conductance naturally peaks at Vsd=0. But on
entering the S phase a clear antiresonance in the conductance
is seen to develop, just setting in by �Vg=−6 mV and deep-
ening progressively as �Vg is increased in the S phase to-
ward −3 mV �then naturally disappearing as one gets consid-
erably further into the S phase, as illustrated by the �Vg=
+2 mV example�. And the peaks in these conductance pro-
files, symmetrically disposed about Vsd=0, lie at the center
of the ridges in the conductance map.
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FIG. 17. Top panel: Vsd dependence of conductance, taking cuts
through the conductance map of Fig. 16 �bottom� for a sequence of
different fixed gate voltages: �Vg=−10 mV �midpoint of the T
phase, sold line�, and �Vg /mV=−6 �long dash�, −5 �short dash�, −3
�point dash�, and +2 �dotted� on moving into and through the S
phase. A clear antiresonance develops in the S phase, as discussed
in text. The peaks in the conductance, symmetrical about Vsd=0, lie
at the center of the ridges seen in the conductance map. Bottom
panel: Focus on the �Vg=−3 mV case. Solid line: conductance as
in top panel. Long dashed line: corresponding T=0 conductance
proportional to �Dee�
=+ 1

2eVsd�+Dee�
=− 1
2eVsd�	. Short dashed

line: contribution from Dee�
=+ 1
2eVsd� alone, showing a clear

Kondo antiresonance in the single-particle spectrum itself.
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To show that the above behavior indeed reflects a Kondo
antiresonance in the single-particle spectrum itself, the bot-
tom panel in Fig. 17 focuses on the �Vg=−3 mV example.
The solid line again gives the conductance shown in the top
panel, while the long dashed line shows the corresponding
T=0 conductance obtained from Eq. �61� and thus being pro-
portional to �Dee�
=+ 1

2eVsd�+Dee�
=− 1
2eVsd�	. The latter

clearly captures well the former �the differences naturally
being due to thermal smearing�. Because the conductance is
proportional to the symmetrized spectra at 
= �

1
2eVsd, it is

not a priori clear that the single-particle spectrum itself con-
tains a Kondo antiresonance. That it does, however, is seen
from short-dashed line in Fig. 17 �bottom�, which shows the
contribution from Dee�
=+ 1

2eVsd� itself, seen to contain a
clear Kondo antiresonance centered on the Fermi level. We
add too that since the peaks/ridges in the conductance stem
from the “peaks” inherent to the Kondo antiresonance in Dee,
they are obviously not interpretable in terms of isolated dot
states.

Finally, the zero-bias Kondo ridge in the conductance
map—formed as described above on merging of the Vsd�0
conductance ridges and concomitant vanishing of a conduc-
tance antiresonance �as in Fig. 17, top�—reflects of course
the existence of the T �USC� phase and hence a transition to
it from the S �FL� phase. However one can readily envisage
a situation where the underlying bare parameters of the
system/device are slightly different, such that on ramping
down the gate voltage the resultant trajectory y=x+��
comes close to but “misses” the S/T transition; the system as
such always remaining in a S phase �see, e.g., Fig. 2�a�	. In
this case no zero-bias Kondo ridge associated with the T
phase can arise. Instead, from the discussion above, one
might intuitively expect continued persistence of the conduc-
tance antiresonance on decreasing �Vg, with attendant finite-
bias conductance ridges which never quite merge together.
That this indeed occurs is illustrated in Fig. 18, where the
conductance map �here for T=30 mK� is shown for the same
bare parameters as Figs. 16 and 17, except for a slight

change in J̃H to −0.6 �the same behavior arising also on

changing, e.g, ��̃ rather than J̃H�. And the qualitative behav-
ior seen here is indeed similar to that observed in a second
device, shown in Fig. 3 of Ref. 11 �although in this case we
have not made a quantitative comparison�.

VII. CONCLUDING REMARKS

As exemplars of multilevel quantum dot systems, we have
considered in this paper correlated two-level quantum dots,
coupled in a one-channel fashion to metallic leads. Thermo-
dynamics, single-particle dynamics, and electronic transport
properties show the physical behavior of the system to be
rich and varied, and our aim has been to obtain a unified
understanding of the problem for essentially arbitrary dot
charge/occupancy. Excepting points of high symmetry where
first order level-crossing transitions arise, associated quan-
tum phase transitions are of Kosterlitz-Thouless type, evi-
dent in a vanishing Kondo scale as the transition to the un-
derscreened spin-1 phase is approached from the Fermi
liquid side and manifest in particular by a discontinuous
jump in the zero-bias conductance as the transition is
crossed, which we have shown here can be understood from
an underlying Friedel-Luttinger sum rule. We add in fact that
an abrupt conductance change appears to be a general signa-
ture of a KT transition, such behavior arising generally not
only in the present model but also in capacitively coupled
two-channel quantum dots which exhibit a KT transition
from a charge-Kondo Fermi liquid state �with a quenched
charge pseudospin� to a non-Fermi liquid, doubly degenerate
“charge-ordered” phase,48 and in the problem of spinless,
capacitively coupled metallic islands/large dots close to a
degeneracy point between N and N+1 electron states, de-
scribed by two Ising-coupled Kondo impurities.49

Several issues naturally remain to be addressed. We be-
lieve for example that the generalization of Luttinger’s theo-
rem to the singular Fermi liquid USC phase �Sec. IV B� is
significant and raises important basic questions �such as why,
and what fundamentally does it reflect?�. While we do not
doubt its validity, we have however demonstrated it only
numerically, and a proper analytical understanding of the re-
sult is obviously desirable. In this work we have also con-
sidered the system in the absence of an applied magnetic
field, B. Interesting physics arises also for B�0 �see, e.g.,
Ref. 22�, where the underlying quantum phase transitions are
naturally smeared into crossovers. In fact, for the USC phase
the limits of zero field and B→0+ are different for T=0,
reflecting the total polarization of a free spin-1 /2 �as for the
USC fixed point� on application of even an infinitesimal
field. We will turn in subsequent work to the effects of mag-
netic fields upon single-particle dynamics and transport in
the model.
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APPENDIX A: EFFECTIVE LOW-ENERGY MODELS

We first sketch the derivation of the effective low-energy
model considered in Sec. III B, spanned by the �1, 1� triplet
and �1, 1� singlet states of the isolated dot; with energies

under ĤD of ET=�1+�2+U�− 1
4JH and ES=�1+�2+U�+ 3

4JH,
respectively. The local unity operator for the dot is

1̂ = 1̂T + 1̂S, �A1�

with 1̂T=�Sz�S=1,Sz��S=1,Sz� in an obvious notation, and

likewise 1̂S= �0,0��0,0�. These satisfy the following identi-
ties in the local Hilbert space;

1̂T = ŝ1 · ŝ2 + 3
4 1̂, 1̂S = − ŝ1 · ŝ2 + 1

4 1̂, �A2�

as follows using ŝ1 · ŝ2� 1
2 �Ŝ2− 3

2 � with Ŝ= ŝ1+ ŝ2.

Omitting for brevity the lead contribution ĤL �Eq. �3�	,
the low-energy model is given by Ĥeff=ES1̂S+ET1̂T+ Ĥeff

�2�.
The first two terms are simply the bare energies of the dot
states; using Eqs. �A1� and �A2� they may be written as

ES1̂S+ET1̂T= 1
4 �ES+3ET�1̂+ �ET−ES�ŝ1 · ŝ2, or equivalently as

−JHŝ1 · ŝ2 on omitting the first �constant/common� term,

Ĥeff = − JHŝ1 · ŝ2 + Ĥeff
�2�. �A3�

Here Ĥeff
�2� is the leading �O�V2�	 contribution arising from

tunnel coupling to the leads �Eq. �2� with V2=V1�V, here

denoted as Ĥ�	, given from a SW transformation38 as

Ĥeff
�2� =

1

2�
�,�

1̂�Ĥ���E� − ĤD�−1 + �E� − ĤD�−1	Ĥ�1̂�,

�A4�

with � ,�� �S ,T
 �retardation effects are as usual neglected�.
In analyzing Eq. �A4� one encounters the following “natu-

ral” exchange couplings Ji
��0;

Ji
� = NV2� 1

�Ei
� +

1

�Ẽi
�� �A5�

�with N the number of k states in the lead, such that NV2

�O�1�	. Here the �Ei
��0 denote electron removal excita-

tion energies from level i=1 or 2, relative to the �=T or S

dot ground state, and the �Ẽi
��0 correspondingly denote

electron addition energies to level i relative to the �=T or S

ground state; e.g, �E1
T=ED�0,1�−ET or �Ẽ2

S=ED�1,2�−ES
in the notation of Sec. II B. Denoting

!T = 1
2U + 1

4JH, !S = 1
2U − 3

4JH, �A6�

these excitation energies are easily shown to be given by

�E1
� = !� − x, �Ẽ1

� = !� + x , �A7a�

�E2
� = !� − y, �Ẽ2

� = !� + y , �A7b�

where �Eq. �11�	 x=�1+ 1
2U+U� and y=�2+ 1

2U+U�. Hence
from Eq. �A5�,

J1
� � J��x�, J2

� � J��y� �A8�

with J��x� defined by

J��x� = NV2� 1

!� − x
+

1

!� + x
� = J��− x� . �A9�

Direct analysis of Eq. �A4� yields, after a standard if la-
borious calculation, the effective low-energy model Eq. �16�,

Ĥeff = J1�x,y�ŝ1 · ŝ0 + J2�x,y�ŝ2 · ŝ0 − I�x,y�ŝ1 · ŝ2,

�A10�

where potential scattering contributions are omitted for clar-
ity, and ŝ0 denotes the spin density of the conduction channel
at the dot. The direct exchange coupling between spins 1 and
2 is found to be

I�x,y� = JH + 1
2 �JT�x� + JT�y� − JS�x� − JS�y�	 , �A11�

while the O�V2� antiferromagnetic exchange couplings be-
tween spins 1 or 2 and the lead are given by

J1�x,y� = 1
2 �3JT�x� + JT�y� + „JS�x� − JS�y�…	 ,

�A12a�

J2�x,y� = J1�y,x� . �A12b�

Using Eq. �A9�, these exchange couplings satisfy

Ji�x,y� = Ji�− x,− y�, i = 1,2, �A13a�

I�x,y� = I�− x,− y� = I�y,x� �A13b�

by virtue of which Ĥeff� Ĥeff�x ,y� in Eq. �A10� satisfies

Ĥeff�x ,y�� Ĥeff�−x ,−y� �reflecting its symmetry under a p-h

transformation�, while from Eq. �A12b�, Ĥeff�x ,y�
→ Ĥeff�y ,x� under the 1–2 transformation �Eq. �13�	, as ex-
pected on general grounds from Sec. II A. These symmetries,
and the consequent invariance of the phase boundaries in the
�x ,y� plane to both inversion and reflection about the line
y=x, are also naturally satisfied when potential scattering
terms, omitted explicitly from Eq. �A10�, are included. By

contrast, the apparent reflection symmetries Ĥeff�x ,y�
= Ĥeff�−x ,y�= Ĥeff�x ,−y� which hold for Eq. �A10� itself �via
Eq. �A9�	, are not preserved when potential scattering is in-
cluded; which is why the phase boundaries in Fig. 7 are not
invariant to reflection about the lines x=0 and y=0.

Along the lines y= �x in the �x ,y� plane, it follows di-
rectly from Eqs. �A12b� and �A13a� that J2�x , �x�
=J1�x , �x� and hence from Eqs. �A12a� and �A9�

J2�x, � x� = J1�x, � x� = 2JT�x� , �A14�

with I�x , �x�=JH+ �JT�x�−JS�x�	 following similarly from

Eq. �A11�. In consequence, as discussed in Sec. III B, Ĥeff is
separable along the lines y= �x, and first-order level-
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crossing transitions thus arise. Note incidentally that for
given JH�0, both JT�x� and I�x , �x� increase on increasing
�x� from 0, both of which act �see Eq. �17�	 to favor the triplet
phase, consistent with the USC phase surviving for �x��0
after it has been destroyed for x=0, as indeed found in Fig. 7.

Finally, a by-product of the above gives directly the pure
spin-1 Kondo model appropriate for ferromagnetic JH�0
deep in the USC spin-1 phase,15,16 where the �1, 1� singlet
dot states are energetically irrelevant and only the �1, 1� trip-
let states need be retained. To this end simply project into the

triplet sector, ĤK=1̂TĤeff1̂T. Writing J1ŝ1 · ŝ0+J2ŝ2 · ŝ0= 1
2 �J1

+J2��ŝ1+ ŝ2� · ŝ0+ 1
2 �J1−J2��ŝ1− ŝ2� · ŝ0, recognizing that 1̂T�ŝ1

− ŝ2�1̂T=0 and neglecting constants, Eq. �A10� gives a spin-1
Kondo model

ĤK = 1̂TĤeff1̂T = JKŜ · ŝ0, �A15�

where Ŝ� 1̂T�ŝ1+ ŝ2�1̂T is a pure spin-1 operator, and JK

= 1
2 �J1+J2� is given from Eq. �A12� by

JK = JT�x� + JT�y� , �A16�

with JT�x� given explicitly by Eq. �A9�. Along the lines y
= �x, in particular, Eqs. �A16�, �A9�, and �A6� give JK

=2JT�x�; i.e., 
JK= 8
���U+ 1

2JH	 / ��U+ 1
2JH	2−x2� with 
 here

as the lead density of states per conduction orbital �such that
���V2N
�. From perturbative scaling1 the spin-1 Kondo
scale TK

S=1 follows as TK
S=1�D exp�−1 /
JK� �with the expo-

nential dependence as usual of the essence, and the prefactor
immaterial�, and Eq. �42� for TK

S=1 thus results. From NRG
calculations we have confirmed explicitly that the depen-

dence of TK
S=1 on Ũ+ 1

2 J̃H is indeed as predicted by Eq. �42�.

APPENDIX B: SELF-ENERGIES

The key NRG method for calculating the self-energy43 is

readily extended to multilevel dots/impurities. With ĤI the
interacting part of the dot Hamiltonian, equation of motion
techniques42 are used to obtain the following basic equation
for the retarded propagators �Gij�
�
:

�
l

„�
+ − �i��il − �il�
�…Glj�
� = �ij + ���di�,ĤI	;dj�
† �� .

�B1�

The sum is over the dot levels �l=1,2 here�, and �,	 denotes

a commutator. By definition, ĤI�0 in the noninteracting
limit; whence Eq. �B1� is of the form

�G0�
�	−1G�
� = 1 + F�
� , �B2�

with G0�
� as the noninteracting propagator matrix and the
elements of F�
� given by

Fij�
� = ���di�,ĤI	;dj�
† �� . �B3�

Using the Dyson equation in the form �G0	−1= �G	−1+�, Eq.
�B2� gives directly Eq. �39�,

��
� = F�
��G�
�	−1, �B4�

from which the self-energies are calculated directly �Sec. V�.
Combining Eq. �B4� with the Dyson equation also gives G
=G0�1+F� so that Eq. �B4� may be written alternatively as

��
� = F�
��1 + F�
�	−1�G0�
�	−1 �B5�

�which we exploit to calculate the renormalized level �
o
*

when considering dynamics on the y=x line, Eq. �54�, Sec.
V B	.

ĤI is given explicitly for the present problem by the sepa-

rable sum �Eq. �1�	 ĤI=U�in̂i↑n̂i↓+U�n̂1n̂2−JHŝ1 · ŝ2. The el-
ements Eq. �B3� of F are thus linearly separable as Fij =Fij

U

+Fij
U�+Fij

J �in obvious notation� and are calculated individu-
ally. Since each such term is a retarded correlation function,
they are Lehmann resolvable,44 and in consequence satisfy
sum rules. Writing Fij�
�=Fij

R�
�− iFij
I �
� �with the real/

imaginary parts related by Hilbert transformation�, the gen-
eral sum rule is

�
−	

	 d


�
Fij

I �
� = ���di�,ĤI	,dj�
† 
� , �B6�

where �,
 denotes an anticommutator. Specifically, for the
present problem in the absence of an applied magnetic field,
it is readily shown that the diagonal-element sum rule is

�
−	

	 d


�
Fii

I �
� =
1

2
U�n̂i� + U��n̂ī� �B7�

�where ī means the opposite level to i�, while for the off-
diagonal elements,

�
−	

	 d


�
Fij

I �
� =
j�i�− U� +

3

4
JH��dj�

† di�� , �B8a�

=�− U� +
3

4
JH��

−	

0

d
Dij�
� . �B8b�

These sum rules provide a check on the accuracy of the NRG
calculations and in practice are well satisfied.
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