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We investigate the anisotropic optical gain in non-c-plane InGaN quantum wells with 20% indium content
including band-gap renormalization and the screening of the quantum confined Stark effect. Waveguide modes
and their polarizations are determined as TE and TM modes or extraordinary and ordinary modes, depending
on the birefringence and the orientation of the laser diode’s ridge waveguide relative to the c axis. The band
structures and optical matrix elements along the polarization directions are calculated using a 6�6 k · p
Hamiltonian and a self-consistent Schrödinger-Poisson solver. From these calculations the reduced density of
states and the optical gain for the different polarizations are determined in the free-carrier picture with an ad
hoc inclusion of the band-gap renormalization and compared to a c-plane quantum well. It is found that for
high indium concentrations the gain can be significantly increased by going from the c plane to a semipolar or
a nonpolar crystal orientation. However, due to birefringence and composition of the topmost valence-band

wave function, the ridge has to be oriented along the �1̄1̄23� direction for semipolar and along the �0001�
direction for nonpolar laser diodes.
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I. INTRODUCTION

Violet and blue laser diodes made of InGaN show high
output powers and low threshold currents, and so they are
already commercially available in a range of applications.
However, a green InGaN cw-laser diode, which would be
desirable for applications such as laser projection, has not yet
been realized. To date, the longest lasing wavelength which
has been achieved with a c-plane InGaN laser diode is about
500 nm.1 One main problem with green laser diodes is the
quantum confined Stark effect �QCSE� due to the piezoelec-
tric and spontaneous polarization in the quantum wells
�QWs�. It becomes stronger with rising indium content be-
cause of the strain that comes with the increased lattice mis-
match. The QCSE draws the electron and the hole wave
functions apart from each other, decreasing the wave-
function overlap and thus the optical matrix elements which
enter the gain.2 A possible solution to this problem is to
reduce the QCSE by growing the laser diode on a different
crystal plane than the c plane.3 There have already been vari-
ous publications demonstrating optically and electrically
pumped light-emitting diode and laser structures on the

�112̄2� plane4,5 and other semipolar and nonpolar planes,6–8

even a fully functional nonpolar 499.8 nm diode laser9 and a
semipolar 531 nm diode laser10 have recently been demon-
strated. It is reported that these devices show a strong aniso-
tropy in their optical properties, which can be explained by a
microscopic analysis of the gain in semipolar and nonpolar
quantum wells. The anisotropic properties of the band struc-
ture in non-c-plane quantum wells have already been inves-
tigated theoretically.11,12 The present work analyzes the im-
pact of the anisotropy on the optical eigenmodes and the gain
in semipolar and nonpolar laser structures.

The semipolar crystal plane considered in this work is the
�112̄2� plane. Waveguides made of GaN alloys show
uniaxial birefringence with �n=ne−no�0.011no,13 with the
extraordinary direction along the c axis of the wurtzite crys-
tal. A � /2 plate for 470 nm made of a-plane GaN would
have to be about 9 �m thick, which is just a fraction of the
length of common diode laser waveguides. In a birefringent
semipolar waveguide, there are two principle directions that
affect the polarization of the optical eigenmodes: the c axis
of the wurtzite crystal and the growth axis of the waveguide.
Two possible structures have to be distinguished: the ridge
waveguide can be oriented either parallel or perpendicular to
the projection of the c axis in the QW plane �see Fig. 1�,
pointing along the �1̄1̄23� or the �11̄00� direction, respec-
tively. For the first possibility, the ordinary and the extraor-
dinary directions perpendicular to the propagation direction
match the TM- and the TE-polarization directions and so TE
and TM modes exist, with polarizations perpendicular and
parallel to the growth axis, respectively. For ridge
waveguides on semipolar substrates with a ridge orientation
parallel to the projection of the c axis, laser facets have to be
formed by etching.6 The alternative direction offers the pos-
sibility to cleave facets, but the extraordinary direction is
then rotated in a plane perpendicular to the propagation di-
rection, causing optical modes different from TE and TM,
with polarizations parallel and perpendicular to the c axis.
The shapes and polarizations of these modes are calculated
in this work using a 4�4 transfer-matrix method from14

which is described in Appendix A. Polarizations have to be
considered when calculating the optical gain, as they deter-
mine the direction of the relevant momentum matrix ele-
ments. It has to be pointed out that a calculation of TE and
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TM optical gain does not make sense in a laser diode struc-
ture that does not show TE and TM modes, and we show
later in this work �see Sec. III C� why a projection of TE and
TM optical gain on the photon polarization direction is not
correct.

As a consequence of using a semipolar or a nonpolar sub-
strate, the band structure does no longer have rotational sym-
metry in the QW plane, so all relevant quantities depend on
both the wave number k� and the in-plane angle �
=arctan�ky� /kx�� of electrons and holes. It is thus necessary for
determining the gain to integrate over k� and �, which adds
considerable numerical effort to the calculation.

II. EIGENMODES OF A BIREFRINGENT WAVEGUIDE

In a c-plane laser diode, the extraordinary direction is
perpendicular to the growth plane. The eigenmodes of the
electric field in these diodes are called TE or TM, with po-
larization perpendicular or along the c axis, respectively.
However, if a waveguide structure is grown on a different
plane of the wurtzite crystal and a ridge is formed perpen-
dicular to the extraordinary direction, then there is a compe-
tition between the transversal refractive index profile, which
favors polarizations parallel or perpendicular to the growth
plane, and the optical anisotropy, which pulls the polarization
of the modes into the ordinary and the extraordinary direc-
tions intrinsic to the crystal. This is the case for the ridge

orientation along the �11̄00� direction, which is treated in
this section. The eigenmodes of such a birefringent wave-
guide were called “supermodes” in Ref. 14. However, it ap-
pears that this term is also used for arrays of phase-locked
filaments,15 so we avoid it here.

A. Laser diode structure

Figure 2 shows the structure of the waveguide, which is
formed by a 200 nm thin GaN film with GaN/InGaN active

zone and AlGaN electron blocking layer between two AlGaN
cladding layers, and the coordinate system for the wave-
guide. Table I contains the thicknesses of the individual lay-
ers of the simulated diode structure. To reduce the numerical
effort, the active layer with three InGaN QWs and GaN spac-
ing layers is treated as one layer with averaged refractive
index. The thickness of the three quantum wells is 3 nm and
the spacing between them is 7 nm. The z� axis points along
the growth direction and the wave propagates along the y�
direction. In the x�-z� plane lies the c axis, which is tilted by
the crystal angle �=58° with respect to the growth direction,

so the waveguide plane corresponds to the �112̄2� crystal
plane. The film extends to infinity in the x�-y� plane. Primed
coordinates are used here because the unprimed ones will be
used for the crystal directions in the description of the quan-
tum well �Sec. III�. We emphasize that the detailed structure
of the laser diode is uncritical. Even a single 200 nm GaN
waveguide shows the discussed effect. The dielectric tensor
� for this structure is obtained by rotating the dielectric ten-
sor of a c-plane structure by the crystal angle �=58° around
the y� axis as follows:

� = UT�no
2 0 0

0 no
2 0

0 0 ne
2�U ,

U = � cos��� 0 sin���
0 1 0

− sin��� 0 cos���
� . �1�

TABLE I. Layer thicknesses and materials for the simulated
diode structure.

Layer Material
Thickness

�nm�

p cladding Al0.05Ga0.95N 600

p waveguide GaN 50

Electron blocker Al0.2Ga0.8N 5

Spacer GaN 25

Active layer GaN / In0.2Ga0.8N 30

n waveguide GaN 90

n cladding Al0.05Ga0.95N 1000
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FIG. 1. �Color online� Ridge geometries and crystal orientations

of two possible realizations of a laser structure on the �112̄2� plane
�indicated by the transparent plane on the crystal images�. �a� ridge

along �1̄1̄23� and �b� ridge along �11̄00�.
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FIG. 2. Waveguide structure with coordinate system.
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B. Refractive indices

For the simulation one needs both the ordinary and the
extraordinary refractive indices of the considered materials at
the desired wavelength. Refractive index data for GaN films
on different substrates are available from experiments using
spectroscopic ellipsometry13 and polarized reflectance
spectroscopy.16 In Refs. 17 and 18, a prism coupling method
and spectroscopic transmittance and reflectance measure-
ments were used to obtain refractive indices of the alloys
AlGaN with Al contents of 0, 0.144, and 0.234 �higher Al
contents are not relevant for this work� and InGaN with an In
content of �0.1.

Although fits to the experimental values for a limited
range of wavelengths were provided for the GaN and the
AlGaN data, they are not sufficient to describe the desired
waveguide structure, as values were given only for a few
alloy compositions without a rule to interpolate between
them. Instead, a theoretical model for AlGaN and InGaN
alloys for the ordinary refractive index from Ref. 19 is used
for the simulation. The optical anisotropy is taken into ac-
count by using the relative anisotropy �n /no of the materials
from the mentioned references for the alloys. Table II shows
the values that are used for the refractive indices.

C. Eigenmodes and polarizations

Waveguide modes are calculated using the method de-
scribed in Appendix A for a wavelength of 470 nm. The
results for the fundamental mode �the one with the highest

effective index of refraction� and the first mode perpendicu-
lar to the fundamental one are shown in Figs. 3 and 4. It is
found that the eigenmodes of this anisotropic waveguide are
not TE and TM modes polarized in the x� and the z� direc-
tions, respectively, like in the nonbirefringent case. Instead,
their average polarization approximately points along the or-
dinary or the extraordinary direction of the crystal in the
x�-z� plane, so in the following they will be called extraor-
dinary and ordinary modes. The effective indices of refrac-
tion for these two modes are neff=2.466 for the extraordinary
and neff=2.432 for the ordinary mode. In both cases the x�
and the z� components are real valued functions, so the
modes are linearly polarized. Small discontinuities in the z�
component at the borders of the GaN layer lead to a step in
the angle 	�=arctan�Ex� /Ez��. The polarization of the mode
is nearly aligned to the ordinary or the extraordinary direc-
tion in the waveguide layer with a maximum deviation of
about 2°. Furthermore, there is a small longitudinal compo-
nent Ey� which is imaginary.

The most important is the polarization angle inside the
active region, which deviates by some degrees from the crys-
tal directions, depending on the thicknesses of the layers.
However, in order to get a description that is independent of
the specific form of the waveguide, we use the ordinary and
the extraordinary directions as mode polarizations in our
gain calculation, which is an acceptable approximation.

D. Variation of the anisotropy

It has already been pointed out in Ref. 14 that if the sym-
metry of the dielectric tensor is different from the symmetry
prescribed by the growth of the epitaxial layers, then new
eigenmodes are established which are tilted with respect to
the TE and TM orientation. This tilt is determined by the
strength and orientation of the anisotropy. Such a behavior
has been measured for ordered GaInP/AlGaInP quantum well
structures in Ref. 20. In that case, birefringence was induced
by ordering effects and �n /no was smaller than 0.003. For
AlGaN/GaN waveguides the relative anisotropy is higher,
about �n /no=0.011, which almost completely pulls the
modes into the ordinary and the extraordinary directions.

TABLE II. Refractive indices of the materials used in the
calculation.

Material no ne

Al0.05Ga0.95N 2.424 2.461

Al0.2Ga0.8N 2.341 2.376

GaN 2.454 2.481

In0.2Ga0.8N 2.821 2.883
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FIG. 3. �Color online� Electric field compo-
nents of the extraordinary mode of the semipolar
waveguide and angle 	�=arctan�Ex� /Ez�� as a
function of z� near the waveguide layer �y� com-
ponent divided by the complex unit�. The dashed
line indicates the extraordinary direction.
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In order to see the influence of the strength of the aniso-
tropy, a factor 
 is introduced in the calculation, which illus-
trates the transition from isotropic �
=0� to strong aniso-
tropic behavior �
=1�. In this calculation, only a GaN
waveguide without an electron blocking layer and an active
region is considered to reduce the numerical effort. The ex-
traordinary refractive indices are set to 
ne+ �1−
�no.
Figure 5 shows the average angle

	avg� =� dz� E� �z��2	��z��/�� dz� E� �z��2�

of the mode as a function of 
 for two different waveguide
thicknesses. A transition from TE and TM modes to extraor-
dinary and ordinary modes takes place in the range of 
=0 to

=0.2. This means that, already at 20% of the anisotropy of
GaN, the modes point almost exactly along the crystal direc-
tions. If the waveguide layer’s thickness is changed to 100
nm, the pull into the crystal directions is even stronger. Note
that in the bulk case �layer thickness of 0 or ��, the modes
point exactly along the crystal directions for arbitrarily weak
anisotropy, as these are the only specified directions in the
absence of a layer border.

III. GAIN CALCULATION

In order to calculate the gain of a semipolar quantum
well, one has to determine the band structure, the electron
and hole wave functions depending on the in-plane wave
vector, and the band-gap renormalization for different
charge-carrier densities. To do so we use a 6�6 k · p
valence-band Hamiltonian and we solve the Schrödinger and
Poisson equations self-consistently to account for the screen-
ing of the QCSE by the charge carriers.

A. Coordinate systems

Our description of the semipolar quantum well follows
the notation of Ref. 12: primed coordinates correspond to the

directions in the quantum well coordinate system, while
unprimed ones correspond to the crystal directions. So x� and
y� are in the QW plane, z� points along the growth direction,
whereas z points along the c axis and x ,y point along the

�112̄0� and the �11̄00� directions, respectively �see Fig. 6�.
The y axis is chosen as the rotation axis to obtain a descrip-

tion for the semipolar and nonpolar planes. For the �112̄2�
plane the crystal angle �the angle between the c axis and the
growth direction� is �=58°. Setting �=90° corresponds to

the nonpolar �112̄0� a plane. The unprimed coordinates are
then related to the primed ones via the rotation matrix from
Eq. �1�,

�x

y

z
� = U�x�

y�

z�
� . �2�

0.0 0.5 1.0 1.5
�0.4

�0.2

0.0

0.2

0.4

z' �µm�

E
y'
�a

.u
.�

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

z' �µm�

E
x'
�a

.u
.�

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

z' �µm�

E
z'
�a

.u
.�

0.60 0.65 0.70 0.75 0.80
30

31

32

33

z' �µm�

Α
'�

°�

FIG. 4. �Color online� Electric field compo-
nents of the ordinary mode of the semipolar
waveguide and angle 	� as a function of z� near
the waveguide layer �y� component divided by
the complex unit�. The dashed line indicates the
ordinary direction.
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FIG. 5. Average angle 	avg� of both modes as a function of the
anisotropy factor for a waveguide thickness of 200 nm �black lines�
and 100 nm �gray lines�
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B. Valence-band and conduction-band Hamiltonian

The band structure of an InGaN crystal in the vicinity of
the � point can be described by a k · p ansatz using the fol-
lowing six basis states:

	U1
 = −
1
�2

�	Px↑
 + i	Py↑
� ,

	U2
 =
1
�2

�	Px↑
 − i	Py↑
� ,

	U3
 = 	Pz↑
 ,

	U4
 =
1
�2

�	Px↓
 − i	Py↓
� ,

	U5
 = −
1
�2

�	Px↓
 + i	Py↓
� ,

	U6
 = 	Pz↓
 .

The 6�6 valence-band Hamiltonian for the bulk crystal is
then21,22

Hv�kx,ky,kz� =�
F − K� − H� 0 0 0

− K G H 0 0 �

− H H�  0 � 0

0 0 0 F − K H

0 0 � − K� G − H�

0 � 0 H� − H 

� ,

�3�

where

F = �cr +
�so

3
+  + � ,

G = �cr −
�so

3
+  + � ,

 =
�2

2m0
�A1kz

2 + A2�kx
2 + ky

2�� + �,

� =
�2

2m0
�A3kz

2 + A4�kx
2 + ky

2�� + ��,

K =
�2

2m0
A5�kx + iky�2 + D5��xx − �yy� ,

H =
�2

2m0
A6�kx + iky�kz + D6�xz,

� = D1�zz + D2��xx + �yy� ,

�� = D3�zz + D4��xx + �yy� ,

� =
�2

3
�so.

The valence-band effective-mass parameters Ai, the deforma-
tion potentials Di �i=1–6�, the splitting energies �cr and �so,
and all other physical parameters appearing in the following
are taken from Ref. 22. The strain coefficients �ij are calcu-
lated from a model given in Ref. 3

�xx = �xx
�0� + �xz tan � , �4�

�yy = �xx
�0�, �5�

�zz = �zz
�0� + �xz cot � , �6�

�xz = −
��c11�xx

�0� + c12�xx
�0� + c13�zz

�0��sin2 � + �2c13�xx
�0� + c33�zz

�0��cos2 �cos � sin �

c11 sin4 � + 2�c13 + 2c44�sin2 � cos2 � + c33 cos4 �
, �7�

FIG. 6. Definition of crystal angle and coordinates �Ref. 12�.
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with �xx
�0�= �as−ae� /ae and �zz

�0�= �cs−ce� /ce. All other strain
coefficients are zero and thus they are omitted in the Hamil-
tonian. as ,cs ,ae ,ce are the lattice constants of the substrate
and the quantum well, respectively, and cij are the elastic
constants of In0.2Ga0.8N. For the conduction band, the basis
states are 	S↑
 and 	S↓
 and the bulk Hamiltonian has the
form22

Hc�kx,ky,kz� = Ec +
�2�kx

2 + ky
2�

2m�

+
�2kz

2

2m�

+ ac1�zz + ac2��xx + �yy� , �8�

where

Ec = Eg + �cr + �so/3,

ac1 = a1 + D1,

ac2 = a2 + D2.

In order to describe a non-c-plane quantum well, we have to
go from the unprimed to the primed coordinates by inserting
the vector k�� rotated with the matrix U from Eq. �1� for k� into
both Hamiltonians. Furthermore, we consider quantum con-
finement in the envelope approximation23 by adding a rect-
angular potential VQW,v/c�z�� and substituting kz� by −i d

dz�
. The

band offset ratio �Ev /�Ec is taken as 0.2/0.8 from Ref. 24.
Finally, the electric potential �p�z�� that is generated by the
piezoelectric and spontaneous polarization must also be con-
sidered. With these additional terms, the Schrödinger equa-
tions for valence- and conduction-band electrons are

�Hv� d

dz�
� + Vv�z����� v

�n��z�� = Ev
�n��� v

�n��z�� , �9�

�Hc� d

dz�
� + Vc�z����c

�n��z�� = Ec
�n��c

�n��z�� , �10�

with Vv/c�z��=VQW,v/c�z��+�p�z��.
Here, �� v

�n��z�� is a vector function whose components are
the coefficients of the six valence-band basis states and n is
the subband index

�� v
�n��z�� � �v,1

�n��z���−
1
�2

�	Px↑
 + i	Py↑
�� + �v,2
�n��z��

�� 1
�2

�	Px↑
 − i	Py↑
�� + ¯ + �v,6
�n��z��	Pz↓
 .

�11�

The conduction band is spin degenerate, so the scalar wave
function �c

�n��z�� is the same for spins up and down. Both
wave functions also depend on the wave number k� and the
in-plane angle �=arctan�ky� /kx��, but these additional indices
have been omitted to simplify the notation. These
Schrödinger equations are solved numerically using a Fou-
rier expansion method described in Appendix B. Figure 7
shows calculated band structures for the topmost valence
bands in a 3 nm In0.2Ga0.8N quantum well with c-plane,

semipolar �112̄2�, and nonpolar �112̄0� crystal orientations.

It becomes clear that for a non-c-plane crystal orientation the
in-plane energy dispersion relation is anisotropic. To calcu-
late the gain, it is thus necessary to know the band structure
not only along two directions, but for the whole kx� , ky�
plane. Examples for the in-plane energy dispersion relation
of the valence subbands can be seen in Fig. 8.

C. Transition matrix element

As mentioned before, it is possible to create ridge
waveguides on semipolar crystal planes that do not show TE
and TM modes due to the optical anisotropy. To see how this
anisotropy enters the gain calculation, one has to take a look
at the derivation of the transition matrix element. The general
Hamiltonian �without k · p approximation� for a semiconduc-
tor in a monochromatic electric field is

�������
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FIG. 7. Topmost valence bands in a 3 nm In0.2Ga0.8N quantum
well for different crystal orientations at a sheet-carrier density of
7�1012 cm−2. Subbands that correspond to different bulk valence
bands have been labeled A and B.
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H =
�p� − eA� �2

2m0
+ Vcrystal + VQW + �p

=
p�2

2m0
+ Vcrystal + VQW + �p

−
e

2m0
�A� · p� + p� · A� �

Hint

+ o�A� 2�
omitted

.
Ho

�12�

Here, Vcrystal is the periodic crystal potential, VQW is the step
potential of the quantum well, and �p is the static electric
potential. The terms labeled with H0 are approximated by our
k · p Hamiltonian, the interaction term Hint is treated as a
perturbation, and the A� 2 term is omitted as usual. For the
gain calculation, we need to find a simple expression for the
transition matrix elements �i	Hint	f
. First of all, the vector
potential A� can be expressed in terms of the electric field. In
an appropriate gauge we have E� =− �

�tA� ,

E� �r�,t� = �
m

E� �m���r��ei�t + E� �m��r��e−i�t,

A� �r�,t� = �
m

1

i�
�E� �m��r��e−i�t − E� �m���r��ei�t� , �13�

where we have used that the electric field is monochromatic
and a superposition of eigenmodes that evolve with e�i�t. It
can be seen from Eq. �13� that the interaction Hamiltonian
decomposes to separate terms for each mode. We can thus
reduce our notification to one mode, omitting the mode index
m from now on. Let Nph be the number of photons in the
mode, then the normalization of the mode function is found
by the condition

��Nph =
1

2
� d3r�0E� �r�,t� · ��r�� · E� �r�,t� +

1

2
� d3r

1

�0
B� 2�r�,t� .

�14�

The time dependence of the energy in Eq. �14� must vanish
and if we assume that the time average of the magnetic en-
ergy is the same as the electric energy, we can simplify the
integral on the right-hand side to

��Nph = �� d3r�0E� �r�,t� · ��r�� · E� �r�,t��
T

= 2� d3r�0R�E���r�� · ��r�� · E��r���

� 2�0nef f
2 � d3r	E��r��	2, �15�

where �¯ 
T denotes the time average and the dielectric ten-
sor is approximated by the effective index of refraction nef f

2 .
The next step is to introduce the dipole approximation, ne-
glecting the spatial dependence of the vector potential in the
quantum well region. Therefore, the intensity inside the
quantum well is averaged as

	E�avg	2 =
1

Ad
�

QW

d3r	E��r��	2 =
1

Ad
�

��Nph

2�0nef f
2 �16�

with the area A and thickness d of the quantum well and the
confinement factor

� =
�QWd3r	E��r��	2

�d3r	E��r��	2
. �17�

The average value of the mode function in the quantum well
is then given as

E�avg = a�� 1

Ad
�

��Nph

2�0nef f
2 . �18�

Here, a� is a unit vector pointing along the average polariza-
tion direction of the mode in the quantum well. Inserting this
result for the electric field into the vector potential yields the
following expression for the interaction Hamiltonian:

FIG. 8. �Color online� In-plane energy dispersion relation for
valence subbands A1 �top� and B1 �bottom� in a semipolar 3 nm
In0.2Ga0.8N quantum well at a sheet-carrier density of 7
�1012 cm−2. The energy spacing is 10 meV per solid line.
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Hint =
e

m0
�a� · p��� 1

Ad
�

��Nph

2�0nef f
2

1

i�
�ei�t − e−i�t� . �19�

The two terms of this interaction Hamiltonian correspond to
the stimulated emission and the absorption. Finally, the tran-
sition matrix element for the stimulated emission is

	�i	Hint
SE	f
	2 =

e2

m0
2 	�i	a� · p� 	f
	2�

1

Ad

�Nph

2�0nef f
2 �

. �20�

It can be seen from this expression that the momentum ma-
trix elements have to be oriented along the polarization di-
rection of the mode. Using this transition matrix element,
one can calculate the modal gain for a specific quantum well
and waveguide structure. If one is interested in the material
gain for a quantum well, one can divide the transition matrix
element by the confinement factor, as modal and material
gain are related to each other via

Gmodal���� = �Gmaterial���� . �21�

The momentum matrix elements 	�i	a� · p� 	f
�k� ,��	2 depend
on the wave number k� and the in-plane angle � of the states
i , f . They are calculated by multiplying the absolute squared
overlap integral of the corresponding wave-function compo-
nents with the momentum matrix element energy Ep, which
can be looked up in Ref. 22, times m0 /2. One can identify
the contributing valence-band wave-function components
with the following rule:

�S	px	Px
 = �S	py	Py
 = P�, �22�

�S	pz	Pz
 = P� , �23�

with 	P�/�	2=Ep�/�m0 /2. All other combinations of momen-
tum operator px,y,z and basis state 	Px,y,z
 vanish. For the
choice of basis states made in Sec. III B, the matrix elements
along the crystal directions are, for conduction-band spin-up
states �see Eq. �11��

�i	px	f
 = P��− ��c	�v,1
 + ��c	�v,2
� , �24�

�i	py	f
 = P��i��c	�v,1
 + i��c	�v,2
� , �25�

�i	pz	f
 = P���c	�v,3
 , �26�

and for conduction-band spin-down states

�i	px	f
 = P����c	�v,4
 − ��c	�v,5
� , �27�

�i	py	f
 = P��i��c	�v,4
 + i��c	�v,5
� , �28�

�i	pz	f
 = P���c	�v,6
 , �29�

with the componentwise overlap integral

��c	�v,j
 =� dz� �c
��z���v,j�z�� , �30�

where �v,j means the jth component of the �valence-band�
wave function �� v of the final state 	f
 and �c is the
�conduction-band� wave function of the initial state 	i
.

Again, the dependencies of the wave functions, and thus the
overlap integrals, on the in-plane wave vector have been
omitted to simplify the notation. The absolute squared matrix
element for an arbitrary photon polarization vector a� in the
x-z plane �a� =sin 	e�x+cos 	e�z, where 	 is the angle to the c
axis� can then be calculated �for a conduction-band spin-up
state� as follows:

	�i	a� · p� 	f
	2 = 	�i	sin 	px + cos 	pz	f
	2 = 	�i	sin 	px	f


+ �i	cos 	pz	f
	2 = sin2 		P�	2	��c	�v,1


− ��c	�v,2
	2 + cos2 		P�	2	��c	�v,3
	2

− 2 sin 	 cos 	R�P�P�
���v,3	�c
 · ���c	�v,1


− ��c	�v,2
�� . �31�

In order to calculate the transition matrix elements for the
extraordinary and the ordinary modes of the semipolar wave-
guide, 	 is set to 0° or 90°, respectively. For the TM mode of
the semipolar waveguide, we set 	=−58°, as this mode is
not polarized parallel to a crystal direction but to the growth
axis which corresponds to the z� direction, whereas for the
TE mode the py-matrix element has to be used. Equation �31�
shows that the absolute squared matrix element for a specific
polarization direction, which enters the gain calculation, can-
not be calculated out of the absolute squared matrix elements
for other directions due to the last term on the right-hand
side. Consequently, the gain spectrum for a specific polariza-
tion can generally not be calculated out of the gain spectra
for other polarizations. In particular the gain on the extraor-
dinary and ordinary modes is not just an intermediate value
between TE and TM optical gain.

D. Self-consistent electric field

In order to determine the band structure and the wave
functions in the quantum well, we need to know the electric
potential �p�z��. InGaN/GaN heterostructures show both
strain-induced and spontaneous polarization. The z� compo-
nents of the polarizations for the quantum well and the bar-
rier layer are3

Pz�
�QW� = Psp

�QW� cos � + �2d15c44�xz�sin � + ��d31�c11 + c12�

+ d33c13���xx + �yy� + �2d31c13 + d33c33��zzcos � ,

�32�

Pz�
�b� = Psp

�b� cos � . �33�

Here, Psp
�QW/b� denote the spontaneous polarizations of the

QW and the barrier layer and dij denote the piezoelectric
constants. The spontaneous polarization for the quantum well
is calculated using a bowing parameter for InGaN from Ref.
25. An electric field arises from the discontinuities of the
polarization at the borders of the quantum well,

Ez� =
Pz�

�b� − Pz�
�QW�

��0
. �34�

Here, � is the material’s static dielectric constant and �0 is
the permittivity in vacuum. Figures 9�a� and 9�b� show the
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components of the polarization and the electric field for a 3
nm In0.2Ga0.8N quantum well depending on the crystal angle
�. Using the parameters from Ref. 22, we do not observe a
zero in the electric field at an angle of about 58° like in other
publications on this topic �see Ref. 21, for example�. This
finding is supported by a recent experimental study,26 which
also indicates that the electric field does not change sign at
an angle between 0° and 90°. The internal field causes the
quantum confined Stark effect, narrowing the band gap and
drawing the electron and hole wave functions apart from
each other �see Fig. 9�c��. Thereby, the wave-function over-
lap and thus the optical matrix elements are reduced, result-
ing in a worse optical gain for devices that are affected by
strong internal fields. However, simply inserting this electric
field into the Schrödinger equations �9� and �10� gives wrong

results. As stressed in Ref. 27, the screening of the electric
field by the charge carriers has to be considered in light-
emitting GaN/InGaN devices. We thus use the following
self-consistent approach: the wave functions are calculated
using the potential that arises from the polarization disconti-
nuities and the resulting charge distribution is then included
into an improved potential, which is then used to calculate
the wave functions again. This calculation is repeated until
the potential becomes stationary.

First, we set �p�z��=eEz�z� and determine the wave func-
tions of the highest valence band and the lowest conduction
band at the � point. Then we integrate the Poisson equation
to get the electric potential that is caused by the charge-
carrier distribution

��z�� = nce�	�� v�z��	2 − 	�c�z��	2� ,

���z�� = −
1

��0
�

−�

z�
d��

−�

�

d������� , �35�

where nc is the two-dimensional charge-carrier density.
Under-relaxation must be used to achieve convergence for
high charge-carrier densities. The new potential is then

�new = �old + r�� �36�

with the under-relaxation parameter r�1. Here, we have
made the approximation that only the wave functions at the
� point are considered. In principle, we would have to cal-
culate the wave functions for all considered bands depending
on kx� and ky� and fill them according to the Fermi-Dirac dis-
tribution function, but this is numerically not practicable.
However, the probability distribution of the electrons and
holes does not change much with kx� , ky�, so considering only
the �-point wave functions is a useful approximation.

E. Material gain

Having determined the band structure and the wave func-
tions in the kx� , ky� plane, we can calculate the material gain
in the free-carrier picture with an ad hoc inclusion of the
band-gap renormalization as follows:23

G�a����� =
e2

4�2c0�0m0
2nef f�E�d

�
i,f
�

0

�

k�dk�

��
0

2�

d�	�i	a� · p� 	f
�k�,��	2�fc„Ei�k�,��…

− fv„Ef�k�,��…�sech��Eif�k�,�� − ��

E�
� ,

�37�

fc/v�E� = �1 + exp��E − �c/v�/kBT�−1, �38�

�Eif�k�,�� = Ei�k�,�� − Ef�k�,�� . �39�

The symbols appearing in this formula are the effective in-
dex of refraction nef f, the vacuum speed of light c0, the
vacuum permittivity �0, the free-electron mass m0, the quan-
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FIG. 9. �a� Piezoelectric polarization PPZ
�QW� and spontaneous po-

larizations PSP
�b�, PSP

�QW� in the barrier and quantum well and �b� un-
screened internal field Ez� in the quantum well depending on the
crystal angle � and potential ��c�, solid lines� with electron and hole
probability distributions �dashed lines� for a 3 nm In0.2Ga0.8N quan-

tum well grown on the �112̄2� plane at a sheet-carrier density of
2�1012 cm−2.
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tum well thickness d, the Boltzmann constant kB, and the
temperature T=300 K. The index a corresponds to the pho-
ton polarization vector a� and i and f number the conduction
and the valence bands, respectively �where spin-up and spin-
down conduction-band electrons are treated as separate
bands�. k��=k� cos �e�x�+k� sin �e�y� is the electron or hole
wave vector, which is integrated over the quantum well
plane. Homogeneous broadening is incorporated by a sech
function of width E�=25 meV.28 The formulas in this sec-
tion are adapted from Ref. 23, where we add the in-plane
angle integration to account for the missing rotational sym-
metry and we use the momentum matrix element instead of
the dipole matrix element, which are related via

	�a� · r�
	2 =
�2

m0
2�Eif�k�,��2 	�a� · p�
	2. �40�

The quasi-Fermi energies �c , �v that enter the Fermi-Dirac
functions are determined by the condition

nc = �
i

1

�2��2� d2k�fc�Ei�k�,���

= �
f

1

�2��2� d2k�fv�Ef�k�,��� . �41�

Band-gap renormalization shifts the band gap by the
Coulomb-hole self-energy �ECH and the individual bands by
the screened exchange �ESX,f/i, conduction bands downward
and valence bands upward. These corrections are �in SI
units�

�ECH = − 2ERa0�
0

�

dk�
1

1 +
k�

�
+

Ca0k�3

32�nc

, �42�

�ESX,i = −
ERa0

��
� d2k� ��k��fc„Ei�k�,��… , �43�

�ESX,f = −
ERa0

��
� d2k���k���1 − fv„Ef�k�,��…� , �44�

with

��k�� =

1 +
Ca0�k�2

32�nc

1 +
k�

�
+

Ca0k�3

32�nc

,

� =
e2

2��0
�dN2d,c

d�c
−

dN2d,v

d�v
� .

Here, ER and a0 are the exciton Rydberg energy and the Bohr
radius and N2d,c/v��c/v� is the conduction-band/valence-band
charge-carrier density depending on the quasi-Fermi energy.
At this level of simplification, the calculation includes a nu-
merical parameter C to be chosen between 1 and 4.23 It in-
fluences the width of the band gap on a range of several 10
meV. We used it as a fit parameter to reproduce gain peak

positions for c-plane laser diodes from measurements29 and
found that C=4 works best for our simulations. The renor-
malized conduction- and valence-band energies that enter
Eq. �39� are then

Ei
�ren��k�,�� = Ei

�0��k�,�� + �ECH + �ESX,i, �45�

Ef
�ren��k�,�� = Ef

�0��k�,�� − �ESX,f . �46�

F. Inhomogeneous broadening

Inhomogeneous broadening caused by spatial fluctuations
in indium content and quantum well thickness is considered
in a constant Fermi-energy model. It has already been
pointed out in Ref. 29 that this model is more realistic than a
convolution of the gain curve with a Gaussian function,
which corresponds to a random distribution of quantum
wells with different Fermi energies, as the carriers can move
freely in the quantum well and compensate locally varying
Fermi levels. We treat the effect of the indium fluctuations as
fluctuations in the band-gap energy, where the quasi-Fermi
levels are kept constant, and obtain the gain as an integral
over gain curves with different band gaps weighted with a
Gaussian distribution ��E� ,��, where a broadening of �
=60 meV has been assumed, corresponding to an indium
content fluctuation of �x=0.016,

Ginh
�a����� =� dE�G�E→�E+E�

�a� ������E�,�� . �47�

Here, G�E→�E+E�
�a� is the material gain calculated from Eq.

�39�, where the band energies Ef and Ei are shifted such that
the transition energy �E�k� ,�� becomes �E�k� ,��+E�. This
step is equivalent to a convolution of the density of states
with a Gaussian function as proposed in Ref. 29. The same
broadening has to be applied to the integrals in Eq. �41� to
obtain the correct quasi-Fermi levels.

IV. RESULTS AND DISCUSSION

We have calculated gain spectra of 3 nm In0.2Ga0.8N
quantum wells for c-plane, semipolar, and nonpolar crystal
orientations and ridge geometries parallel and perpendicular
to the projection of the c axis in the QW plane, as indicated
in Fig. 1. The differences in the spectra are explained using
the momentum matrix elements and the reduced densities of
states for the various configurations. A variation of the crys-
tal angle shows how the gain of the different modes evolves
when going from the c plane to the a plane �or m plane�.

A. Gain spectra

The material gain for the different crystal angles is calcu-
lated using Eq. �37�. For the semipolar and the nonpolar
planes it is important to distinguish between the two different
ridge geometries: as stressed before, if the ridge points along
the projection of the c axis on the QW plane �see Fig. 1�a��
then the eigenmodes of the ridge waveguide show TE and
TM polarization. Gain spectra for these directions at various
sheet-carrier densities are shown in Fig. 10. On the other
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hand, if the ridge is oriented perpendicular to the c axis �see
Fig. 1�b�� then the modes align to the extraordinary and or-
dinary directions of the birefringent crystal, which corre-
spond to the �0001� and the �112̄0� directions, respectively.
Figure 11 shows gain spectra for these polarizations. Here,
we want to point out that in our calculations there is no
difference between the nonpolar a plane and m plane due to
the symmetry properties of the utilized bulk Hamiltonian, so
the results marked with “nonpolar” are valid for both crystal
planes.

Assuming combined mirror and absorption losses of
25 cm−1 and a confinement factor of 0.02, one gets a thresh-
old material gain of 1.25�103 cm−1, which is drawn as a
dashed line in Figs. 10 and 11. The threshold sheet-carrier
densities can then be estimated from the gain curves. They
are 9.0�1012 cm−2 for c-plane, 5.3�1012 cm−2 for semipo-

lar �112̄2�, and 4.3�1012 cm−2 for nonpolar �112̄0� crystal
orientation. One can thus expect a significant reduction in the
threshold current density when employing semipolar or non-
polar quantum wells, although the reduced QCSE also in-
creases the spontaneous emission and the Auger recombina-
tion rate and thus decreases the charge-carrier lifetime, so the
changes in the threshold current will not be proportional to
the changes in the carrier density.

As mentioned before, the rotational symmetry in the QW
plane is lost when going from the c plane to a semipolar or
nonpolar quantum well, so the orientation of the ridge rela-
tive to the c axis affects the modes of the waveguide and thus
the optical gain. The modes in a ridge waveguide oriented
perpendicular to the c axis �see Fig. 11� show a worse gain
than the TE mode of the other orientation �see Fig. 10�, es-
pecially for the nonpolar case. For the semipolar quantum
well, one gets a positive gain on both the ordinary and the
extraordinary modes, but it is less than half of the TE-gain
value. Lasing on these modes should in principle be possible,
as the threshold carrier densities are still lower than the one
for the c-plane TE mode. However, the other ridge orienta-
tion offers substantially higher gain and thereby lower
threshold charge-carrier densities. Ridge laser diodes on
semipolar or nonpolar crystal planes should thus be oriented
along the projection of the c axis on the quantum well plane.

In the semipolar �112̄2� case this means that the ridge wave-

guide should point along the �1̄1̄23� direction with laser fac-
ets formed by etching.
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FIG. 10. Material gain for TE mode �black curves� and TM
mode �gray curves� of c plane and semipolar and nonpolar quantum
wells with ridge orientation parallel to the projection of the c axis
on the QW plane. Estimated threshold gain is indicated as a dashed
line. Sheet-carrier densities are �from bottom to top� 5�1012–8.5
�1012 cm−2 �c plane�, 4�1012–7.5�1012 cm−2 �semipolar�, and
3�1012–6�1012 cm−2 �nonpolar� in steps of 0.5�1012 cm−2.
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FIG. 11. Material gain for extraordinary mode �black curves�
and ordinary mode �gray curves� of semipolar and nonpolar quan-
tum wells with ridge orientation perpendicular to the c axis. Esti-
mated threshold gain is indicated as a dashed line. Sheet-carrier
densities are �from bottom to top� 4�1012–7.5�1012 cm−2 �semi-
polar and nonpolar� in steps of 0.5�1012 cm−2.
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The results presented here are in agreement with experi-
ments on semipolar and nonpolar structures: direction-
dependent stimulated emission measurements have been
published for quantum well structures on semipolar4 and
nonpolar substrates.30 Both experiments showed that the
stimulated emission for photon propagation along the projec-
tion of the c axis is significantly higher than for propagation
perpendicular to the c axis, matching our findings that modes
with a polarization perpendicular to the c axis have the high-
est gain.

B. Momentum matrix elements

The main reason why semipolar and nonpolar quantum
wells show much higher gain for a given sheet-carrier den-
sity than c-plane ones is the reduction in the quantum con-
fined Stark effect. As can be seen from Fig. 12, the wave-
function overlap �i=1

6 	��c 	�v,i
	2 in a c-plane quantum well is
drastically reduced by the QCSE. Although the internal field
is partially screened by the charge carriers, the overlap does
not exceed 0.3 for realistic charge-carrier densities. On the
other hand, the overlap ranges between 0.5 and 0.8 for the
semipolar quantum well, where the internal field is reduced
by the crystal orientation and for the nonpolar quantum well
it is almost 1, as the internal field perpendicular to the quan-
tum well plane vanishes completely in that case. The wave-
function overlap directly affects the momentum matrix ele-
ments �see Eqs. �26� and �29�� which enter the gain
calculation. One also has to consider the effects of quantum
confinement and biaxial strain in the valence-band Hamil-
tonian, which depend on the crystal angle. They affect the
composition of the valence-band wave functions and thus the
componentwise overlap, so the matrix elements for different
polarization directions change with the crystal angle. Figures
13 and 14 show the momentum matrix elements of the
lowest-energy transitions e1-A1 and e1-B1 averaged over the
in-plane angle � for the TE and TM modes and the ordinary
and extraordinary modes, respectively. From the matrix ele-
ments one can see why certain modes have high gain while
others have less or none. Important for the gain is a high
matrix element for low-energy transitions in the vicinity of

the � point �k=0�, as this is where the inversion condition

�c − �v � Ei�k�,�� − Ef�k�,�� � Eg �48�

is fulfilled at realistic charge-carrier densities. As expected
from the wave-function overlap, the matrix elements for the
c plane are much smaller than for semipolar or nonpolar
planes, which explains why the non-c-plane structures ex-
hibit much higher gain at a given charge-carrier density. The
TM-matrix elements are close to zero for the topmost tran-
sitions in all structures and therefore the TM modes do not
show any significant gain at the considered charge-carrier
densities. Furthermore, it becomes clear why the extraordi-
nary and the ordinary modes have lower gain than the TE
modes: they do have nonvanishing matrix elements, but
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FIG. 12. Absolute squared electron e1 and hole A1 wave-
function overlap at the � point as a function of charge-carrier den-

sity for c plane, semipolar �112̄2�, and nonpolar �112̄0� quantum
wells.
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these correspond to the e1-B1 transition, which has higher
energy than e1-A1 and thus less inversion.

C. Reduced density of states

Comparing the gain spectra for nonpolar and semipolar
quantum wells, it still remains to be explained why the TE
gain for the nonpolar structure is almost twice as high at a
given charge-carrier density, and why the gain on the ex-
traordinary mode is so much lower although there is a high
matrix element for this mode �see fig. 14�. Therefore, one has
to look at the reduced density of states

d���� =
1

�2��2�
i,f
� d2k��„�E�k�,�� − ��… . �49�

For non-c-plane quantum wells d���� does not directly enter
the gain formula, as matrix elements and energies depend on
the in-plane angle �, so the integral over the in-plane wave
vector cannot be converted into an integral over the energy.
However, it is still useful to look at the reduced density of
states, as one can see the different possible transitions and
how they contribute to the inversion. Figure 15 shows results
for d���� for the different crystal orientations.

While d���� does not change a lot in shape from the c
plane to the semipolar plane except for a shift to higher en-
ergies due to the reduced QCSE, the reduced density of
states for the nonpolar plane shows one important difference:
the e1-B1 transition is shifted away from the e1-A1 transi-
tion, so e1-A1 has more inversion at low charge-carrier den-
sities than in the semipolar case. This considerably improves
the TE gain, as the e1-A1 transition contributes mainly to the
TE-matrix element at the � point �see Fig. 13�. On the other
hand, achieving inversion on the e1-B1 transition, which is
responsible for the gain on the extraordinary mode, becomes
possible only at high charge-carrier densities, as there are
many states below the e1-B1 energy gap. The gain on the
extraordinary mode is thus blueshifted and much weaker
than the TE gain.

D. Variation of the crystal angle

It has been shown in the preceding sections that the gain
on the optical eigenmodes depends strongly on the crystal
angle, which influences the magnitude of the QCSE, the
wave-function overlap, the strain shifts in the Hamiltonian,
and the polarization of the modes. In order to investigate the
transition from c plane to nonpolar, we vary the crystal angle
in our calculation at a fixed charge-carrier density. The re-
sulting gain spectra are depicted in Fig. 16. As a conse-
quence of the reduced QCSE, the TE-gain peak increases and
shifts to blue with increasing angle, whereas the TM gain
stays close to zero due to the vanishing matrix elements of
the relevant transitions for any crystal angle. The reduction
in the QCSE in combination with the changes in the density
of states improves the gain by a factor of about 10 when
going from the c plane to the a plane at nc=7�1012 cm−2.
For the semipolar orientation, the improvement is smaller,
about a factor of 5 with respect to the c-plane, but the laser
wavelength for a given indium content is higher, which
might be desirable for realizing green laser diodes.

If the ridge is oriented perpendicular to the c axis, the
situation is more complicated: for �=0 �c plane�, the extraor-
dinary and the ordinary directions correspond to the TM and
the TE modes, respectively. This is reversed when going to
�=90°. The gain on the ordinary mode thus rises first at
small angles due to the reduced QCSE, but then falls with
increasing angle as the mode is rotated toward the TM ori-
entation. The extraordinary mode is rotated away from the
TM orientation, so its gain also rises at small angles, but it
goes down again at higher angles due to the changes in the
reduced density of states mentioned above. Both modes have
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FIG. 14. In-plane averaged absolute squared momentum matrix
elements of the two lowest-energy transitions as a function of the
wave number for ordinary �dashed curves� and extraordinary �solid
curves� modes for different quantum well orientations �matrix ele-
ments not drawn are essentially zero�. The sheet-carrier density is
7�1012 cm−2.
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FIG. 15. Reduced density of states for different crystal orienta-
tions at a sheet-carrier density of 7�1012 cm−2.
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lower gain than the TE mode of the other ridge orientation
for any crystal angle, so non-c-plane laser diodes with ridges
perpendicular to the c axis should generally perform worse
than those with the other ridge orientation.

V. CONCLUSION

To sum up, we present a method to calculate the optical
gain in the free-carrier picture with an ad hoc inclusion of
the band-gap renormalization for semipolar and nonpolar In-
GaN quantum wells. The eigenmodes and their polarizations
are determined for the birefringent waveguide, and it is
shown that they have to be considered in the orientation of
the momentum matrix elements. Gain spectra are calculated

for semipolar �112̄2� and nonpolar �112̄0� planes for differ-

ent charge-carrier densities and compared to the c-plane
case, examining also the two different ridge orientations that
can be realized in non-c-plane structures. It is found that the
TE-mode gain for a ridge orientation parallel to the projec-
tion of the c axis on the quantum well plane can be greatly
increased when going from the c-plane to a nonpolar orien-
tation and therefore we recommend this ridge orientation for
semipolar and nonpolar laser diodes. On the other hand, the
extraordinary and the ordinary modes for the other ridge ge-
ometry did not show great improvement for any crystal ori-
entation. The behavior of the different modes is explained by
changes in the band structure and the reduction in the quan-
tum confined Stark effect, which leads to an increase in the
electron and hole wave-function overlap and thus of the mo-
mentum matrix elements. From these results we can con-
clude that semipolar and nonpolar quantum wells offer great
possibilities for laser diode structures with higher indium
content, where lasing from c-plane quantum wells is sup-
pressed by the QCSE.
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APPENDIX A: 4Ã4 TRANSFER-MATRIX METHOD

The 4�4 transfer-matrix method14,31 calculates the wave
front in an anisotropic planar layer waveguide for a wave
that propagates in the y direction; the layers are perpendicu-
lar to the z direction �in this description, unprimed coordi-
nates are used for the waveguide to simplify the notation;
they correspond to the primed coordinates in Secs. II A and
III�. For this method it is necessary to assume that the elec-
tric and the magnetic fields do not depend on the x coordi-
nate, which is true for a wave propagating in the y direction
in an infinite film. This simplification is justified if the lateral
extensions of the planar waveguide are much bigger than the
transversal ones. The Maxwell equations for such a structure
are

� · ��E� � = 0,

� · B� = 0,

� � E� = i�B� ,

� � B� = − i
�

c0
2�E� . �A1�

Here, time derivatives have been replaced with −i�, � is the
nondiagonal dielectric tensor �with components �ij� that de-
pends on z, and c0 is the speed of light in vacuum. The wave
propagates in the y direction, so the y dependence is simply
exp�iyneff� /c0� and all y derivatives are replaced with
ineff� /c0, where neff is an effective index of refraction which
describes the propagation in the whole structure. This effec-
tive index is to be determined by the calculation. Rearrang-
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FIG. 16. Gain spectra for different crystal angles � and ridge
orientation perpendicular �top and middle� and parallel �bottom� to
the projection of the c axis in the QW plane at a charge-carrier
density of 7�1012 cm−2. The angle is varied from 0° �c plane� to
90° �a plane� in steps of 10°, from left to right �note the different
scales�.

SCHEIBENZUBER et al. PHYSICAL REVIEW B 80, 115320 �2009�

115320-14



ing the last two equations in Eq. �A1� gives for the compo-
nents of the fields

d

dz�
Ey

c0Bx

Ex

c0By

� = i
�

c0
��

Ey

c0Bx

Ex

c0By

� , �A2�

c0Bz = neffEx, �A3�

Ez = −
�zy

�zz
Ey −

�zx

�zz
Ex −

neffc0

�zz
Bx, �A4�

� =�
− neff

�zy

�zz
1 −

neff
2

�zz

− neff
�zx

�zz
0

�yy −
�yz�zy

�zz
− neff

�yz

�zz
�yx −

�yz�zx

�zz
0

0 0 0 − 1

− �xy +
�xz�zy

�zz
neff

�xz

�zz
neff

2 − �xx +
�xz�zx

�zz
0
� .

�A5�

Formal integration of the first line in Eq. �A4� leads to

�� �zj+1� = exp�i��zj+1 − zj����� �zj� ¬ TL�zj+1 − zj��� �zj� ,

�A6�

�� =�
Ey

c0Bx

Ex

c0By

� . �A7�

Here, TL is the transfer matrix for one layer. Multiplying the
transfer matrices for all layers gives the T matrix, which
connects the bottom and the top of the structure. For a
guided mode, all fields must vanish for z→ ��. Assuming
that the outside of the structure is vacuum, the matrix � for
the outside takes the simple form

� =�
0 1 − neff

2 0 0

1 0 0 0

0 0 0 − 1

0 0 neff
2 − 1 0

� . �A8�

This matrix has two twice degenerate eigenvalues �i� with
�=�1−neff

2 . There are thus two �� vectors that rise exponen-
tially for z→� and decay for z→−�, and two others that
behave vice versa. The waveguiding condition now states
that a guided mode must consist only of vectors that decay
exponentially on the outside of the structure. An eigenvector
to −i� on the bottom should thus become an eigenvector to
+i� when propagated through the structure with the T ma-
trix, which gives the equation

T�a�
0

0

i

− �
� + b�

�

i

0

0
��

eigenvectors to −i� in vacuum

= c�
0

0

i

�
� + d�

− �

i

0

0
�

eigenvectors to i� in vacuum

.

�A9�
This is a homogeneous linear equation system for the coef-
ficients a ,b ,c ,d. A nonzero solution exists if the determinant
vanishes. The waveguiding condition in its explicit form is
then

�T43 + i��T44 + T33� − �2T34��− T12 + i��T11 + T22� + �2T21�

+ �T42 + i��T32 − T41� + �2T31��T13 + i��T14 − T23�

+ �2T24� = 0. �A10�

Tij are functions of neff, so Eq. �A10� allows the calculation
of neff such that a guided mode is possible. This is done
numerically. The highest neff that fulfils Eq. �A10� gives the
fundamental mode of the waveguide structure.

Eigenmodes can now be calculated by inserting the so
found neff into the matrix � and propagating the four vectors
through the structure using Eq. �A7�. The correct starting
condition, the coefficients a and b, can be obtained from Eq.
�A9�, and the z components are given by Eq. �A4�.

APPENDIX B: FOURIER SERIES EXPANSION OF THE
HOLE EIGENFUNCTIONS

Wave equations like Eq. �9� can be solved numerically by
expanding the eigenfunctions as finite Fourier series and
thereby transforming the problem to a matrix eigenvalue
equation. To do so, one has to impose periodic boundary
conditions on a reference length L along the z� direction. The
choice of this length affects the basis functions of the expan-
sion, and it is useful to choose a multiple of the quantum
well thickness, for example L=4d, which is used in our cal-
culation. We use the following ansatz for the eigenfunctions:

�� �z�� = �
n=0

N
1
�L

c�n exp�iqnz�� �B1�

with qn= �
L �N−2n�. N is the number of basis functions in

which to expand and it has to be even to include q=0. These
eigenfunctions are exact only in the limit N→�, but it is
found that for the ground state and the lower excited states
the solutions converge rapidly and acceptable accuracy can
already be achieved with N=50. Plane waves have been cho-
sen as basis functions because they reduce the matrix opera-
tor Hv�kx� ,ky� ,kz�=−i d

dz�
� to the bulk Hamiltonian

Hv�kx� ,ky� ,qn�. Inserting this ansatz into Eq. �9�, multiplying
by 1

�L
exp�−iqmz��, and integrating over L gives

��Hv�kx�,ky�,qn��ij�mn + Vmn�ij�cn� j = E�cm�i, �B2�

where �mn ,�ij are the Kronecker � and Vmn is the Fourier
transformation of the two potential terms: Vmn

= 1
L�−L/2

L/2 dz� exp�−i�qm−qn�z���VQW,v�z��+�p�z���. Sum con-
vention is used here and i , j=1–6 number the components of
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the vectors c�n and c�m, whereas n ,m=1 to N number the basis
functions of the Fourier expansion �B1�. To treat this prob-
lem numerically, the indices j ,n and i ,m are transformed to
one index via

	 = 6n + j, 	� = 6m + i , �B3�

where 	 ,	� now go from 0 to 6�N+1�. With this transfor-
mation, Eq. �B2� becomes a simple matrix eigenvalue equa-
tion

H		�c	� = Ec	 �B4�

with H�6n+j�,�6m+i�= �Hv�kx� ,ky� ,qn��ij�mn+Vmn�ij. This equa-
tion can be solved numerically with any standard diagonal-
ization algorithm, yielding both the energy eigenvalues and
the corresponding eigenfunctions for kx� ,ky� as vectors with
6N components, which can be decomposed into the wave
function’s Fourier coefficient vectors c�n by inverting the in-
dex transformation �B3�. This method is also applicable for
the conduction-band Schrödinger equation, simplified by the
fact that its eigenfunctions are scalar, so an index transfor-
mation like Eq. �B3� is not necessary.
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