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Microcavity polaritonlike dispersion doublet in resonant Bragg gratings
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Periodic structures resonantly coupled to excitonic media allow the existence of extra intragap modes
(“Braggoritons”) due to the coupling between Bragg photon modes and bulk excitons. This induces unique
dispersive features, which can be tailored by properly designing the photonic band gap around the exciton
resonance. We report that Braggoritons realized with semiconductor gratings have the ability to mimic the
dispersion of quantum-well microcavity polaritons. This gives rise to peculiar nonlinear phenomena, such as
slow-light-enhanced nonlinear propagation and an efficient parametric scattering at two “magic frequencies.”
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Since the pioneering proposals by Yablonovitch and
John,! photonic crystals (PhCrs), structures characterized by
a spatially periodic dielectric function, have attracted enor-
mous attention due to their rich physics. In particular, the
occurrence of photonic band gaps (PBGs), i.e., frequency
regions where the propagation of light is strongly inhibited
and the extraordinary ability to manipulate and control the
photonic flow, make PhCrs very appealing for many
applications.! Furthermore, the current accurate engineering
of photonic states allows us to investigate light-matter phe-
nomena in PhCrs, with one of the most fascinating being the
strong-coupling regime of light-matter interaction. Nontrivial
modifications of the photonic dispersion are expected to oc-
cur when PBG materials are coupled to polarizable excitonic
media®” since in this case the true eigenmodes of the mixed
photonic-excitonic system are exciton-polaritons,? i.e., the
normal modes born from the strong coupling between
Wannier-Mott excitons and Bragg photons propagating in the
PBG structure.

In this Rapid Communication, we show through theoreti-
cal analysis that, by embedding a three-dimensional (3D)
exciton resonance within the PBG of a one-dimensional (1D)
Bragg grating, the dispersion relation of the resulting
exciton-polariton states can, under certain conditions, mimic
the dispersion of a doublet of microcavity (MC) polaritons,
i.e., the quasiparticles arising from the coupling between
two-dimensional excitons in a quantum well and the opti-
cally confined photons in a semiconductor planar
microcavity.? The very peculiar dispersion features of these
Bragg polariton modes give rise to a wide variety of nonlin-
ear phenomena, absent in standard gratings, such as slow-
light-enhanced nonlinear propagation and an ultra-efficient
parametric scattering at two magic frequencies. In addition,
owing to the extremely small effective mass of these hybrid
exciton-photon modes, routes for the appearance of macro-
scopic coherence in solid-state systems are opened.

Following a procedure similar to the one used in Ref. 9 in
the context of conventional nonresonant Bragg gratings, and
extending it to include both the forward and the backward
exciton polarization waves, it is possible to derive the fol-
lowing polaritonic coupled-mode equations (PCMEs) writ-
ten in dimensionless units:

i[9+ Foulf +idsf + kb + pg2=0, (1)
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i[(?7+ '?ph]b—lagb'i' Kf+pb/2=0, (2)
i0.p+ (i%+dpr+[p >+ 2lpPlps+ pf =0, (3)

i0.pp+ (% + d)py + [|pol* + 2l A*Ips + pp =0, (4)

In Egs. (1)—(4), the fields {f, b} represent the amplitude of the
slowly varying envelopes of the forward and the backward
propagating electric fields, respectively, while {p;,p,} are the
corresponding quantities for the exciton polarization field.
Spatial dispersion terms have been omitted for simplicity, as
their contribution to the propagation dynamics is negligible.
The dimensionless temporal and longitudinal spatial vari-
ables are 7= fﬂo and {=z/z,, respectively, with o= ¢,/ w,
and zg=cty/ Ve, with €, being the average background di-
electric function of the grating and w,, being the central pulse
frequency. The 1D grating is described by the dielectric func-
tion e(z)=e,{1+u[e*s°+e~*57]/2}, where u<1 is the depth
of the grating and kz=2V€,w,/c is the grating Bragg wave
number. The dimensionless frequency detuning between the
Bragg frequency wj and the exciton resonant frequency w, is
given by d=Awt),, where Aw=wp—w,. The linear absorp-
tions of the background medium v, and the exciton oscilla-
tor damping 7, (i.e., the exciton homogeneous linewidth) are
also considered in our model through the dimensionless
quantities ¥y« =1)¥phx- Lhe polariton splitting w,., which
measures the interaction between the transverse components
of the excitonic polarization and the retarded electromagnetic
field, is specified by the dimensionless parameter p
=1yw?/(2w,). Finally, solution of the linearized equations
(1)—(4) yields the dispersion relation of Bragg polaritons &
=8(q), where 6=Aw/w, and g=Ak/k, are the frequency
and the wave-number detunings from the band-gap center,
respectively, and have been introduced via a phase shift of
the fields of the kind exp(ig{—id7). It is important to note
that in our system the source of the Kerr-type nonlinearity is
provided by the repulsive exciton-exciton (XX) interactions
encoded in the cubic terms in Egs. (3) and (4).!°
Throughout this Rapid Communication we use a design
based on zinc oxide (ZnO) as a representative example of our
theoretical calculations. ZnO has received substantial atten-
tion in recent years due to the robustness of its exciton reso-
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nances, which remain stable up to room temperature and its
exceptionally large binding energy and oscillator strength.'!
Following recent advances in ZnO growth and deposition,
clean exciton resonances have been produced using
molecular-beam  epitaxy,'>  pulsed-laser  deposition,*
sputtering,'® and led to the realization of a ZnO MC.* We use
ZnO as our excitonic material [see also Fig. 3(e)], and we
therefore design the photonic crystal in order to have the
PBG located around w,. The second kind of layer is made of
Zr0,. The free exciton binding energy of ZnO is fw,
~60 meV, and the exciton central frequency is fiw,
~3.3771 eV, which corresponds to \,=367.4 nm.'?> The
linear absorption coefficient and the exciton homogeneous
linewidth of ZnO depend considerably on the fabrication
technique. However, at 7=5 K we make the estimates 7y,
~2.5 meV and vy,=~0.25 meV.'"* The strength of the
exciton-photon coupling is regulated by p/fy=w?/(2w,)
=5.33X 10 eV. Since fiw,> Yx,ph» the physical conditions
for achieving strong-coupling regime are met. Near the ex-
citon transition frequency, ZnO has a refractive index n,
=2.37, while for ZrO, n,=2.326 at the same wavelength.
Thus we have the following grating parameters, to be used in
Egs. (1)-(4): w=An*/€,=0.0187 and «=pue,/4=0.0258
<1, satisfying the shallow grating condition on which our
PCMEs are based. The quarter-wavelength condition gives
the layers’ widths L;=38.8 nm and L,=39.9 nm for ZnO
and ZrO,, respectively. The spatial nonlocal response of ex-
citons (considered in Ref. 6) is not relevant here since (i) the
modifications in the exciton mass induced by the weak con-
finement (see, e.g., Ref. 8) are small and (ii) the folding of
the band structure due to the periodicity greatly reduces the
effects of spatial dispersion for large momenta. The nonlin-
ear refractive index of ZnO at A, is estimated to be
nnL(Zn0) = 107" m?/W at 5 K, which is about nine orders
of magnitude larger than that of bulk silica.

Equations (1)—(4) represent the foundational result of this
Rapid Communication. Previous attempts to describe polari-
tonic gratings have been made in the framework of the linear
transfer-matrix method,? approaches that do not take into ac-
count the large nonlinear optical response of excitons near
resonance, or by using a model based on Maxwell-Bloch
equations,'® but without taking into account the crucial im-
portance of both forward and backward propagating exciton
polarization waves.

Figures 1(a)-1(c) show the evolution of the coupled and
bare linear dispersions when varying d from vanishing to
negative values. Coherent coupling between 3D bulk exci-
tons and Bragg photons gives rise to two intragap modes
(Bragg polaritons or Braggoritons?), the dispersion of which
can be efficiently tailored by simply tuning d, for instance,
by slightly modifying the grating parameters around the
fixed exciton resonant frequency.

The four branches in question [which we label upper- and
lower-photon (UP,LP) and upper- and lower-Braggoriton
(UB,LB) branches; see Figs. 1(a)-1(c)] have a striking re-
semblance with the dispersions of a doublet of coupled MC
polaritons.!” As shown in Fig. 1(c) for a detuning d=-0.04,
the pair (UPLB) form the first half of the doublet (named
MC1), while its counterpart (named MC2), formed by the
pair (LP,UB), is reversed, and not placed symmetrically with
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FIG. 1. (Color online) (a)—(c) Polariton dispersion on the (8,¢q)
plane for three different values of d. Dashed lines are the bare
Bragg photon and exciton dispersions. Blue solid (dark gray) lines
indicate upper-photon (UP) and lower-photon (LP) branches; red
solid (light gray) lines are upper-Braggoriton (UB) and lower-
Braggoriton (LB) branches. (d) Reflectivity R; in blue solid (dark
gray) line and absorbance A; in black dotted line as functions of &
for a finite grating (L=14 um for our proposed ZnO design). The
dispersion is shown with red dashed (light gray) lines.

respect to MC1 for d # 0. As mentioned above, the condition
of strong exciton-photon coupling is realized for both MC1
and MC2. Note that, by using the formalism based on
coupled-mode theory [Egs. (1)—(4)], one can accurately de-
scribe only regions well inside the first Brillouin zone and in
the proximity of the central Bragg frequency of one specific
band gap only.” An analysis that goes beyond the coupled-
mode theory approximation in multilayer systems can be
found in Ref. 6. However, the nonlinear effects originating
from XX interactions, which are the focus of our Rapid
Communication, are not discussed in the latter work.

Equations (1)—(4) allow calculation of the linear reflectiv-
ity R; and absorbance A; as functions of & for finite gratings
[see Fig. 1(d)]. Physical dispersion branches are selected
with the criterion R=<1 [see also Fig. 2(a)]. It is evident that
the polariton feature introduces an anomalous transmittance
region located inside the band gap, at a detuning d from the
band-gap center, which divides the band gap into two smaller
subband gaps.? Furthermore, we observe here that the forma-
tion of such subgaps is accompanied by the appearance of
two zero group-velocity dispersion (GVD) points, therefore
dividing the spectrum into alternating regions of anomalous
[(6°q;/ 95*) <0] and normal [(&q;/95%) >0] GVD [see dots
in Figs. 2(a) and 2(b)]. It is worth noticing that in conven-
tional gratings such points do not exist, while MC polaritons
possess only one inflection point on their lower branch,
which is of paramount importance for the occurrence of the
nonlinear effects observed in experiments.!”-'® We shall see
that the full significance of this analogy goes well beyond the
mere similarity in the dispersive properties.

Due to its large excitonic component and flat dispersion,
the UB (LB) branch with d<0 (d>0) turns out to be a
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FIG. 2. (Color online) (a) Physical parts of the dispersion
branches [for which R(8) =1] are indicated with blue solid (dark
gray) lines, for d=-0.04. Red (light gray) dots indicate the position
of the two inflection points on the UB and LB branches, which are
located at g’s that have the same magnitude but opposite signs, see
also [Fig. 3(b)]. (b) GVD ((9241/»/(952) as a function of &. Red (light
gray) dots indicate zero-GVD'points. (c) and (d) Solid blue (dark
gray) lines are the group velocities v, ;/c=(dq;/35)™" as functions
of g, for d=0 and d=-0.04, respectively. Red dashed (light gray)
lines indicate the dispersion.

potential candidate for slow-light-enhanced nonlinear optics
at low intensities.!® This is confirmed by calculating the
group velocities (GVs) of all branches for d=0 and d=
—0.04 [Figs. 2(c) and 2(d), respectively]. The UP and LP
branches show GVs approaching the speed of light in the
medium [normalized to =1 in Figs. 2(c) and 2(d)] for large
values of &, as in conventional gratings. The GV can be
reduced considerably when & approaches the band edges, but
then progressively less photons will be available due to eva-
nescence of the electric field in those regions.!® However,
Figs. 2(c) and 2(d) show that, in the proximity of the UB and
LB branches (6~d), small GVs can be obtained. For d=0
[Fig. 2(c)] the central GV curve is symmetric, while, for d
#0, the GV curve is asymmetric [see Fig. 2(d)]. Figures 2(c)
and 2(d) are in qualitative agreement with the experimental
measurements performed in similar structures, e.g., see Fig.
3(b) in Ref. 3. Close to d=d, exciton absorption can strongly
affect both UB and LB branches, depending on the precise
value of %,. Being mostly excitonic in nature and spectrally
narrower, the UB (LB) branch is the one most affected by
exciton absorption for d <0 (d>0). Moreover, a reduction in
group velocity comes at the price of a reduced bandwidth,
which is a fundamental limitation for all slow-light
devices.!” This corresponds here to the progressive straight-
ening of the flat UB branch for large values of |d|. At low
temperatures, typically 7<<5 K, there are frequency regions
for which absorption is reasonably small and relatively far
from the band edges, where the group velocity is greatly
reduced. For instance, Fig. 2(d) shows that an increase in the
group index up to 20 is achieved for realistic parameters
corresponding to the ZnO-based grating structure discussed
above. By increasing the interaction time between the me-
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FIG. 3. (Color online) (a) Effective polariton mass parameter
M, for all branches (indicated) as a function of d. (b) Schematics of
the parametric amplification process occurring in the proximity of
the inflection points of both Braggoriton branches, for d=-0.04.
Gray areas indicate the photonic subgaps. (c) Matrix element for the
intraband parametric scatterings shown in (b), for the LB branch in
blue (dark gray) line and for the UB branch in red (light gray) line.
(d) Same as (c) but for the LP branch in blue (dark gray) line and
for the UP branch in red (light gray) line. (e) Sketch of our proposed
design for a polaritonic Bragg stack. The excitonic material is ZnO
(shown in red/gray, \,=367.4 nm), while the second material is
ZrO, (shown in blue/light gray).

dium and the light field to approximately an order of magni-
tude, it is possible to achieve low-light-level nonlinear
optics.!” This will open up alternative routes for slow-light-
enhanced nonlinearities in gratings.

We have calculated that the physical effective polariton
masses at ¢=0 for each dispersive branch m; are given by

harVe,
= o M), (5)

where M (d)=[(#*6; /&qz)] L, is a d-dependent coefficient
shown in Flg 3(a) The prefactor fimye€,/ (2c\) assumes the
value of =4 X 107° m, for bulk ZnO, which is on the order of
magnitude of the cavity photon mass in the upper polariton
branch of MCs, with the latter being in practice not usable
for nonlinear optics purposes due to the absence of inflection
points in the polariton dispersion.!” Thus 1D polaritonic grat-
ings allow the possibility to obtain very small polariton
masses compared to the lower branch of conventional MC
polaritons (the mass of which is ~107*m,)."”

Owing to their excitonic content, Braggoritons are very
nonlinear due to the strong interactions of their constituents,
thus giving rise to strong optical nonlinearities of Kerr (cu-
bic) type. The nonlinear coefficient at the exciton resonance
can be several orders of magnitude larger than the one for
highly nonlinear optical fibers."> We report here that, by
keeping the excitonic nonlinear terms of the PCMEs in Egs.
(3) and (4), a stimulated parametric scattering process occurs
for Braggoriton states, which is the analog of the parametric
amplification in semiconductor MCs originally proposed and
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demonstrated in 2000 by Savvidis and co-workers.!® In this
experiment, when an intense pump excites the lower MC
polariton branch at a certain “magic angle” (corresponding to
a magic wave number, located near the inflection point), one
observes a large amplification of a weak probe beam which
stimulates the same MC lower branch at normal incidence.
Such an amplification is due to the scattering of the two
pumped polariton states into a pair of signal and idler
polaritons,'® which follows from the phase-matching condi-
tions (energy and momentum conservation). Only modula-
tionally unstable frequencies can grow rapidly enough to
produce the exponential amplification of the weak probe (lo-
cated at ¢g=0) at the expense of the pump. In our system, the
phase-matching condition is provided by the nonlinear terms
in Egs. (3) and (4) and is satisfied in close proximity to two
inflection points [located in the UB and LB branches as
shown in Figs. 2(a) and 2(b)]—note that only one inflection
point is available in MC polaritons—thus effectively giving
rise to amplification of Braggoriton states at g=0. As we are
dealing with a grating structure, these two inflection points
can be externally excited just by changing the frequencies of
the input pump and probe pulses [see also Figs. 3(b) and
3(e)]. Hence, Braggoriton amplification is characterized by
two magic frequencies [8,,,,, in Fig. 3(b)], in correspon-
dence of which one transfers polaritons from the pump (g
=gq,, to states with g=0 [see Fig. 3(b)]. The final states are
located symmetrically in both frequency and wave-number
spaces.

The scattering processes on the various dispersion
branches can have very different matrix elements, and thus
the efficiency can vary considerably for different branches,
as shown in Figs. 3(c) and 3(d). The intraband matrix ele-
ments of the UP and LP branches are shown in Fig. 3(d).
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They are negligible for small values of |d|, as they are not
phase matched, and thus the efficiency of the scattering pro-
cess on these branches is very low. The opposite scenario is
observed for the UB and LB branches [see Fig. 3(c)]. As a
typical example, when d=-0.04, at a value of |g|=0.38,
where the zero GVD points are located, the ratio between the
matrix element for the UB branch and the one for the LB
branch is approximately r g, 5=|M 5/ M5|=6, so that the
UB branch is six times “more nonlinear” than the LB branch
for the specific material parameters chosen. This ratio can be
tuned up by several orders of magnitude by just increasing
the value of |d|. For instance, for d=—0.2 we would have
rusiLs =2 103 at the zero GVD points. This allows a very
large tunability of the effective nonlinearity of the various
branches in polaritonic gratings.

In conclusion, we have studied some nonlinear properties
of 1D Bragg gratings, when the PBG is near resonant with an
excitonic feature of the medium. We have developed a model
based on a set of coupled-mode equations [Egs. (1)—-(4)] that
are able to accurately describe the linear and the nonlinear
propagations of Braggoriton states, which will be instrumen-
tal for future theoretical investigations. The crucial feature of
such gratings is the existence of two inflection points in the
dispersion characteristics, leading to the formation of regions
of slow-light-enhanced nonlinear propagation, as well as the
establishment of a strong parametric amplification at two
magic frequencies. This places the linear and the nonlinear
properties of Braggoritons in between those of standard non-
resonant Bragg photons and MC polaritons.

F.B. is supported by the German Max Planck Society for
the Advancement of Science (MPG). C.C. acknowledges
Fondazione CARIPLO for financial support.

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987); S. John, ibid.
58, 2486 (1987).

2A. Yu. Sivachenko, M. E. Raikh, and Z. V. Vardeny, Phys. Rev.
A 64, 013809 (2001).

3N. Eradat, A. Y. Sivachenko, M. E. Raikh, Z. V. Vardeny, A. A.
Zakhidov, and R. H. Baughman, Appl. Phys. Lett. 80, 3491
(2002).

4R. Schmidt-Grund, B. Rheinlinder, C. Czekalla, G. Benndorf, H.
Hochmut, A. Rahm, M. Lorenz, and M. Grundmann, Superlat-
tices Microstruct. 41, 360 (2007); R. Schmidt-Grund, B. Rhei-
nldnder, C. Czekalla, G. Benndorf, H. Hochmuth, M. Lorenz,
and M. Grundmann, Appl. Phys. B: Lasers Opt. 93, 331 (2008);
C. Sturm, H. Hilmer, R. Schmidt-Grund, C. Czekall, J. Sell-
mann, J. Lenzner, M. Lorenz, and M. Grundmann, J. Vac. Sci.
Technol. B 27, 1726 (2009).

SM. V. Erementchouk, L. I. Deych, and A. A. Lisyansky, Phys.
Rev. B 73, 115321 (2006).

6S. Nojima, Phys. Rev. B 59, 5662 (1999).

’D. Gerace and L. C. Andreani, Phys. Rev. B 75, 235325 (2007).

8L. C. Andreani, in Electron and Photon Confinement in Semicon-
ductor Nanostructures, edited by B. Deveaud, A. Quattropani,
and P. Schwendimann (IOS Press, Amsterdam, 2003), p. 105.

9C. Martijn de Sterke and J. E. Sipe, Prog. Opt. 33, 203 (1994).

10C. Ciuti, P. Schwendimann, B. Deveaud, and A. Quattropani,
Phys. Rev. B 62, R4825 (2000); C. Ciuti, P. Schwendimann, and

A. Quattropani, Semicond. Sci. Technol. 18, S279 (2003).

I'E. Médard et al., Photonics Nanostruct. Fundam. Appl. 7, 26
(2009).

1217, Ozgijr, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S.
Dogan, V. Avrutin, S.-J. Cho, and H. Morkog, J. Appl. Phys. 98,
041301 (2005).

13S. F. Chichibu, T. Ohmori, N. Shibata, and T. Koyama, Appl.
Phys. Lett. 88, 161914 (2006).

14K Hazu, T. Sota, S. Adachi, Sf. Chichibu, G. Cantwell, D. C.
Reynolds, and C. W. Litton, J. Appl. Phys. 96, 1270 (2004).

ISW. Zhang, H. Wang, K. S. Wong, Z. K. Tang, G. K. L. Wong,
and R. Jain, Appl. Phys. Lett. 75, 3321 (1999).

1A, E. Kozhekin, G. Kurizki, and B. A. Malomed, Phys. Rev.
Lett. 81, 3647 (1998); T. Opatrny, B. A. Malomed, and G. Kur-
izki, Phys. Rev. E 60, 6137 (1999); E. V. Kazantseva and A. 1.
Maimistov, Phys. Rev. A 79, 033812 (2009).

17A. Kavokin et al., Microcavities (Oxford University Press, Ox-
ford, UK, 2007).

18P G. Savvidis, J. J. Baumberg, R. M. Stevenson, M. S. Skolnick,
D. M. Whittaker, and J. S. Roberts, Phys. Rev. Lett. 84, 1547
(2000); R. M. Stevenson, V. N. Astratov, M. S. Skolnick, D. M.
Whittaker, M. Emam-Ismail, A. I. Tartakovskii, P. G. Savvidis,
J. J. Baumberg, and J. S. Roberts, ibid. 85, 3630 (2000).

19See the focus issue on slow light, Nat. Photonics 2, 447 (2008).

121306-4



