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The photovoltaic effect induced by terahertz radiation in a gated two-dimensional electron gas in magnetic
field is considered theoretically. It is assumed that the incoming radiation creates an ac voltage between the
source and the gate and that the gate length is long compared to the damping length of plasma waves. In the
presence of pronounced Shubnikov-de Haas �SdH� oscillations, an important source of nonlinearity is the
oscillating dependence of the mobility on the ac gate voltage. This results in a photoresponse oscillating as a
function of magnetic field, which is enhanced in the vicinity of the cyclotron resonance, in accordance with
recent experiments. Another smooth component of the photovoltage, unrelated to SdH oscillations, has a
maximum at cyclotron resonance.
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The two-dimensional �2D� gated electron gas in a field
effect transistor can be used for generation1 and detection2 of
terahertz radiation, and both effects were demonstrated
experimentally.3–7 Concerning the detection, the idea is that
the nonlinear properties of the electron fluid will lead to the
rectification of ac induced in the transistor channel by the
incoming radiation. As a result, a photoresponse in the form
of a dc voltage between source and drain appears, which is
proportional to the radiation intensity �photovoltaic effect�.
Obviously some asymmetry between the source and the
drain is needed to induce such a voltage.

There may be various reasons of such asymmetry. One of
them is the difference in the source and drain boundary con-
ditions. Another one is the asymmetry in feeding the incom-
ing radiation, which can be achieved either by using a special
antenna or by an asymmetric design of the source and drain
contacts with respect to the gate contact. Thus, the radiation
may predominantly create an ac voltage between the source
and the gate. Finally, the asymmetry can naturally arise if a
dc is passed between source and drain, creating a depletion
of the electron density on the drain side of the channel.

The photoresponse can be either resonant, corresponding
to the excitation of the discrete plasma oscillation modes in
the channel, or nonresonant if the plasma oscillations are
overdamped.2 Both nonresonant5 and resonant6,7 detections
were demonstrated experimentally. A practically important
case is that of a long gate, such that the plasma waves ex-
cited by the incoming radiation at the source cannot reach
the drain side of the channel because their damping length is
smaller than the source-drain distance. Within the hydrody-
namic approach the following result for the photoinduced
voltage �U was derived for this case:2

�U =
1

4

Ua
2

U0
f���, f��� = 1 +

2��

�1 + ����2
, �1�

where � is the radiation frequency; � is the momentum re-
laxation time; Ua is the amplitude of the ac modulation of the
gate-to-source voltage by the incoming radiation; and U0 is
the static value of the gate-to-channel voltage swing U,

which is related to the electron density n in the channel by
the plane capacitor formula

en = CU . �2�

Here, e is the elementary charge and C is the gate-to-channel
capacitance per unit area. Equation �2� is applicable if the
scale of the variation in the potential in the channel is large
compared to the gate-to-channel separation.

Recently, the first experiments on the photovoltaic effect
at terahertz frequencies in a gated high mobility two-
dimensional electron gas in a magnetic field were
performed.8,9 The main new results are �i� the photoinduced
dc drain-to-source voltage exhibits strong oscillations as a
function of magnetic field, similar to the Shubnikov-de Haas
�SdH� resistance oscillations, and �ii� the oscillation ampli-
tude strongly increases in the vicinity of the cyclotron reso-
nance.

In this Rapid Communication we consider theoretically
the photovoltaic effect in a gated electron gas in a magnetic
field assuming, as in Ref. 2, that the incoming radiation cre-
ates an ac voltage between the source and the drain. Further,
in accordance with the experimental conditions, we assume
that �1� the source-drain length L �x direction� is greater than
the plasma-wave damping length, so that the plasma waves
excited near the source do not reach the drain, and �2� the
sample width W in the y direction is much greater than L �see
Fig. 1�. The first assumption means that the boundary condi-
tions at the drain are irrelevant and, as far as plasma waves
are concerned, the sample can be considered to be infinite in
the x direction. The second one implies a quasi-Corbino ge-
ometry �all variables depend on the x coordinate only�. We
explain the observed strongly oscillating photoresponse as
being due to the nonlinearity originating from the oscillating
dependence of the mobility on the Fermi energy, and hence
on the ac part of the gate voltage.

The photovoltaic effect is due to a radiation-induced force
G driving the electron current. Without magnetic field, G is
obviously directed in the x direction and is compensated by
the appearance of an electric field. In the presence of mag-
netic field the problem becomes more subtle, not only be-
cause in this case G has a y component, but also because this
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radiation-induced force becomes nonpotential: curl G�0.
The nonpotential part will drive an electric current along
closed loops.

The significance of the cyclotron resonance for the pho-
tovoltaic effect is related to the well-known dispersion rela-
tion for plasma waves in a magnetic field.10 For gated two-
dimensional electrons it reads

� = ��c
2 + s2k2, �3�

where �c is the cyclotron frequency, s is the plasma-wave
velocity, and k is the wave vector. Thus, the plasma waves
can propagate only if �c��. In the opposite case the wave
vector becomes imaginary, so that the plasma oscillations
rapidly decay away from the source. The change in regime
when the magnetic field is driven through its resonant value
will manifest itself in the photoresponse.

Following Refs. 1 and 2 and other theoretical work, we
will use the hydrodynamical approach because, like the
Drude equation, it provides a relatively simple description
compared to the full kinetic theory. However it should be
understood that, at low temperatures at which the
experiments8,9 were done, this approach strictly speaking is
not justified because the collisions between electrons are
strongly suppressed by the Pauli principle. Nevertheless, the
qualitative physical results derived from the kinetic equation
and from the hydrodynamic equations are usually similar,
e.g., the properties of plasma waves are identical in both
approaches, provided that the plasma-wave velocity s is
greater than the Fermi velocity, so that the Landau damping
can be neglected.11 For this reason, we leave the much more
complicated approach based on the kinetic equation for fu-
ture studies.

The electrons in a gated 2D channel can be described by
the following equations:

�v
�t

+ �v · ��v = −
e

m
� U +

e

mc
B � v − �v , �4�

�U

�t
+ div�Uv� = 0, �5�

where v is the electron drift velocity, B is the magnetic field
along the z direction, m is the electron effective mass, and

�=1 /�. The parameter � is an oscillating function of the
electron concentration �or gate voltage� and magnetic field,
which results in the SdH oscillations.

Equation �4� is the Euler equation, taking account of the
Lorentz force and the damping due to collisions. It differs
from the conventional Drude equation only by the convec-
tive term �v ·��v. Equation �5� is the continuity equation
rewritten with the use of Eq. �2�.

The boundary condition at the source �x=0� is

U�0,t� = U0 + Ua cos �t , �6�

where � is the frequency of the incoming radiation and Ua is
the amplitude of the radiation-induced modulation of the
gate-to-source voltage. For a long sample, the boundary con-
dition at the drain is

v → 0, U → const for x → � . �7�

We will search for the solution of Eqs. �4� and �5� as an
expansion in powers of Ua,

v = v1 + v2, U = U0 + U1 + U2. �8�

Here, v1 and U1 are the ac components proportional to Ua,
which can be found by linearizing Eqs. �4� and �5� and v2
and U2 are the dc components, proportional to Ua

2 �we are not
interested in the second harmonic terms �Ua

2�. It is conve-
nient to introduce u=eU /m, ua=eUa /m, and the plasma-
wave velocity1 in the absence of magnetic field s=u0

1/2

= �eU0 /m�1/2.
To the first order in Ua, we obtain

�v1x

�t
+

�u1

�x
+ �cv1y + �v1x = 0, �9�

�v1y

�t
− �cv1x + �v1y = 0, �10�

�u1

�t
+ s2�v1x

�x
= 0, �11�

where �c=eB /mc is the cyclotron frequency. The boundary
conditions follow from Eqs. �6� and �7�: u1�0, t�
=ua cos��t� and u1�� , t�=0, v1�� , t�=0.

Searching for the solutions �exp�ikx− i�t�, we obtain the
dispersion equation for the plasma waves as

s2

�2k2 = 1 + i� −
	2

1 + i�
, �12�

where �= ����−1 and 	=�c /� is the magnetic field in units
of its resonant value for a given �. To ensure the boundary
condition at x→� the root with a positive imaginary part of
k should be chosen. If damping is neglected ��=0�, this
equation reduces to Eq. �3�. The explicit expressions for u1,
v1x, and v1y are easily obtained from Eqs. �9�–�11�.

In the second order in Ua, we find

du2

dx
+ �cv2y + �v2x + �v1x

�v1x

�x
� + ���u1v1x� = 0, �13�

�U

Ua Gate

DrainSource

U0

x

y

L

FIG. 1. Assumed design and geometry. The terahertz radiation
produces an ac voltage Ua between the source and the gate inducing
a dc source-drain voltage �U. The gate width W is much larger than
the gate length L �quasi-Corbino geometry�.
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− �cv2x + �v2y + �v1x
�v1y

�x
� + ���u1v1y� = 0, �14�

djx

dx
= 0, jx = v2x +

1

u0
�u1v1x� , �15�

where the angular brackets denote the time averaging over
the period 2
 /�. Here, we have expanded the function ��u�
to the first order in u1. The quantities � and ��=d� /du
should be taken at u=u0. The boundary conditions for Eqs.
�13�–�15� are u2�0�=0, v2x���=v2y���=0.

From Eq. �15� we derive the obvious fact that jx=0 �jx
differs from the x component of the true current density only
by a factor en�. Using this, and introducing the y component
of the current jy, by a relation similar to Eq. �15�, we can
rewrite Eqs. �13� and �14� as follows:

�cjy = Gx�x� −
du2

dx
, �jy = Gy�x� , �16�

where the additional driving force G�x� induced by the in-
coming radiation is given by

Gx = 	 �

u0
− ��
�u1v1x� +

�c

u0
�u1v1y� − �v1x

�v1x

�x
� , �17�

Gy = 	 �

u0
− ��
�u1v1y� −

�c

u0
�u1v1x� − �v1x

�v1y

�x
� . �18�

Both Gx and Gy depend on x as exp�−2k�x�, where k� is the
imaginary part of the wave vector defined by Eq. �12�, re-
flecting the decay of the plasma-wave intensity away from
the source. Thus, curl G�0.

One could solve Eqs. �16� to obtain the photoinduced
voltage �u=�0

��Gx− ��c /��Gydx and this would be the cor-
rect result for the true Corbino geometry, where the current
jy can freely circulate around the ring. However, we believe
that this is not correct for a finite strip, even if W�L, be-
cause in this case the current jy induced by the nonpotential
part of the driving force, Gy�x�, obviously must return back
somewhere, forming closed loops.12 How exactly this will
happen is not quite clear. In our model, the current loops are
likely to close through the source contact; however, in reality
the oppositely directed y current will probably flow in the
ungated part of the channel adjacent to this contact. Anyway,
since the current jy integrated over x must be zero �except
near the extremities�, we believe that the correct way is to
integrate the first of Eqs. �16�, taking this into account, and
to ignore the second one, which is not applicable beyond the
gated part of the channel. The integration interval should be
expanded to include the region where the current lines return
backward.

We have no rigorous proof that this idea is correct; how-
ever, we have checked that both methods give similar quali-
tative results �but differ in the exact form of the magnetic
field dependence of the photovoltage�.

As described above, we obtain �u=u2���,

�u = �
0

�

Gx�x�dx . �19�

Using Eqs. �17� and �19� we finally calculate the dc photo-
voltage �U=m�u /e, between drain and source induced by
the incoming radiation,

�U =
1

4

Ua
2

U0
� f�	� −

d�

dn

n

�
g�	�� . �20�

Here, we have separated the photoresponse in a smooth part
and in an oscillating part. The second one, proportional to
d� /dn, is an oscillating function of gate voltage or magnetic
field �d�xx /dn, where �xx is the longitudinal resistivity of
the gated electron gas.

Note that, even if the amplitude of the SdH oscillations is
small, the parameter �d�xx /dn��n /�xx� can be large, so that
the oscillating contribution may dominate.

The frequency and the magnetic field dependences of the
photovoltage are described by the functions f�	� and g�	�,
which are given by the following formulas:13

f�	� = 1 +
1 + F

��2 + F2
, �21�

g�	� =
1 + F

2 	1 +
F

��2 + F2
 , �22�

where F depends only on the ratio 	=�c /� and the dimen-
sionless parameter �= ����−1,

F =
1 + �2 − 	2

1 + �2 + 	2 . �23�

In the absence of magnetic field, 	=0, F=1, and Eq. �21�
reduces to Eq. �1�.

Figure 2 shows the behavior of the functions f�	� and
g�	� for several values of the parameter �. One can see that
for small values of � �or large ��� the smooth part displays
the cyclotron resonance with the unusual line shape f�	�
���1−	�2+�2−1/2. The envelope for the oscillating part,
g�	�, exhibits a fast decay beyond the cyclotron resonance
�	1�, confining the oscillations of the photovoltage to the
region 	�1.

To display the oscillating contribution, we take the param-
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FIG. 2. The functions f�	� �left� and g�	� �right� describing,
respectively, the smooth part and the envelope for the oscillating
part of the photovoltage. The values of the parameter �= ����−1 are
�1� 0.2, �2� 0.4, and �3� 0.8
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eter � in the conventional form,14 which is valid when the
SdH oscillations are small,

� = �0�1 − 4
�

sinh �
exp	−




�c�q

cos	2
EF

��c

� , �24�

where �=2
2kT /��c, �q is the “quantum” relaxation time,
and EF is the Fermi energy, which is proportional to the
electron concentration n, and hence to the gate voltage swing
U.

We introduce the parameter N=EF /��, which is the num-
ber of Landau levels below the Fermi level at cyclotron reso-
nance. Figure 3 presents the oscillating part of the photovolt-
age �the function −�d� /dn��n /��g�	� for �=0.1, �=0.7
�corresponding to T=4 K, �=2
�2.5 THz�, and ��q
=0.5 for two values of N.

In spite the crudeness of our model, which does not ac-
count for various features of the experimental situation �the
unavoidable presence of ungated parts of the channel, etc.�,
our results show a good agreement with the recent experi-
mental findings.9

In summary, we have calculated the photovoltage induced
in a gated electron gas by terahertz radiation in the presence
of the magnetic field. As a function of magnetic field, the
photoresponse contains a smoothly varying part and an os-
cillating part proportional to the derivative of the SdH oscil-
lations with respect to the gate voltage. The smooth part
shows an enhancement in the vicinity of the cyclotron reso-
nance.
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