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The Anderson-Hubbard model is considered to be the least complicated model using lattice fermions with
which one can hope to study the physics of transition-metal oxides with spatial disorder. We have completed
a numerical investigation of this model for three-dimensional simple-cubic lattices using a real-space self-
consistent Hartree-Fock decoupling approximation for the Hubbard interaction. In this formulation we treat the
spatial disorder exactly and therefore we account for effects arising from localization physics. We have exam-
ined the model for electronic densities well away from 1/2 filling thereby avoiding the physics of a Mott
insulator. Several recent studies have made clear that the combined effects of electronic interactions and spatial
disorder can give rise to a suppression of the electronic density of states and a subsequent metal-insulator
transition can occur. We supplement such studies by calculating the ac conductivity for such systems. Our
numerical results show that weak interactions enhance the density of states at the Fermi level and the low-
frequency conductivity, there are no local magnetic moments, and the ac conductivity is Drude like. However,
with a large enough disorder strength and larger interactions the density of states at the Fermi level and the
low-frequency conductivity are both suppressed, the conductivity becomes non-Drude like, and these phenom-
ena are accompanied by the presence of local magnetic moments. The low-frequency conductivity changes
from a �−�dc��1/2 behavior in the metallic phase, to a ���2 behavior in the nonmetallic regime. For
intermediate disorder at 1/4 electronic filling, a metal-to-insulator transition is predicted to take place at a
critical U /B�0.75 �U being the Hubbard interaction strength and B the electronic band width�. Our numerical
results show that the formation of magnetic moments is essential to the suppression of the density of states at
the Fermi level and therefore essential to the metal-insulator transition. At weaker disorder a small lessening
of the density of states at the Fermi level occurs but screening suppresses the spatial disorder and with
increasing interactions no metal-insulator transition is found.
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I. INTRODUCTION

Electron-electron interactions are important in under-
standing the properties of many transition-metal oxides.1,2

Novel ordered phases are found in this class of compounds:
e.g., high-Tc superconductors, d-electron heavy fermions,
and quantum magnets. The inclusion of disorder into such
materials, and into the models of such systems, adds another
level of complexity. In this report we focus on metal-to-
insulator transitions that are controlled by the combined ef-
fects of both interactions and disorder. In part, this work is
part of an effort to understand several experimental results,
including the properties of the weakly doped cuprates,3,4 for
which disorder effects are known to be important.

Initially, we were motivated to conduct such theoretical
work to better understand this transition in the material
LiAlyTi2−yO4.5 The ordered and undoped material LiTi2O4

undergoes a transition to a superconducting phase6,7 around
Tc�12 K and has been proposed to be related to the family
of high-Tc superconductors.8 If such a conjecture is correct,
there must be reasonably large electron-electron interactions
in this system. The Al-doped system undergoes a metal-
insulator transition for y�0.33 and recent theoretical work
by one of us and co-workers have suggested that �i� the ef-
fects of disorder alone cannot lead to such a transition;9 �ii�
inclusion of electron-electron interactions in the form of an
on-site Hubbard energy can lead to such a transition.10 This

occurs by the suppression of the density of states at the
Fermi energy to near zero. The results presented in this re-
port are a natural continuation of such work.

In addition, other systems display such transition. Sarma
et al.11 have investigated the electronic structure of
LaNi1−xMnxO3. It is known that for a critical concentration
of xc�0.1 a metal-to-insulator transition is found. The point-
contact tunneling conductance spectra, which provides infor-
mation on the density of states, show a suppression at the
Fermi energy in the form of a downward cusp for both x
=0.05 and 0.1. The conductance is found to be proportional
to �V, where V is the bias voltage. This behavior was pre-
dicted by Altshuler and Aronov,12 and is similar to the results
that we encountered in studies of LiAlyTi2−yO4.10 Kim et
al.13 have studied the transport and optical properties of
SrTi1−zRuzO3. When z decreases from 1 to 0, SrTi1−zRuzO3

evolves from a correlated metal, SrRuO3 �z=1�, to a band
insulator, SrTiO3 �z=0�. Depending on z, there are six types
of electronic states. The metal-to-insulator transition takes
place at zc�0.5. As z decreases from one, the concentration
of conduction electron decreases, and the effective interac-
tion strength increases.

These systems are very complicated, having several im-
portant d orbitals for different conducting sites, and many
different interaction, disorder and hopping energy param-
eters. The theoretical model considered below is a minimal-
ist’s approach to such interesting behavior.
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A. Anderson-Hubbard model

A simplified model that describes interacting electrons
moving on a spatially disordered lattice is the so-called
Anderson-Hubbard model. Its Hamiltonian is given by

Ĥ = − t �
�ij�,�

�ĉi�
† ĉj� + ĉj�

† ĉi�� + �
i,�

�iĉi�
† ĉi� + U�

i

n̂i↑n̂i↓.

�1�

Electron-annihilation/creation operators for site j and spin
�= ↑ ,↓ are represented by ĉj� and ĉj�

† , respectively. The spa-
tially inhomogeneous environment in which the electrons
move is accounted for by on-site energies, � j, which are ran-
dom. Often, these are selected to be chosen from a uniform
distribution, � j � 	− W

2 , W
2 
, and therefore W is the energy

scale characterizing the strength of the disorder. Interactions
between electrons are accounted for by the intrasite Hubbard
interaction term, characterized by the energy scale U. The
near-neighbor hopping frequency is denoted by t and all
other symbols have their usual meaning. It is hoped that this
model can capture some of the essential physics of the metal-
insulator transitions2 of disordered transition-metal oxides.

The electronic properties of systems described by this
model Hamiltonian are indeed complicated as can be under-
stood from the following reasons. When disorder is suffi-
ciently strong it can lead to the localization of electrons and
favors large electronic occupancies on sites with low on-site
energies. Therefore, disorder generates both localization ef-
fects and an inhomogeneous distribution of electronic
charge. There exists a critical disorder, �W / t�c, beyond which
all states are localized and the system becomes an Anderson
insulator.14 In a spatially uniform half-filled system, electron-
electron interactions also lead to the effective localization of
electrons; however, in contrast to disorder, interactions favor
single occupancy of electrons on all sites. In general, at a
critical interaction, �U / t�c, the system undergoes a transition
from a metal to a Mott insulator. However, the Mott transi-
tion may not take place when the electronic concentration is
away from half filling.

Due to the randomness of the on-site energies, it is usual
to address this model using numerical techniques. Also, ex-
cept for some small clusters that can be solved exactly, large
lattices have to be solved with the help of approximate
schemes. This difficulty notwithstanding, a small number of
“exact” numerical results are available, coming from both
exact diagonalization �ED� �Refs. 15–20� and Monte
Carlo15,21–29 studies. Because of their relevance to our work,
we mention one aspect of the results in two of these papers.
That is, some ED calculations showed the presence of a sup-
pression of the density of states �DOS� at the Fermi energy,
in both one20 and two28 dimensions. These results are con-
sistent with the HF papers mentioned below. Therefore, this
provides partial verification of the results based on the HF
method, the method used in the remainder of this paper.

B. Discussion of previous HF results

The Hartree-Fock �hereafter HF� method is well known
and its application to disordered systems is extensive. The

accuracy of the results was recently critiqued by us and
co-workers,30 where it was shown that provided one allowed
for sufficient magnetic degrees of freedom the energies and
charge densities of �small� exactly solvable systems agreed
well with those obtained from HF. However, since the spin
correlations are essentially those of pairs of classical spins of
variable directions and lengths, and therefore do not include
quantum fluctuations, HF is less successful at capturing the
correct spin-spin correlations.

As mentioned, the HF approximation has been applied in
many studies of the Anderson-Hubbard and related models.
Some examples are �i� a study of a two-dimensional �2D�
point-defect model31 which represents the acceptors and do-
nors in the high-Tc cuprate La2−xSrxCuO4 through determin-
ing the magnetic phase diagram, �ii� a proposal of a novel
inhomogeneous metallic phase in two dimensions32–35 as a
combined effect of disorder and electronic interactions when
their strengths are comparable, and �iii� a detailed study of
the three-dimensional �3D� Anderson-Hubbard model, deter-
mining both magnetic and electric phase diagrams at half
filling.36,37

In Refs. 36 and 37, Tusch and Logan have focused on 1/2
filling as well as briefly discussing a few fillings lower than
1/2. At 1/2 filling with a disorder strength of W / t=5, the
DOS shows a suppression for both U / t=6 and 9. Using the
inverse participation-ratio �IPR� technique, the system is de-
termined to be metallic at U / t=6 and insulating at U / t=9.
The IPR is compared with a threshold mean IPR �obtained in
the noninteracting limit� that scales with system size to de-
termine whether the system is metallic or insulating. How-
ever, the effect of the interactions on the threshold mean IPR
is unknown, as are the effects of the unusual statistical dis-
tribution of the IPR, the latter having been discussed by
Mirlin.38 In part to circumvent such problems, here we focus
on the characterization of the metallicity of a system via its
optical conductivity.

In the HF treatment of LiAlyTi2−yO4 by one of us and
co-workers,10 a metal-to-insulator transition, again found
from an examination of the behavior of the IPR, was found.
In that work the local magnetic moments were restricted to
lie along the z axis, geometrically frustrated corner-sharing
tetrahedral lattices were studied, and a quantum-site-
percolation model of disorder was used. Open questions con-
cern whether the suppression of the DOS at the Fermi level
depends on the lattice type and the disorder model. To an-
swer these questions, we choose to study three-dimensional
simple-cubic lattices, which are unfrustrated, and consider a
uniform box-distribution type of disorder. We also allow lo-
cal magnetic moments to develop in the xz plane, which
increases the spin degree of freedom, believed to be impor-
tant in some circumstances.30

We also mention the effective-field theory analysis of
local-moment formation in disordered interacting Fermi liq-
uids by Milovanovic, Sachdev, and Bhatt.39 The potential
importance of such moments in the metal-insulator transition
was left as an outstanding question and will be one of the
main aspects addressed in this paper.

C. Summary of new results

In this paper, we apply the real-space self-consistent HF
method to electrons moving on simple-cubic lattices at 1/4
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filling with various strengths of interaction and disorder.
Here we report our results from calculations of the DOS and
ac conductivity. When examining systems with a disorder
strength of W / t=6, we find that the DOS and the low-
frequency conductivity are enhanced by a weak interaction
�U / t�3�, and for this range of interactions there are no mag-
netic moments in the system, and the ac conductivity is
Drude like. With a stronger interaction �U / t�4�, a suppres-
sion of the DOS at the Fermi level and qualitative changes
�non-Drude like� in the low-frequency conductivity are
found. We find that concomitant with these changes in be-
havior is the appearance of local magnetic moments in the
system although no evidence of magnetic ordering is present.
For this disorder strength and electron concentration a metal-
to-insulator transition is likely to take place at a critical
Uc / t�9; that is, roughly 3/4 of the noninteracting band-
width. We have also examined the weaker disorder strength
of W / t=2 and although one finds a small suppression of the
DOS with increasing Hubbard interaction, for no value of
U / t do we find a metal-to-insulator transition.

II. REAL-SPACE SELF-CONSISTENT HARTREE-FOCK
APPROXIMATION

For ordered systems, one may transform the Hamiltonian
to wave-vector space and then expand the many-particle
wave function in a complete set of Bloch wave functions in
the corresponding periodic potential. However, in disordered
systems there is no translational symmetry and working in
wave-vector space does not simplify the problem. Therefore,
we will work in real space. In our real-space formulation of
HF theory the disorder is treated exactly and therefore this
approximation allows for us to include in our calculations the
effects of localization. In the real-space formulation of HF
theory �e.g., see page 349 of Ref. 40� the local Hubbard
interaction term is replaced by

n̂i↑n̂i↓ = ĉi↑
† ĉi↑ĉi↓

† ĉi↓

� �n̂i↓�n̂i↑ + �n̂i↑�n̂i↓ − �n̂i↓��n̂i↑� − ĉi↑
† ĉi↓�ĉi↓

† ĉi↑�

− ĉi↓
† ĉi↑�ĉi↑

† ĉi↓� + �ĉi↓
† ĉi↑��ĉi↑

† ĉi↓� . �2�

Here, the terms that are proportional to fluctuations about the
mean values squared are ignored. Also, we do not consider
the expectation values that arise from superconducting cor-
relations.

Substituting Eq. �2� into the Anderson-Hubbard Hamil-
tonian in Eq. �1�, one finds the HF effective Hamiltonian
given by

Ĥeff = − t �
�ij�,�

�ĉi�
† ĉj� + ĉj�

† ĉi�� + �
i,�

�i�
effĉi�

† ĉi�

− U�
i

�hi
−ĉi↑

† ĉi↓ + hi
+ĉi↓

† ĉi↑� , �3�

where

�i�
eff = �i + Uni�̄ ni� = �n̂i�� �4�

hi
+ = �ĉi↑

† ĉi↓� = �Ŝi
+� hi

− = �ĉi↓
† ĉi↑� = �Ŝi

−� �5�

Here, ni�= �n̂i�� is the expectation value of the number of
electrons with spin � on site i; �i�

eff is the spin dependent
effective on-site energy at site i, and it is the sum of the
original on-site energy plus the Hubbard U times the number
of electrons with the opposite spin on that site. Therefore, in
the absence of the last term one includes the effects of the
Hubbard interaction via an effective shift of the on-site en-
ergies. The last term in Eq. �3� does include the effective
local fields hi

� and these guarantee that the effective Hamil-
tonian is invariant under rotations in spin space. In the self-
consistent formulation of HF theory, one must ensure that the
solutions of the effective one-electron Hamiltonian given in
Eq. �3� lead to local spin-resolved charge densities and ef-
fective local fields that satisfy Eqs. �4� and �5� when the
expectation values are taken with respect to the HF ground-
state wave function.

Numerical approach

As mentioned above, one is required to solve the effective
Hamiltonian self-consistently. In a system with Ns sites, one
has 4Ns variational parameters that have to be determined
numerically so that the ground-state energy is minimized. �In
addition, one includes a chemical potential to fix the elec-
tronic density at whatever concentration is desired. In our
results below we focus on 1/4 filling.� To solve the effective
Hamiltonian self-consistently, one begins with a random ini-
tial guess for the 4Ns parameters that satisfies the constraint
of fixing the total number of electrons and then iterates to
self-consistency. One needs to repeat the above procedure
with many other initial guesses of the variational parameters
and below we examine the self-consistent states having the
lowest energy HF energies, EHF.

After self-consistency is achieved for the HF solutions,
we obtain effective single-electron energies, �En�, and the
DOS is then given by

DOS�E� = �
n

��E − En� . �6�

In our results shown below, we broaden each delta function
using a Gaussian function given by

f�x� =
1

d�2	
e−�x − x0�2/2d2

, �7�

where x0 is where f�x� takes maximum value and d is the
standard deviation �or the broadening width�.

To calculate the ac conductivity, one first obtains the
imaginary part of the current-current correlation function us-
ing the Kubo formula

Im 
xx�q = 0,�� =
	e2t2

Ns
�

n,m,n�m

��n,m	f�m� − f�n�
�	� − �m − n�
 ,

�8�

where
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�n,m = �
i,j,�,��

��i+x̂,�
n �i,�

m �j+x̂,��
m �j,��

n − �i+x̂,�
n �i,�

m �j,��
m �j+x̂,��

n

− �i,�
n �i+x̂,�

m �j+x̂,��
m �j,��

n + �i,�
n �i+x̂,�

m �j,��
m �j+x̂,��

n � . �9�

Then, the real part of the ac conductivity is41

�1��� =
Im 
xx�q = 0,��

�
. �10�

To calculate the ac conductivity numerically, we broaden
each delta function in Eq. �8� using a Gaussian function
given by Eq. �7�. In our results below we state the broaden-
ing for each quantity.

III. RESULTS

A. Disorder strength

While the Anderson-Hubbard model is often used to study
disordered electronic systems with strong electron-electron
interactions, it is not always clear how the parameter space
studied for such models relates to real materials, particularly
with regards to the strength of the disorder potential. Here
we focus on the appropriate range of disorder strengths.

When characterizing the strength of the potential energy it
is usual to compare U to the noninteracting bandwidth B for
electrons moving on an ordered lattice. For a 3D simple-
cubic lattice that is B=12t. Weak interactions correspond to
U /B�1, intermediate to U /B�1, and strong to U /B�1.
This leads to the question, is it permissible to use the same
characterization for the disorder strength?

We have examined the U=0 Anderson model �at 1/4
filling—the same as the electronic concentration studied
throughout this paper� using a box distribution disorder—all
on-site energies between −W /2 and +W /2 are equally prob-
able. We have then found the ac conductivity of this system
for various W / t and here we discuss the results correspond-
ing to W / t=1,2, and 6. If one fits our conductivity data to
the real conductivity of a Drude model, the latter is given by

�1��� =
�dc

1 + ����2 , �11�

one obtains estimates of the relaxation time and the dc con-
ductivity shown in Table I. The difference between the
�→0 extrapolations quantifying the dc conductivities are
striking, in that for W / t=1 we find �dc�15	e2t2, whereas
for W / t=6 we find �dc�0.26	e2t2, implying that the con-

ductivity of these systems differs by almost a factor of 60.
Clearly, the noninteracting W / t=6 �or equivalently W /B
=1 /2� system corresponds to a “bad metal.” �However, while
the W / t=6 system is a very poor conductor, for this disorder
strength we are not approaching a 1/4-filled Anderson insu-
lator, and, in fact, our calculations and existing data14 allow
us to determine that �F−�C�4t, with �C being the location
of the mobility edge.�

Further justification for this claims follows from a second
way of characterizing the “strength” of the disorder and cor-
responds to evaluating the elastic mean-free path, �e, in the
Born approximation. One finds42

�e

a
�

4	

z2  B

W
�2

, �12�

where a is the lattice constant and z is the coordination num-
ber for a particular lattice. Therefore, for W / t=1, 2, and 6
one has �e /a�50, 13, and 1.4, respectively. While one does
not expect the Born approximation to be accurate quantita-
tively, especially when it predicts �e�a, from these results it
follows that for noninteracting electrons moving on a three-
dimensional simple-cubic lattice with W /B=1 /2 one has a
very short mean-free path. So, while it might be conventional
to refer to a U /B=1 /2 correlated electronic systems as being
intermediate coupling, for a disorder strength of W /B=1 /2
the system remains metallic but the effect of the disorder
potential is indeed very large. As we see in the results below,
it is only for such large disorder strengths, which by itself
leads to substantial localization effects, that we find a
disorder+correlation-driven metal-insulator transition.

�Also, note that in our previous study of lithium titanate10

we employed a quantum-site-percolation model, which for-
mally corresponds to setting all energies on A sites to be zero
while those on the B sites are infinite—that is, the B sites are
removed from the conduction path. With such a large disor-
der potential �of infinite strength for a binary-alloy model of
disorder� we did obtain a metal-insulator transition.10�

B. Variation in the density of states

As mentioned in the introduction, one of the motivations
for this study was to better understand the conditions neces-
sary for the appearance of a suppression in the DOS at the
Fermi level. Previous work10,43 was performed on a lattice
appropriate for the description of LiAlyTi2−yO4, namely, on a
corner-sharing tetrahedral lattice. Also, that work was com-
pleted using a restricted HF theory: in terms of the above-
presented formalism, the effective local fields hi

� were set to
be zero, meaning that the spin degrees of freedom were re-
stricted to develop along the quantization axis �z�.

All of our results here are for a 3D simple-cubic lattice—
unlike the corner-sharing tetrahedral lattice, this lattice is bi-
partite and therefore unfrustrated. In terms of the magnetic
degrees of freedom, here we present results from our new HF
calculations for two different situations. First, we further re-
strict the system to be paramagnetic, meaning that we do not
allow for the formation of any local moments—this means
that ni↑ is forced to be equal to ni↓. Second, we relax the
restriction of the moments being along the z axis and allow

TABLE I. Conducting properties of noninteracting electrons
moving on a 3D simple-cubic lattice with a box distribution of
disorder of strength W, for an electron filling of 1/4. The �dc and �
are found from fits of the ac conductivity to Eq. �11�.

W / t �dc		e2t2
 �	t−1


1 15 11

2 2.3 3.6

6 0.26 0.45
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them to form in the xz plane, i.e., hi
� is nonzero but real.

Some of our results for the DOS for a three-dimensional
simple-cubic lattice are shown in Fig. 1. The lattice size is
183 and the electronic filling factor is 1/4. The interaction
strength is U / t=11.5, where the DOS at the Fermi level has
its largest suppression and the disorder is modeled with a box
distribution for a disorder strength of W / t=6. The nonpara-
magnetic HF result shows a strong suppression of the DOS
at the Fermi level; however, the paramagnetic HF result
shows no suppression at all.

Since we only found a suppression of the DOS with non-
paramagnetic HF solutions, both with hi

�=0 �in Ref. 10� and
hi

� being real, the magnetic moments are essential to the
suppression and to the metal-insulator transition �at least
within the HF context�. The moments found for the real hi

�

HF ground state are strongly noncollinear—e.g., see our dis-
cussion in Ref. 30. Therefore, the restriction of collinear mo-
ments employed in Refs. 10 is not important to the suppres-
sion. Also, the type of lattice does not matter because the
suppression is found both for the frustrated corner-sharing
tetrahedral lattices �in Ref. 10� and for the unfrustrated
simple-cubic lattices studied in this paper. In addition, the
type of disorder does not matter since the suppression is
found either with a quantum-site-percolation model �in Ref.
10� or with a uniform box-distribution type of disorder.

To better quantify the presence of the local moments we
have calculated the average magnitude of the moment per
electron. We define an Edwards-Anderson-type order param-
eter

m̄ =
1

Ne
�
i=1

Ns

��Ŝi��, Ŝi �
1

2
ĉi�

† �����ĉi�� �13�

where Ŝi is the spin operator on site i, �� are the Pauli matri-
ces, and Ne �Ns� is the number of electrons �lattice sites�. The
quantity m̄ is similar to the Edwards-Anderson order
parameter44 in spin-glass theory, which is used to distinguish
between glass and nonglass phases45 but here we use m̄ as a
characterization of local magnetic-moment formation.

We have considered many different parameter sets and
lattice sizes �see discussions below� and our results for m̄ are
shown in Fig. 2. We see that there are no local moments in
the noninteracting �U / t=0� or weakly interacting systems
�U / t�3� for W / t=2 and 6. For the 183 lattice, U / t=3, and
W / t=6, m̄ is only about 0.0045, and for the 183 lattice,
U / t=3, and W / t=2 we find m̄=0.00002; therefore, this
quantity is expected to be zero in the thermodynamic limit.
For larger U / t we do find moments and for a given interac-
tion strength m̄ increases as one increases the strength of the
disorder. In all of the subsequent data that we show having a
suppression of the DOS at the Fermi level and non-Drude-
like conductivity the average magnitude of the local mag-
netic moments m̄ is always nonzero.

Now, we consider the variation in the DOS in more detail.
We have calculated the DOS for a 1/4-filled three-
dimensional simple-cubic lattice of size 123 for various
strengths of interaction U / t=0,1 ,2 , . . . ,8, 9, and 11.5. The
on-site energies obey a uniform box distribution and the dis-
order strength is W / t=6. Results are averaged over four re-
alizations of disorder—a limited study using more realiza-
tions of disorder found no qualitative changes when more
realizations were employed. The maximum differences for
the self-consistency are between 2�10−5 �for U / t=1 and 2�
and 1.2�10−3 �for U / t=11.5�. �Typically, the average differ-
ences were at least one order of magnitude smaller than the
maximum differences.� In Fig. 3, we show the DOS of this
system obtained with d=0.048t. �The DOS curves are
smooth and well separated from one another around the
Fermi level, whereas for smaller broadening these curves are
bumpy and not well separated, and we therefore choose

-1 0 1

(E-E
F
)/t

0

D
en

si
ty

of
st

at
es

PM HF
non-PM HF

FIG. 1. �Color online� Density of states of a three-dimensional
simple-cubic lattice of size 183 for an electronic filling of 1/4. The
interaction strength is U / t=11.5 and the disorder strength is W / t
=6. The nonparamagnetic HF result �dashed curve� shows a strong
suppression of the DOS at the Fermi level, whereas the paramag-
netic HF result �solid curve� shows no such suppression. The broad-
ening used corresponds to d=0.024t.

0 3 6 9
U/t

0

0.15

0.3

m

12
3
, W/t=6

18
3
, W/t=6

18
3
, W/t=2

FIG. 2. �Color online� The average magnitude of the magnetic
moment per electron �m̄� vs interaction strength �U / t� for a 123

lattice with disorder strength W / t=6 �squares� and for an 183 lattice
with W / t=2 �diamonds� and 6 �circles�.
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d=0.048t as the broadening width for the DOS of this sys-
tem.�

As shown in Fig. 3, for U / t=0–3, each DOS does not
show any suppression. In fact, the DOS at the Fermi level is
enhanced as the interaction is turned on and then increased.
The suppression appears for the first time when U / t=4 and
the amount of the suppression increases as U / t is further
increased. We find that the maximum suppression, for 1/4
filling, occurs around U / t=11.5, although there is little dif-
ference between the DOS for this U / t and other Hubbard
interactions close to this strength.

C. Behavior of the optical conductivity

Extracting the low-frequency behavior of the conductivity
is nontrivial and we briefly outline the numerical approach
taken. We have examined the ac conductivity obtained with
different values of the Gaussian broadening width d in Eq.
�7� and have selected a value for d based on the following:
for a three-dimensional simple-cubic lattice of size 123 with
disorder strength W / t=6 and interaction strength U / t=6, we
calculated the ac conductivity with broadening widths
d=0.012t, 0.03t, and 0.06t �results not shown�. Because the
broadening width d has a finite value, the contributions of
frequencies between 0 and d makes the imaginary part of the
current-current correlation function Im 
�q=0,��=��1���
nonzero around �=0. As a result, when calculating �1��� by
dividing Im 
�q=0,�� by �, we obtain diverging �1���
around �=0. The divergence is simply an artifact of numeri-
cal procedure used �a broadening width d that is finite� and is
not associated with the physics of the system being investi-
gated. Therefore, we have to cut off the conductivity curves
at low frequencies ��d� where they “turn up.” Recalling that
the DOS data of Fig. 3 used d=0.048t, we choose d=0.03t as
the broadening width for the conductivity because the corre-
sponding conductivity curves are smooth and still retain

much of the low-frequency behavior—simply, we are not
forced to discard as much low-frequency data as we would
with d=0.048t. �As reviewed in the discussion, this low-
frequency behavior is an important quantity to know.�

We now discuss our results, juxtaposing DOS and ac con-
ductivity data for each parameter set. First, we discuss results
for studies done on lattices of size 123 with a disorder
strength of W / t=6; an average over four realizations of dis-
order is used for each data set. We increase the interaction
strength U / t from zero up to roughly 12.

The results for the noninteracting case �U / t=0� and for
interactions U / t=1, 2, and 3 are shown in Fig. 4. The solid
lines in �a� and �b� represent the DOS and the ac conductivity
for the noninteracting electrons, respectively. The ac conduc-
tivity has a shape that is typical of a metal but the low-
frequency peak is broad. When we turn on the interaction to
U / t=1 �dotted lines�, we see an enhancement in the DOS at
the Fermi level. Concomitantly, the low-frequency ac con-
ductivity also increases from the noninteracting value. These
enhancements could be a result of the screening of the dis-
order by the Hubbard interactions. As the interaction strength
U / t increases to 2 �dashed lines� and 3 �dash-dotted lines�,
we find that the DOS at the Fermi level and the low-
frequency ac conductivity are both further enhanced. There-
fore, for a disorder of W / t=6 at 1/4 filling, a weak interac-
tion of U / t�3 enhances the low-frequency ac conductivity
due to an increase in the DOS at the Fermi level. Recall,
from Fig. 2, that for this range of interaction strengths no
local moments are formed.

The results for interactions U / t=3, 4, 5, and 6 are shown
in Fig. 5. A suppression of the DOS at the Fermi level first
appears for U / t=4 and its value is smaller than that of the
noninteracting electrons and that of the U / t=3 system. The
low-frequency conductivity for U / t=4 is also smaller than
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FIG. 3. �Color online� Density of states of the Anderson-
Hubbard model on a 1/4-filled three-dimensional simple-cubic lat-
tice of size 123 for a disorder strength of W / t=6. Results without
interactions �U / t=0� and with interaction strengths U / t
=1,2 , . . . ,6, 9, and 11.5 are averaged over four realizations of spa-
tial disorder. The vertical line represents the Fermi level. The broad-
ening width is d=0.048t.
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FIG. 4. �Color online� �a� Density of states and �b� ac conduc-
tivity for a 1/4-filled three-dimensional simple-cubic lattice of size
123 with a disorder strength W / t=6 with no interactions �U / t=0�
and with Hubbard interaction of strengths U / t=1, 2, and 3. The
DOS do not show any suppression at the Fermi level and in fact
increase as the interaction strength U / t increases. The low-
frequency conductivity is enhanced as U / t is increased and the ac
conductivity is Drude like. We have used a broadening correspond-
ing to d=0.048t for the DOS and d=0.03t for the conductivity.
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that of the U / t=3 system. As the interaction strength U / t
increases to the values of 5 and 6, the amount of the suppres-
sion of the DOS at the Fermi-level increases, and the low-
frequency conductivity decreases. Each of the ac conductiv-
ity curves still extrapolates to a nonzero value when the
frequency � / t→0. We note that starting from U / t=5, the
low-frequency conductivity is smaller than that of the non-
interacting electrons. More importantly, the ac conductivity
for U / t=4, 5, and 6 is no longer Drude like. In fact, our
conductivity curves are similar to the localization-enhanced
Drude theory of Mott and Kaveh46 and such conductivities
have been observed experimentally previously in the metallic
phase near the metal-insulator transition in experimental
work on conducting polymers.47

We show the results for interaction strengths U / t=6, 9,
and 11.5 in Fig. 6. Compared to U / t=6, the DOS at the
Fermi level gets further suppressed. However, the amount of
the suppression for U / t=9 and 11.5 are not that different. It
is very clear that, on the scale of Fig. 6, the dc conductivity
for U / t=9 and 11.5 are both zero. The ac conductivity for
U / t=9 and 11.5 both increase as � / t increases up to the
value of � / t�3.

We fit the ac conductivity for U / t=6, 9, and 11.5 with
power-law relations. For U / t=6, the system appears to be
metallic and we fit its ac conductivity using the following
equation:

�1��� = 	e2t2��0 + ���� , �14�

where �0, �, and � are the parameters to be determined. The
range of frequency over which we chose to fit the data is
0.04�� / t�1.2 �recall that we used d=0.03t in producing
these conductivity curves� and we obtain

�1��/t�/�	e2t2� = �0.002 � 0.001� + �0.145 � 0.001�

���/t�0.501�0.007. �15�

Here, the uncertainties are one standard deviation. We learn
from this power-law fit that the dc conductivity for the sys-
tem with W / t=U / t=6 is �0 / �	e2t2�=0.002�0.001, which
is quite close to but still above zero. Therefore, we expect
that the system is a metal. We also see that the exponent of
the frequency is �=0.501�0.007, which is the exponent
�0.5� that appears in the ac conductivity of noninteracting
electrons with strong disorder, in the metallic regime
close to the transition,48 where �1��� near �=0 goes as
�1���−�0���.

We fit the ac conductivity for U / t=9 and 11.5 over the
ranges of � / t� 	0.074,0.267
 and � / t� 	0.074,0.330
, re-
spectively. Setting �0=0 we obtain

�1��/t�/�	e2t2� = �0.23 � 0.01���/t�1.89�0.02 �16�

for U / t=9 and

�1��/t�/�	e2t2� = �0.178 � 0.006���/t�2.05�0.02 �17�

for U / t=11.5. These exponents are very close to 2, and,
again, this is the same as the exponent for noninteracting
electrons for an even stronger disorder, namely, for a disor-
dered system in the insulating phase,48 where �1�����2 in
the low-frequency regime.

Therefore, the system with W / t=6 is metallic for U / t
�6 and insulating for U�9. By examining other U / t around
9 �data not shown� we can identify that the metal-to-insulator
transition for this disorder and electronic filling indeed takes
place at some critical �U / t�cr�9.

It is always desirable to complete studies with larger lat-
tices, where finite-size effects are hopefully less punitive. In
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FIG. 5. �Color online� �a� Density of states and �b� ac conduc-
tivity for a 1/4-filled three-dimensional simple-cubic lattice of size
123 with a disorder strength W / t=6 and Hubbard interaction
strengths U / t=3, 4, 5, and 6. Each of the DOS for U / t=4, 5, and 6
shows a suppression at the Fermi level and the amount of the sup-
pression increases as U / t increases. The low-frequency conductiv-
ity decreases as U / t increases and the ac conductivity is no longer
Drude like.
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FIG. 6. �Color online� �a� Density of states and �b� ac conduc-
tivity for a 1/4-filled three-dimensional simple-cubic lattice of size
123 with a disorder strength W / t=6 and Hubbard interactions of
strength U / t=6, 9, and 11.5. Each DOS shows a suppression at the
Fermi level and the low-frequency conductivity is also
suppressed—both suppressions increase with increasing interac-
tions. The ac conductivity for U / t=6 extrapolates to a nonzero dc
conductivity as � / t→0, however, the dc conductivity for U / t=9
and 11.5 are both very close to zero.
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our study the benefits of having such data are �i� better en-
ergy resolution of the DOS near the Fermi level and below
we make clear the usefulness of such data; and �ii� better
resolution of the ac conductivity at low frequencies. Using
our computing resources the largest lattice that we have man-
aged to treat, and are able to explore various parameters sets,
is an 183 lattice with 1/4 filling. For this lattice with our HF
formulation employing real hi, it takes about one month to
achieve self-consistency in the HF calculations for a single
realization of disorder and due to this enormous amount of
time we solve the problem only for one realization of disor-
der.

For a disorder strength of W / t=6 and interaction
strengths of U / t=0, 3, 6, and 9, we show the resulting DOS
in Fig. 7. �Due to the higher number of energy levels per unit
frequency we have used 1/2 the broadening width
�d=0.024t� as we did for the 123 studies.� We note that the
behavior of the DOS in this larger lattice is very similar to
the 123 lattice that we have studied earlier.

The corresponding ac conductivity for the same system is
shown in Fig. 8. Note that this data corresponds to a very
small Gaussian broadening of only d=0.01t and therefore we
can obtain data down to very low frequencies. We clearly see
that the data is similar �qualitatively and quantitatively, indi-
cating that our data does not suffer from strong finite-size
effects� to that shown earlier for a 123 lattice. Further, the
extrapolation of the conductivity in the zero-frequency limit
makes clear the nonconducting nature of the U / t=9 system.

D. System with a weak disorder

So far, we have studied systems with a disorder strength
of W / t=6. As mentioned earlier, this corresponds to a non-
interacting disordered electronic system with a very low dc
conductivity—that is, this corresponds to a bad metal. We
found a suppression of the DOS at the Fermi level for inter-
action strengths U / t�4. When this happens, we find that the
ac conductivity is no longer Drude like, and for strong
enough interactions, U / t�9, the system no longer possesses

a metallic conductivity. A natural question then arises: for
smaller strengths of disorder does one still obtain a metal-
insulator transition?

In Sec. III D we present our results for a weaker disorder
corresponding to W / t=2. Compared to the noninteracting
W / t=6 system, the noninteracting W / t=2 system has a
mean-free path and dc conductivity almost an order of mag-
nitude larger.

For such disorder we are forced to use a large lattice
because the energies are strongly degenerate in small lattices.
In Fig. 9 we show the DOS for an 183 simple-cubic lattice
with interaction strengths U / t=3, 6, 9, 11.5, 12, and 15.

For this weak disorder strength, the interaction strength of
U / t=3 does not produce a suppression in the DOS at the
Fermi level. However, for U / t=6, 9, 11.5, and 12 a suppres-
sion in the DOS appears at the Fermi level, and the amount
of suppression is deepest at U / t=11.5. For U / t=15 we find
that the suppression has been eliminated.

In Fig. 10, we show the ac conductivity for the same
system with interaction strengths up to U / t=12. The conduc-
tivity for U / t=3 is clearly metallic and Drude like, and ex-
trapolates to roughly �dc�1.4	e2t2 in the low-frequency
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FIG. 7. �Color online� Density of states for the Anderson-
Hubbard model on a 1/4-filled three-dimensional simple-cubic lat-
tice of size 183. For an intermediate disorder of W / t=6, interaction
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limit. This value is roughly half that of noninteracting elec-
trons with the same strength of disorder.

With increasing U / t the conductivity at low frequencies is
lowered with U / t=9 and 11.5 having very similar behavior.
However, for U / t=12 the conductivity increases near
�=0—this behavior persists for even larger Hubbard ener-
gies. Therefore, this disorder strength does not lead to a non-
metallic conductivity for any Hubbard energy that we have
studied.

To aid in the understanding the above results, namely, that
for a larger disorder one does obtain a metal-insulator tran-
sition, whereas for smaller disorder one does not, we have
examined the local charge densities for these parameter sets.
In Fig. 11, we show histograms of the local charge density
for the 183 lattice with disorder strength �a� W / t=6 for
U / t=0 and 9, and �b� W / t=2 for U / t=0 and 11.5.

For disorder strength W / t=6, when the system is nonin-
teracting the charge density is spread out over a large range
with one large peak close to n�0.1. That is, in the absence

of interactions and for this seemingly large disorder �see pre-
vious discussion� the ground state corresponds to a very
small occupation of sites with large on-site energies with a
increasing occupation as the on-site energies decrease. How-
ever, when the interaction strength is strong �U / t=9�, the
original peak at the small charge density does not change
much but a large new peak around n�0.9 forms. That is, for
this disorder the interactions lead to very different charge
densities and correspond to those of an insulating system.
The contrasting situation for weak disorder is clear from the
figure—the charge distribution is quite similar between
the noninteracting �U / t=0� and strongly interacting
�U / t=11.5� systems and in both cases one has metallic con-
duction.

We have also plotted the histograms for the effective on-
site energies, that is, �i�

eff from Eq. �4� averaged over both
spins since this quantity has been suggested to be important
in the understanding of the metallicity of such ground
states.49,50 However, the histograms for ��i�

eff��, for the same
parameter sets as those used in Fig. 11, show essentially no
difference for these interacting HF ground states, one of
which we found to be metallic and one insulating.

IV. DISCUSSION

Our numerical analysis of the real-space self-consistent
HF treatment of the Anderson-Hubbard model away from
1/2 filling on 3D simple-cubic lattices gives rise to three
main conclusions, each of which we discuss in relation to
previously published theoretical and experimental work.

�i� At least at 1/4 filling, and thereby well away from 1/2
filling, one requires sufficiently strong disorder to obtain a
metal-to-insulator transition.

As preliminary work to our study, we first characterized
the consequences of different strengths of disorder for non-
interacting electrons. For a disorder strength much less than
the noninteracting bandwidth, given by B=12t, we find a
large dc conductivity, consistent with theoretical predictions
of a large mean-free path. However, for a disorder strength
that is 1/2 of this bandwidth, we find a greatly reduced dc
conductivity, and applying Eq. �12�, estimate a mean-free
path of the same order as the lattice constant. Therefore, for
the latter disorder strength the effects of the localization of
electronic eigenstates are considerable. Note that we have
treated the disorder of the Anderson-Hubbard model exactly
and have solved systems having large lattices with as many
as 183 sites, thereby allowing for such localization physics to
be present in our HF ground states.

At 1/4 filling and a disorder strength of W / t=6, we find
that a critical interaction strength of Uc / t�9 leads to a
metal-insulator transition, whereas a smaller disorder
strength of W / t=2 does not lead to any such transition for
any value of U / t that we have studied. Therefore, one con-
cludes that a disorder that is sufficiently strong and thereby
leads to strong localization effects is required to obtain such
a transition. Of course, as always throughout our conclu-
sions, this is what one may conclude via a HF treatment of
this model.
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�ii� In order to obtain a suppression of the DOS at the
Fermi level, one must allow for the development of local
magnetic moments.

The importance of local-moment formation in the disor-
dered metallic state was made clear in the seminal work of
Milovanovic, Sachdev, and Bhatt.39 The importance of such
moments in obtaining the metal-insulator transition is dem-
onstrated in our work.

The results from Fig. 1 make clear the necessity of allow-
ing for local moments �in a HF treatment� to form if one is to
obtain a suppression of the DOS. Further, the results from
Fig. 2, along with the DOS curves shown in Figs. 4–6, dem-
onstrate that to obtain such a suppression of the DOS local
magnetic moments must be present. The lattice and model of
disorder do not influence whether or not such moments ap-
pear.

We note that similar suppressions of the DOS within HF
treatments of this and related models have been found by
Logan and Tusch,36 one of us and co-workers,10 and most
recently by Shinaoka and Imada.20 In all of these studies a
restricted HF formulation that required magnetic moments to
form along some single chosen quantization axis was em-
ployed, again emphasizing that importance of allowing this
degree of freedom. However, whether or not “twisted spins”
that point in all directions possible are allowed30 does not
seem to be required.

Due to the considerable interest in the DMFT treatment of
correlated electrons, it seems appropriate to note that theories
going beyond the single-site Korringa-Kohn-Rostoker
coherent-potential approximation treatments of disorder
within DMFT, such as Ref. 51, also find non-Fermi-liquid
behavior. More recently, a variant of DMFT that, like this
paper, also tries to treat the disorder exactly, and used the HF
approximation in the evaluation of the off-diagonal self-
energy, has found52 zero-bias anomalies similar to those
shown in this paper.

�iii� When such moments develop, in addition to the sup-
pression of the DOS, one obtains a non-Drude-like ac con-
ductivity. With sufficiently strong disorder and interactions,
the dc conductivity is suppressed to zero and one obtains a
metal-insulator transition.

At least within our HF treatment, just above and just be-
low the interaction strengths leading to the metal-insulator
transition, one finds �−�dc��� and ���2 power-law be-
havior, the same as one finds for noninteracting electrons.
Whether this is a byproduct of HF being an effective one-
electron theory remains as an outstanding question.

We note that novel ac conductivities, including results that
are beyond that which we performed, namely, that included
the temperature dependencies, were also seen in the recent
work of Kobayashi et al.35 These authors used the same HF
decomposition as that used here. However, unlike our work
these authors focused on 1/2-filled systems in two dimen-
sions, and, in particular, on the properties of the novel 2D
metallic phase that was predicted based on earlier HF
work.32–34 These authors do not propose specific frequency
dependencies, unlike the results we give in Eqs. �14�, �16�,
and �17�, so the potentially important effect of differing di-
mensionalities remains unknown.

As mentioned in the introduction, the suppression of the
DOS at the Fermi energy and the associated metal-insulator

transition found in our earlier work on lithium titanate,10 was
the original motivation for this study. Since that paper new
exact diagonalization and Monte Carlo results28 have made
clear �albeit in two dimensions� that such physics is not an
artifact of using a HF approximation. Subsequent HF
work,20,53 using averages over very large numbers of com-
plexions of disorder, has found qualitatively similar results,
but has also managed to produce many more energy eigen-
values close to the Fermi energy, and thereby better probe
the functional form of the suppression of the DOS found in
all of these papers.

The origin of the suppression of the DOS is not deter-
mined by the present study although we have placed con-
straints on what physics �local moments and sufficiently
strong disorder� must be included in a model that will pro-
duce such behavior. In terms of existing theories, we note
that for weak disorder and weak interactions one may com-
plete a derivation54 of the Altshuler and Aronov result12 for
the Anderson-Hubbard model, and one finds that one gets an
increase in the DOS as U / t increases from zero. That is, one
finds

�N��� = �
U

1 − 	UN0�EF�
2 ���1/2 �18�

where � is some positive constant and N0�EF� is the DOS of
the noninteracting system at the Fermi energy. This is con-
sistent with the W / t=6 and U / t=0, 1, 2, and 3 DOS curves
that we found for the 123 lattice, as well as the W / t=6 and
U / t=0 and 3 curves for the 183 lattice �even though the
weak disorder kf�e�1 assumption of the Altshuler and
Aronov theory is not obeyed for our W / t=6 system�. For
larger U / t our HF numerics show that the sign of the shift of
the DOS changes, in that one has a suppression rather than
enhancement, as is clear from Figs. 4 and 5. Given that we
find that one must have local moments to have any suppres-
sion, even for weak disorder �see Figs. 2 and 9�, it’s clear
that one must extend the weak disorder paramagnetic Fermi
Altshuler and Aronov theory, which remains an outstanding
problem.

However, a completely different idea was made in a re-
cent HF and exact diagonalization study,20,53 and these au-
thors proposed that while the Altshuler and Aronov form of

N�E� � �E − EF�� �19�

may be adequate away from the Fermi energy, very near the
Fermi energy one instead finds a so-called soft Hubbard gap.
They showed that such physics in three dimensions gives rise
to

N�E� � exp�− �− � log�E − EF��3� . �20�

For one-dimensional systems with strong localization effects,
these authors provide independent justification for their
theory. However, to access the energies very close to EF in
both one and three dimensions, averages over very large
numbers of complexions of disorder were carried out.20,53

Our numerics do not have such good resolution but we
have examined DOS data for an 183 lattice for W / t=6 and
U / t=11.5 now averaged over three different complexions of
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disorder. First, we note that with a broadening roughly 1/5 of
that shown in our Fig. 7 we find that the DOS indeed does
indeed go to zero at EF; this is consistent with Refs. 20 and
53. Second, fitting the DOS data with these smaller broaden-
ing factors, for � / t�0.2 we find that Eq. �19� fits the data
well, and we obtain �=0.51�0.01. Therefore, we find the
same exponent as in the theory of Altshuler and Aronov.12

However, while our data for � / t�0.1 is sparse and therefore
not completely reliable, the functional form proposed in Eq.
�20� indeed fits our DOS curves reasonably well. Our limited
numerics therefore support the soft Hubbard gap
proposal20,53 at energies very close to EF.

Finally, we mention the relationship of our work to some
experimental results on transition-metal oxides that were
mentioned in the introduction. Sarma et al.11 have investi-
gated the electronic structure of LaNi1−xMnxO3. The conduc-
tance is proportional to �V, where V is the bias voltage. As

mentioned above, such a form fits our data very well. Kim et
al.13 have studied the transport and optical properties of
SrTi1−xRuxO3. Their low-frequency optical-conductivity data
is very similar to that which we obtained within HF. Our data
also agrees with the optical conductivity found in the disor-
dered metallic phase of conducting polymers.47 The analysis
of this data, based on the localization modified Drude
model,46 leads to the same 0.5 exponent as we obtained in
our unbiased power-law fitting, the result of which is given
in Eq. �15�.
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