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The energetics of alloy formation is generally modeled either by explicit sampling of the possible alloy
configurations or by considering only noninteracting impurities in the dilute limit. We describe a model that
bridges the two approaches by taking into account the thermodynamic probability to form small clusters by
association of impurities, thereby extending the validity of the impurity model to higher concentrations. Since
we express the alloy energetics in terms of pair and cluster binding energies there is no need for computation-
ally intensive sampling over the full configuration space. The application to the Ga1−xInxP1−yNy highlights the
importance of short-range ordering due to “small atom/large atom” correlation in such quaternary III-V alloys.
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I. INTRODUCTION

Quaternary III-V alloys of the type A1−xBxC1−yDy provide
a higher flexibility to engineer desirable optoelectronic prop-
erties than the more conventional ternary alloys of A1−xBxC
type.1 These alloys are being extensively investigated for
their applications in electronics as well as other developing
fields such as frontiers of energy research. Recently, there
have been attempts to utilize III-V nitride alloys for photo-
electrochemical water splitting.2–4 Incorporating N into III-V
alloys has been shown to improve the optical and anticorro-
sive properties of these materials.3,5 However, the large strain
energy due to N incorporation limits its solubility and causes
a lattice mismatch with the substrate that introduces addi-
tional defects and deteriorates the mechanical properties. Re-
cent efforts are therefore concentrating on quaternary alloys
such as Ga1−xInxP1−yNy where the addition of lattice expand-
ing In can counter the effects of mismatch caused by N
incorporation.1,4

Compared to the traditional ternary alloys, such as GaInN
or GaPN, there exist greater degrees of freedom for short-
range ordering �SRO� in quaternary alloys with two cationic
and two anionic constituents.6–8 Such SRO affects the alloy
energetics, hence the solubility and stability against phase
separation, as well as the electronic and optical properties
�band structure�. While previous studies addressed the evo-
lution of microstructure due to SRO,6–9 here we examine
also the effect of ordering on the alloy formation enthalpy
and its solubility limit. To this end, we describe the alloy
energetics from point of view of impurity incorporation in a
host matrix. In the dilute concentration limit, the alloy ener-
getics is governed by the formation energies �Hi associated
with the substitution of the host site with the impurity atoms
i �e.g., NP i.e., N substituting a P atom� and alloy enthalpy
�Halloy is proportional to the alloy concentration xi=ni /si
�ratio of the density ni of atoms i over the respective density
si of available lattice sites�,

�Halloy = �
i

xi�Hi. �1�

The equilibrium concentrations xi are given by the Boltz-
mann factor

xi = exp−�Hi/kT, �2�

where k is the Boltzmann constant. At higher concentrations,
this picture of isolated noninteracting substitutional impuri-
ties breaks down and the alloy energy deviates from the lin-
ear behavior of Eq. �1�. In this regime, the modeling of the
alloy, including the effect of short-range order, is usually
achieved by explicit sampling, e.g., through Monte Carlo
simulations, of the different alloy representations in large
supercells.6 Even when the supercell energies are expressed
by computationally efficient methods, such as valence-force
field �VFF� �Refs. 10 and 11� or �dual-sublattice� cluster
expansions,12 the modeling of quaternary alloys by thermo-
dynamic sampling at every point in the two-dimensional
�x ,y� composition space is often not practical.

Here, we present instead a model that aims to extend the
range of validity of the dilute-impurity picture �Eqs. �1� and
�2��, by taking into account impurity-impurity interactions
and clustering. In contrast to related previous works,13,14 our
method is not restricted to a particular lattice type or nearest-
neighbor bond distribution. Since we express the alloy ener-
getics in terms of pair and cluster binding energies, no sam-
pling over the full configuration space is necessary, and the
enthalpies of those pairs and clusters can be evaluated with
accurate but computationally more demanding methods such
as density-functional theory. We show that this model can
reliably predict the formation energy of quaternary
�Ga1−xInxP1−yNy� and ternary �GaP1−xNx� alloys at composi-
tions in excess of 10%, and use this model to demonstrate
the dramatic influence of SRO on the quaternary alloy en-
ergy and the solubility limit.

II. MODEL

With increasing concentrations xi, e.g., x1= �InGa� and x2
= �NP� in the quaternary Ga1−x1Inx1P1−x2Nx2 alloy, the prob-
ability increases to form pairs such as �InGa-NP� or larger
clusters such as �2InGa-NP�. One can determine a formation
energy for these clusters and determine their relative concen-
trations xc in a similar fashion like Eq. �2� by taking into
account the number sc of distinct cluster configurations per
volume unit �see also Ref. 15�, xc=nc /sc. However, the
simple addition of the total densities of all impurities and
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clusters become inaccurate when low formation energies per-
mit high impurity concentrations. In order to describe an
alloy from the point of view of defect formation �e.g., impu-
rity substitution� and subsequent pairing and clustering at
higher concentration, one needs to take into account two ef-
fects that are omitted in the dilute limit. First, considering
that the host atom h �e.g., GaGa� can be viewed as a “defect”
with zero formation energy, which leads to xh=1, the sum of
the concentration of impurity and host atoms exceeds the
number of available lattice sites, i.e., the lattice sites are
overcounted, and an appropriate normalization of Eq. �2�
needs to be done. Second, the simple addition of isolated and
paired/clustered occurrences of an impurity leads to double
counting of impurities.

For illustration, we consider the example of a zinc-blende
lattice in which the impurity atoms A and B substitute on the
cation and anion site, respectively. Further, a close AB pair
may form �the number of distinct configurations for the AB
impurity cluster is sAB=4sA=4sB�, either due to a significant
binding energy −Eb�kT, or simply statistically in a random
distribution, e.g., in the limit of high temperature −Eb�kT.
For the following model example, we consider the particular
case that the formation enthalpies of impurities A and B are
equal ��HA=�HB�, and that the binding energy vanishes,
Eb=�HAB−�HA−�HB=0. Of course, we are in general also
interested in cases where Eb�0, including the limit Eb�0 in
which the impurity concentrations are determined by the for-
mation of the impurity pairs or clusters rather than by their
isolated occurrence. In such a general case, the incorporation
of A and B is correlated and the binding energy affects the
equilibrium concentrations. A general model should be able
to describe both limits, the uncorrelated �Eb=0� and the cor-
related �Eb�0� incorporation.16 Thus, in our illustrative
model example with Eb=0, we determine the concentrations
of A and B according to the conventional expression for the
dilute limit, Eq. �2�, and, since in general the formation of
the AB pair also needs to be considered, we determine fur-
ther the concentration of the AB pair from Eq. �2� using the
formation energy �HAB=�HA+�HB. Finally, we simply add
the isolated and paired occurrences of A and B, and show the
concentrations xA=xB in Fig. 1 �“addition”� as a function of
the formation energy �HA=�HB �for T=1000 K�. Since, in
this example, we neglected the overcounting and double-
counting effects mentioned above, xA and xB will be overes-
timated, as evident from the fact that the concentrations ex-
ceed the number of lattice sites when �HA=�HB becomes
smaller than about 0.1 eV �see Fig. 1�.

On the other hand, in this particular model example, we
can determine the “exact” concentrations xA=xB �Fig. 1�,
simply by omitting the contribution from pair formation
�since Eb=0� and correcting for the overcounting of lattice
sites by means of a normalization, which accounts for the
competition of all impurities i �here, just A or B� and the
respective host atoms h on a given lattice site,

xi
ovc =

xi

�
i
xi + xh

, �3�

where the initial xi �before normalization� are determined by
Eq. �2� and xh=1 as mentioned above.

In order to describe the equilibrium concentrations in the
general case, we need to take into account the thermody-
namic balance between association and dissociation of clus-
ters. For this purpose, we first determine the site concentra-
tions xi,c for the impurities i that are part of a particular
cluster c,

xi,c = pi,c exp�− �Hi/kT� , �4�

where, pi,c is the statistical factor due to the law of mass
action that includes also the effect of the reduced configura-
tional entropy due to clustering. Note that xi,c can also be
written in terms of zi,c, the number of impurities i contained
in one cluster c and the respective cluster concentration xc,

xi,c = zi,cxcsc/si. �5�

We now illustrate for the example of formation of AB pairs
how the factor pi,c is determined. For the lattice site occupied
by the impurity A, we have i=A, c=AB, and xA=exp�
−�HA /kT�, according to Eq. �2�, before the normalization
step of Eq. �3�. Considering the law of mass action, xAB
=xAxB exp�−Eb /kT�, and the relation xA,AB=xAB ·sAB /sA �Eq.
�5�� for the concentration of impurities A that are part of the
AB pair, we obtain pA,AB=sAB /sA ·xB exp�−Eb /kT�. The ex-
tension to larger clusters follows in a straightforward way
from the general form of the law of mass action,

xc = exp�− �Eb/kT��
i

xi
zi,c, �6�

in conjunction with Eqs. �4� and �5�. At this point, Eq. �4� is
nothing but the expression that gives the concentration of an
impurity as part of a particular cluster when the cluster con-
centration is determined by the standard expression Eq. �2�.
However, this reformulation enables us to apply a double-
counting correction after the addition of the isolated and

addition
exact
present model

Formation energy ∆HA=∆HB (eV)
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ra
tio
n
x A
=x
B

FIG. 1. �Color online� Example of a model alloy: total concen-
trations of impurities A or B as a function of their formation en-
thalpy. �HA=�HB for the isolated A and B atoms, and �HAB

=�HA+�HB �Eb=0� for the close AB pairs. Triangles �‘‘addition’’�:
the concentrations are determined according to Eq. �2� and the iso-
lated and paired occurrence of A and B are simply added. Squares
�‘‘exact’’�: the exact result for this particular model case. Diamonds
�“present model”�: the result obtained by accounting for overcount-
ing and double-counting effects.
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clustered occurrences of the impurity, x̃i=xi+�cxi,c �e.g., x̃A
=xA+xA,AB�

xi
dcc = x̃i�1 −

xi

x̃i
�

c

xi,c

x̃i
� . �7�

Here, the second term in the bracket accounts for the prob-
ability that the impurity i has been double counted as occur-
ring both in the isolated form and as part of a cluster c �a
similar expression can be formulated for the probability of
double counting of the impurity i as being part of two or
more clusters�. In order to achieve self-consistency between
the impurity and cluster concentrations, we first determine
the isolated and clustered impurity concentrations by Eq. �4�
�note that for isolated impurities, Eq. �4� reduces to Eq. �2��,
then correct for double counting �Eq. �7��, and finally nor-
malize according to Eq. �3�. The resulting new impurity con-
centrations then enter the next cycle in Eq. �4� via the statis-
tical factor pi,c, and this procedure is iterated until the
resulting concentrations of isolated impurities �on all sublat-
tices� and the respective cluster concentrations are self-
consistent in the sense that they observe the law of mass
action, Eq. �6�.

Applying the present model for the example shown in Fig.
1, we see that double-counting and overcounting effects are
effectively removed and the range of validity is considerably
extended toward higher alloy concentrations, compared to
the conventional model �addition in Fig. 1�, in which the
isolated impurity concentrations are determined by Eq. �2�
and the concentrations due to formation of pairs or clusters
are simply added. Note that the conventional model is accu-
rate only in two limits, i.e., when the number of impurities is
small compared to the number of available lattice sites �no
overcounting�, and when the thermodynamic equilibrium is
sufficiently far from the point where impurity association
and dissociation are in competition with one another �no
double counting�. Also note that if electrically active impu-
rities and defects �not considered in this work� are present,
the equilibrium Fermi level can also be determined simulta-
neously during the self-consistency loop �see Ref. 17�.

III. CALCULATION OF FORMATION ENERGIES

Our model describes the alloy formation by the incorpo-
ration of impurities into a host lattice, where the interaction
�binding� between the impurities leads to the thermodynamic
formation of impurity clusters. In order to compare this
model with calculation of explicit alloy representations in
large supercells, we use our recently developed generalized
VFF method in which the energy functional parameters are
obtained by fitting to first-principles �local-density approxi-
mation� calculated formation energies of a large set of or-
dered and random structures.18 A brief description of the
VFF energy functional and the fitted values of the quaternary
alloy parameters �QVFF� are given in the Appendix. The
formation energies of single substitutional impurities and
their clusters, calculated in 1024 atom cells are given in
Table I. Of course, once the validity of the present thermo-
dynamic model is established, the impurity and cluster ener-

gies can also be determined from first-principles calculations
in smaller cells,19 which can be applied to a wider range of
impurities, e.g., including electrically charged impurities.

IV. EFFECT OF SRO ON EQUILIBRIUM
SOLUBILITY

The equilibrium solubility is calculated within the model
described in Sec. II using the formation energies given in
Table I �note that the formation energies implicitly include
bounds of the chemical potentials for In and N due to the
phase coexistence of GaN and InP�. Figure 2 shows the equi-
librium solubility limit of In and N in GaP, calculated with
and without the effect of SRO due to clustering. In the latter
case, there is no interaction between InGa and NP �Eb=0�,
and the resulting concentrations are equal to those when In
or N are alloyed separately in GaP. Including the effect of
SRO �Eb�0, see Table I�, we see that the N solubility is
dramatically enhanced due to the possibility of In-N cluster
formation when In is alloyed simultaneously. The N solubil-
ity of 4.2�1014 cm−3 without SRO increased to 1.9
�1020 cm−3 in the presence of ordering with In at a tem-
perature of 1000 K. In contrast, the In solubility remain rela-
tively unaffected by additional N alloying �2.8�1021 with
and 2.7�1021 cm−3 without SRO, respectively�. This asym-

TABLE I. Calculated formation energies �H of isolated substi-
tutional impurities in GaP �InGa and NP� and that of impurity clus-
ters. The binding energies Eb of the clusters are also given.

GaP �H �eV� Eb �eV�

InGa 0.18

NP 1.55

InGa-InGa 0.38 +0.02

NP-NP 3.22 +0.12

InGa-NP 1.10 −0.63

2InGa-NP 0.75 −1.16

3InGa-NP 0.49 −1.60

4InGa-NP 0.34 −1.93

InGa-2NP 2.14 −1.14

FIG. 2. �Color online� Equilibrium solubility of In and N in GaP
matrix. Solid symbols correspond to alloy with clustering �with
SRO� while open symbols denote random mixing �w/o SRO�.
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metry is a consequence of the different formation energies of
the isolated In and N impurities: InGa has a relatively low
formation energy �Table I�, and, therefore, is abundant even
without clustering with NP �see Fig. 2�. On the other hand,
NP has a high formation energy, leading to low concentra-
tions. However, the large binding energies �Table I� and the
relatively high InGa concentrations lead to a favorable statis-
tical factor p in Eq. �4� for NP occurring as part of a In-N
cluster, which explains the dramatic enhancement of the N
solubility due to simultaneous In alloying. Indeed, it is one
of the advantages of the present method that this type of
correlation is included and the In and N solubility limits are
determined without any assumptions about the concentration
of the respective other species.

V. FORMATION ENTHALPY (�H) OF THE QUATERNARY
Ga1−xInxP1−yNy ALLOY

Most of these alloys are grown by epitaxial techniques
where it is possible to achieve lattice matching to a given
substrate.4,7,20 Here, we consider a Ga1−xInxP1−yNy alloy with
x :y=2.12:1, that conserves lattice matching to a GaP sub-
strate and hence no energy contribution due to substrate
strain. Figure 3 shows �H as a function of concentration of a
random Ga1−xInxP1−yNy �x :y=2.12:1� alloy as predicted by
the generalized VFF model �see Appendix� utilizing a realis-
tic random-alloy representation �averaged over ten random
realizations at each concentration� in a large 4096-atom su-
percell �shown in Fig. 3�a��. Figure 3�b� shows the present
impurity-cluster model for the random alloy. Here, for the
calculation of the relative concentrations of the isolated and
clustered impurities, the binding energy is neglected �Eb=0,
high-temperature limit�, but the contribution to �H due the
statistically formed clusters is taken into account. We see that
this model reproduces the directly calculated random alloy
�Fig. 3�a�� up to about 20% In �	10% N� substitution. Note
that the �H corresponding to noninteracting impurities �i.e.,

if all impurities were isolated as in Eq. �1�� is strictly pro-
portional to the alloy concentration and matches the initial
slope of the directly calculated random alloy �Fig. 3�c��. It is
also important to point out that in this case of the lattice
matched quaternary alloy �and therefore no associated strain
contribution�, the deviation of the formation enthalpy of the
random alloy from a linear behavior as seen in Figs. 3�a� and
3�c� can be exclusively accounted for through the statistical
probability of cluster formation and the related energy gain
due to the impurity-cluster interactions.

Ternary alloys are often quite accurately described by the
random-alloy model18 where correlation effects, if any, can
occur only between impurities �i.e., the foreign atoms that
are alloyed into a host matrix� within the same sublattice. In
contrast, in the case of dual-sublattice quaternary alloys like
those considered here, correlation between the impurities on
the cation and anion sublattice �i.e., pairing or clustering� can
more directly affect the alloy energetics. Figure 3�d� shows
the impurity-cluster model for Ga1−xInxP1−yNy, now includ-
ing SRO for a temperature of T=1000 K. The binding ener-
gies �Table I� are now used to determine the thermodynamic
equilibrium of cluster association/dissociation at this tem-
perature. We see that the resulting alloy formation energy is
dramatically reduced relative to the random alloy �see Figs.
3�b� and 3�d��. This shows that the random-alloy approxima-
tion becomes entirely invalid, and the short-range ordering

FIG. 4. �Color online� �a� Formation enthalpy of GaP1−xNx as a
function of N concentration. Random alloy calculated with VFF in
large supercell �explicit random, solid line�. Present model for
concentration-dependent �H of noninteracting NP impurity �open
triangles�. Present model for concentration-dependent �H of inter-
acting NP impurity �solid triangles�. �b� Variation in the average
bond lengths as a function of N concentration.

FIG. 3. �Color online� Formation enthalpy of Ga1−xInxP1−yNy in
the lattice matched ratio x :y=2.12:1. �a� Random alloy calculated
with VFF in large supercells. �b� Present model for �H of the
random alloy including statistical formation of clusters �w/o SRO�.
�c� �H due to noninteracting InGa and NP impurities. �d� Present
model for �H of the alloy with SRO at T=1000 K.
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due to “small atom/large atom” correlation, which causes
considerable binding energies �Table I�, strongly determines
the alloy energetics in such quaternary III-V alloys.

VI. FORMATION ENTHALPY OF THE TERNARY GaP1−xNx

ALLOY

We now apply the present model to GaP1−xNx as an ex-
ample of a ternary alloy, where the assumption of random
distribution is generally considered to be reasonably
accurate,18 in contrast to the present finding for the quater-
nary Ga1−xInxP1−yNy. Due to the large �	17%� lattice mis-
match between the binary constituents of GaP1−xNx, we need
to additionally take into account that the lattice constant of
the host matrix changes during N substitution �unlike the
case of the lattice matched quaternary alloy considered
above�. Thus, we calculate the formation energy of the iso-
lated NP impurity in a strained GaP supercell with a lattice
constant such that the Ga-P distance equals the average Ga-P
bond length in a random GaP1−xNx alloy for a given concen-
tration x �Fig. 4�b��. Taking into account this concentration
dependence of �H�NP�, but not the NP-NP “antibinding” en-
ergy �see Table I�, already reproduces the enthalpy of the
random GaP1−xNx alloy quite well �Fig. 4�a��. Including the
statistical �high T limit� formation of NP-NP pairs and their
concentration-dependent formation energy, almost exactly
reproduces the random-alloy formation enthalpy �Fig. 4�a��,
which again highlights the general applicability of our alloy
model.

VII. CONCLUSION

We described a model for alloy energetics from point of
view of impurity incorporation in a host matrix. The pro-
posed model extends the validity of the dilute-impurity pic-
ture up to moderate alloy concentrations by taking into ac-
count the statistics and energetics of impurity-cluster
association and dissociation, thereby avoiding the need for
explicit sampling of alloy configurations. While the assump-
tion of a random atomic distribution is often a good approxi-
mation in ternary alloys such as GaP1−xNx, the “preferential
binding” of impurities to form clusters can lead to an atomic
distribution very far from randomness. The binding between
impurities to form pairs and clusters may drastically reduce
the alloy enthalpy leading toward SRO. The application to

the Ga1−xInxP1−yNy provides a quantitative picture about the
effect of SRO on the formation enthalpies and solubility lim-
its in quaternary III-V alloys.
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APPENDIX

The quaternary valence-force-field model is based on an
energy functional that includes bond-angle/bond-length
interaction:11

UQVFF = �
i=1

N 
�
j=1

4 � 3

16dij
2 �ij�r�ij • r�ij − dij

2�2

+ �
k=1,k�j

4
3

16dijdik
�ijk„r�ij • r�ik − dijdik cos��ijk

0 �…2�
+ �

i=1

N

�
j=1

4 � �
k=1,k�j

4
3

8dij
�dijdik

�ijk�r�ij • r�ij − dij
2�

Ã„r�ij • r�ik − dijdik cos�ijk
0 �� ,

where �ij, �ijk, and �ijk are the bond-stretching, bond-
bending, and bond-angle/bond-length interaction parameters,
respectively. rij is the nearest-neighbor distance, dij is the
ideal bond length, and �ijk

0 is the ideal unrelaxed tetrahedral
bond angle �109.5°�. For a given atom i, the indices j and k
run over the four nearest-neighbor atoms in a zincblende
lattice. For a given quaternary system, the �ij, �ijk, and �ijk
are described through a set of 28 fitting paramenters. These
parameters were then fitted to first-principles calculated total
energies of over 100 ordered and random-alloy structures.
For a detailed description about the different parameters and
the fitting methodology as well as the corresponding param-
eters for the �Ga,In� �P,N� ternary alloys �TVFF�, see Ref. 18.
The fitted values of the QVFF parameters are summarized in
Table II.

TABLE II. Fitted QVFF parameters for the quaternary Ga1−xInxP1−yNy alloy.

Fitted QVFF parameters

Alloy d �Å� � �N/m� � �N/m� � �N/m�

�̄GaN=13.3; ��GaN=1.0 �̄GaN=−17.1; ��GaN=−1.1

dGaN=1.931 �GaN=46.5 �̄InN=10.7; ��InN=1.1 �̄InN=−9.9; ��InN=−1.0

GaInPN dInN=2.139 �InN=48.6 �̄GaP=10.7; ��GaP=1.0 �̄GaP=−1.8; ��GaP=−1.0

dGaP=2.334 �GaP=40.7 �̄InP=7.6; ��InP=1.0 �̄InP=−4.1; ��InP=−1.1

dInP=2.524 �InP=33.4 �GaInN=9.2, �GaInP=1.3 �GaInN=−23.8, �GaInP=−3.6

�GaPN=17.7, �InPN=11.6 �GaPN=−21.4, �InPN=−15.4
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