
Rotationally invariant slave bosons for strongly correlated superconductors

A. Isidori1 and M. Capone2,1

1Dipartimento di Fisica, Università di Roma “La Sapienza,” Piazzale A. Moro 2, 00185 Rome, Italy
2SMC, CNR-INFM and ISC-CNR, Piazzale A. Moro 2, 00185 Rome, Italy

�Received 11 February 2009; revised manuscript received 24 July 2009; published 22 September 2009�

We extend the rotationally invariant formulation of the slave-boson method to superconducting states. This
generalization, building on the recent work by Lechermann et al. �Phys. Rev. B 76, 155102 �2007��, allows to
study superconductivity in strongly correlated systems. We apply the formalism to a specific case of strongly
correlated superconductivity, as that found in a multiorbital Hubbard model for alkali-doped fullerides, where
the superconducting pairing has phonic origin, yet it has been shown to be favored by strong correlation owing
to the symmetry of the interaction. The method allows to treat on the same footing the strong correlation effects
and the interorbital interactions driving superconductivity, and to capture the physics of strongly correlated
superconductivity, in which the proximity to a Mott transition favors the superconducting phenomenon.
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I. INTRODUCTION

The theoretical description of strongly correlated systems
and of the prototypical models introduced to understand their
behavior plays a central role in modern many-body theory.
Even if the number of materials of interest in which the
mutual interaction between electrons has been identified as
relevant is now countless, there is no doubt that the main
trigger for the development of the correlated-electron field
has been the discovery of high-temperature superconductiv-
ity in doped correlated insulators such as the copper oxides.
Yet, the link between strong correlation and high-
temperature superconductivity has not been established un-
ambiguously, which prompts for theoretical methods able to
describe the superconducting phenomenon in the presence of
strong electron correlations.

One of the main reasons why strongly correlated systems
and their properties are, at the same time, interesting and
hard to solve is that they are intrinsically out of weak-
coupling regimes, where a perturbative expansion can be
performed. Starting from an uncorrelated system and imag-
ining to continuously increase the degree of correlation, the
relevance of local repulsion gradually introduces constraints
to the electronic motion, leading eventually to the localiza-
tion of the carriers �Mott transition�. Thus a proper method
for correlated electrons should be able to introduce local con-
straints onto an otherwise uncorrelated state, that would be
naturally delocalized, i.e., spatially unconstrained.

A popular strategy which formally implements this point
of view is based on slave bosons.1,2 Within these approaches,
the Hilbert space is enlarged to include, besides fermionic
degrees of freedom associated to Landau quasiparticles, suit-
able extra degrees of freedom of bosonic character which are
typically related to local states. The auxiliary �slave� degrees
of freedom are then treated in a mean-field approximation,
leading to an effective low-energy theory for the quasiparti-
cles. The high-energy physics can only be recovered intro-
ducing fluctuations in the fields describing the auxiliary
particles.3 We can see this strategy as a way to enforce a
local point of view, which is expected to be correct in very
strong coupling, starting from delocalized noninteracting

states. In its most popular version, introduced by Kotliar and
Ruckenstein,2 one defines one boson for each local configu-
ration �namely, �0�, �↑ �, �↓ �, and �↑↓��, and the equivalence
between the physical Hilbert space and the new extended
space is enforced by imposing constraints which, as we shall
discuss below, imply that the local configurations should be
coherently labeled by the fermionic and bosonic degrees of
freedom, and that precisely one boson should be present on
each lattice site.

Yet, as thoroughly discussed in Ref. 4, the standard four-
boson representation2 for the single-band Hubbard model, as
well as its simplest generalizations to multiorbital models,5

are not suitable to handle arbitrary forms of the interaction
Hamiltonian, characterized by terms which cannot be put in
the form of density-density interactions, such as exchange
interactions associated to the Hund’s rule coupling. Further-
more, even for pure density-density interactions, the Kotliar-
Ruckenstein approach still remains inadequate to handle
charge-symmetry-breaking order parameters such as the su-
perconducting one in the Hubbard model. Slave-boson ap-
proaches to superconductivity in the Hubbard model have
indeed mostly used the approximately equivalent strong-
coupling t-J model and have been based on specific
assumptions.6

The first attempt in overcoming the inadequacy of
Kotliar-Ruckenstein’s representation was made by Li et al.,7

who proposed a spin-rotation invariant slave-boson formula-
tion of the single-band Hubbard model, while in Ref. 8
Frésard and Wölfle introduced a more general representation
for single-band models, in which spin and charge degrees of
freedom are treated on the same footing and rotational in-
variance involves both spin and particle-hole transforma-
tions. Although the formalism presented by these authors re-
fers only to a four-state system with the slave-boson fields
labeled in correspondence with the specific SU�2� � SU�2�
generators of spin and particle-hole rotations, it already has
all the ingredients required for describing systems with local
superconducting pairing. Such method has been indeed ap-
plied to the single-band attractive Hubbard model in Ref. 9.
Developing the ideas of these pioneering works in a more
systematic way, Lechermann et al.4 finally built a completely
basis-independent slave-boson formalism, suitable to de-
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scribe, within a generic multiorbital model, any arbitrary
form of local interaction. As it is found for Kotliar-
Ruckenstein’s approach, it is worth mentioning that, at
mean-field level, such formalism turns out to be equivalent10

to analogous extensions of the Gutzwiller approach.11,12

While the possibility of extending the formalism to super-
conducting states is mentioned in Ref. 4, the explicit deriva-
tion is limited to normal solutions, imposing no charge-
symmetry breaking. In the present work, instead, we lift this
restriction and consider explicitly the more general case of
full rotational invariance under any local transformation of
the electronic degrees of freedom and we apply the formal-
ism to solve a three-orbital model which has been proposed
to describe alkali-doped fullerides.13,14 Besides its relevance
to the fullerides, the model has important properties that led
us to choose it as an optimal benchmark for our method. The
model has indeed been shown to present “strongly correlated
superconductivity,”13 i.e., the enhancement of phonon-
mediated superconductivity in the proximity of a Mott tran-
sition. The key of the phenomenon is that a small attraction
which involves orbital and spin degrees of freedom is not
screened when charge fluctuations are frozen by strong cor-
relations. This leads to an enhancement of superconductivity
since the unscreened attraction now acts on strongly renor-
malized quasiparticles with a larger effective density of
states. This effect has been identified using dynamical mean-
field theory �DMFT�,15 which fully takes into account local
quantum fluctuations, but it has not been reproduced by or-
dinary slave-boson methods due to the difficulties in treating
interactions which are not of the charge-charge form, such as
those driving superconductivity in the model we are dealing
with. In this light, the model is an ideal test ground of the
ability of the rotationally invariant slave-boson method in
accurately treating general forms of interactions. On the
other hand, the model has only local �on-site� interactions,
which simplifies the approach.

The paper is organized as follows. In Sec. II we introduce
the rotationally invariant slave-boson method for models
with local superconducting pairing. In Sec. III we present the
multiorbital model used for the description of fullerenes, il-
lustrating the way it can be solved by means of the slave-
boson approach. In Sec. IV we present the results obtained
with our method and finally Sec. V is dedicated to conclud-
ing remarks and perspectives.

II. THE GENERAL FORMALISM

In this section we will explicitly extend the rotationally
invariant slave-boson formalism introduced by Lechermann
et al.4 to the possibility of describing superconducting states.
To facilitate the reading and the comparison with the formal-
ism of Ref. 4, whenever possible we shall use the same no-
tation for corresponding quantities.

A. Motivations

Without entering in details, we shall first provide a brief
reminder on slave-boson formulations, in order to face the
difficulties encountered with noninvariant approaches such
as Kotliar-Ruckenstein’s one.

In a generic multiorbital model the local Hilbert space of
electronic states is defined as the set of all the possible
“atomic” configurations at a given lattice site �for simplicity,
we will drop site indices throughout this section�; a natural
choice for the basis set of this space is provided by the 2M

Fock states

�n� � �d1
†�n1

¯ �dM
† �nM�vac�, �n� = 0,1� �1�

where �=1, . . . ,M are the local-orbital species and d�
† the

corresponding electron-creation operators. A slave-boson
representation is then constructed by mapping the local Hil-
bert space H �e.g., the Fock states �n�� onto an “enlarged”
Hilbert space H� generated by the tensor products of boson
operators ��

† and auxiliary fermion operators f�
†

H:��n�	 � H� :�
�
���

† �N��vac� � �n� f	 .

In the above expression �n� f refers to the Fock states gener-
ated by the auxiliary fermions f�

† , which correspond to qua-
siparticle �QP� degrees of freedom: their presence ensures
the possibility of describing Fermi-liquid properties within
the auxiliary-fields representation �note that the orbital basis
for quasiparticle degrees of freedom may not coincide, in
general, with that of the physical electron operator d�

†�. On
the other hand, an arbitrary number of auxiliary bosons ��,
for each species �, can in principle be present in the enlarged
Hilbert space, unless some constraints, which characterize
the specific form of the slave-boson representation, are im-
posed to its states. In other words, a given representation is
defined by the way in which the auxiliary states are selected
out of the enlarged space H� in order to represent uniquely
the original physical states �n�

�n� � �n� � ,

�n� � � �
�N�	,m

K�n,�N�	,m�

�

���
† �N��vac� � �m� f . �2�

Needless to say, the choice of a specific representation K,
apart from being consistent with the above uniqueness as-
sumption, must also provide some simplifications in the �lo-
cal� interaction Hamiltonian: the whole purpose of introduc-
ing auxiliary bosons is indeed the possibility of writing local
interactions as a sum of quadratic terms in the boson fields,
at the expense of a larger number of degrees of freedom and
a more complex structure of hopping terms.

In multiorbital generalization of Kotliar-Ruckenstein’s ap-
proach, 2M boson fields ����n are introduced in correspon-
dence with the original Fock states �n�, and the representa-
tion of such states in the enlarged Hilbert space reads

�n� � � �n
†�vac� � �n� f . �3�

The “physical states” in H� are therefore those states contain-
ing exactly one boson and whose quasiparticle content �n� f
matches the Fock configuration associated to the boson field
�n. From Eq. �3� it should be evident the noninvariant nature
of this representation under rotations of the quantization ba-
sis. Consider, in fact, an SU�M� rotation of the orbital
indices16
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d�
† = ��

U��d̃�
† , f�

† = ��
U�� f̃�

† . �4�

This rotation will induce a corresponding unitary transforma-
tion on both physical and QP Fock states, �n�
=�mU�U�nm�m̃�, so that the representation of physical states
would now read

�m̃� � = �
nm�

�Umn
† �n

†Unm���vac� � �m̃�� f̃ = �
m�

�̃mm�
† �vac� � �m̃�� f̃ .

�5�

In the new orbital basis, therefore, the slave-boson represen-
tation does not retain its original form, and more specifically
the definite relation between physical states and their quasi-
particle content no longer holds. As discussed in Ref. 8, in-
deed, only disentangling physical and quasiparticle degrees
of freedom it becomes possible to formulate rotationally in-
variant slave-boson representations.

As a consequence of its basis-dependent nature, Kotliar-
Ruckenstein’s approach can be applied only to systems
whose local Hamiltonian can be written, in an appropriate
basis, in terms of purely orbital-density operators n̂�=d�

†d�,

Hloc = �
�

��
0 n̂� + �

��

W��n̂�n̂�, �6�

i.e., when the Fock states �n� are eigenstates of Hloc. In this
case, the representation of Hloc in the enlarged Hilbert space
can be easily written as a free-boson Hamiltonian

H� loc = �
n

En�n
†�n, �7�

with En=����
0n�+���W��n�n�. We remark, however, that

the definite relation imposed between quasiparticle degrees
of freedom and the �physical� Fock content of boson fields
inhibits the development of those spontaneous symmetry-
breaking order parameters that cannot be expressed in terms
of orbital-density operators �e.g., superconductivity, magne-
tization perpendicular to the spin-quantization axis, etc.�.

B. Representation of physical states

The electron Hamiltonian for a generic multiorbital model
with purely local interactions is given by

H = Hkin + �
i

Hloc�i� , �8�

Hkin = �
k

�
��

����k�dk�
† dk�, �9�

where all the local terms, including the chemical potential
and the orbital energy levels, are included in Hloc, so that
�k����k�=0.

In comparison to the Sec. II A, we choose here, as the
basis set for the �physical� local Hilbert space, a generic set
of states ��A�	 �not necessarily Fock states� that are eigen-
states of the local particle-number operator n̂�d�=��=1

M d�
†d�,

with eigenvalues NA. Eventually, among these sets, we can
choose the eigenstates ����	 of the local Hamiltonian since

Hloc commutes with the local number operator. The basis set
for quasiparticle states, instead, is still given by the Fock
states �n� f generated by the auxiliary fermion operators f�

† .
As discussed previously in pointing out the limitations of

Kotliar-Ruckenstein’s approach, the key ingredient in con-
structing rotationally invariant slave-boson representations is
to disentangle physical and quasiparticle degrees of
freedom.4 Therefore, we introduce a set of auxiliary boson
fields ����An associated, in principle, to each pair
��A� , �n� f� of physical and quasiparticle states, without as-
suming any a priori relation between those states in the en-
larged Hilbert-space representation. Depending on the phases
one takes into account, however, there exist some limitations
in the possible H� states �An

† �vac� � �n� f which can figure in
the representation of a physical state �A�

�A� � ��
n

�An
† �vac� � �n� f . �10�

Indeed, if we limit to normal phases as in Ref. 4, it is suffi-
cient to consider, for a given state �A�, only those states �n� f
which have exactly the same number of particles of �A�; in
other words, physical states with a definite number of elec-
trons are represented by a superposition of auxiliary states
characterized by the same number of quasiparticles. On the
other hand, when allowing for the spontaneous breaking of
particle-number conservation, as in superconducting states,
we need to consider, for each state �A�, all the Fock states �n� f
characterized by

��
�=1

M

n� − NA�mod 2� = 0,

i.e., all the 2M−1 quasiparticle states with the same statistics
of �A�. While the former representation is invariant only un-
der rotations of the QP basis that are block diagonal in the
quasiparticle occupation number ��=1

M n�, the latter is invari-
ant under a larger class of QP rotations, represented by all the
unitary transformations that preserve the statistics of quasi-
particle states: in such representation, the quasiparticle num-
ber operator is no longer a conserved quantity and its expec-
tation value does not correspond to any physical observable
as particle-hole transformations may change its value.

The explicit representation of �A� will then read, in the
fully invariant formalism

�A� � �
1

�2M−1�
n

�An
† �vac� � �n� f �11�

with the sum running over the 2M−1 QP Fock states whose
particle-number parity equals that of �A�. It is worthwhile to
remark that the above representation cannot be further en-
larged, including, for example, in the definition of �A� �, the
remaining quasiparticle states with opposite statistics. This,
in fact, would lead to unphysical results such as nonvanish-
ing expectation values of odd numbers of fermion operators.

Constraints

In order to characterize uniquely the physical states
among all the states of the enlarged Hilbert space H� , it is
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necessary and sufficient that the selected states satisfy, as
operator identities, the following constraints:

�
An

�An
† �An = 1, �12�

�
A

�
nn�

�An
† �An��n��f�

† f���n� = f�
† f��, �13�

�
A

�
nn�

�An
† �An��n��f�

† f��
† �n� = f�

† f��
† . �14�

The first two types of constraints are already present in the
normal-phase formalism of Lechermann et al.:4 the first
equation, indeed, limits the physical subspace of H� to one-
boson states only while the second set of constraints ensures
the rotational invariance of Eq. �11� under QP rotations that
preserve quasiparticle number. On the other hand, the last set
of constraints promotes the rotational invariance to particle-
hole rotations, enabling the nonconservation of quasiparticle
number.

It is worthwhile to remark that, for single-band models
�M =2�, the above equations reduce to the same set of con-
straints characterizing the SU�2� � SU�2� spin-charge invari-
ant formalism introduced in Refs. 8 and 9, as long as the
appropriate changes in notation are made. For this purpose,
Ref. 9 provides a useful link between our notation and the
one presented in Ref. 8. A more compact form of Eqs.
�12�–�14� will be derived in Sec. II D, where we shall relate
the role of constraints to the gauge group structure of the
slave-boson representation.

C. Physical electron operator

The representation of the physical electron-creation op-
erator in the enlarged Hilbert space is defined by

d��
† �B� � = �

A

�A�d�
† �B��A� � . �15�

When the constraints Eqs. �12�–�14� are satisfied exactly, its
expression in terms of bosons and quasiparticle operators
reads

d��
† =

1

M
�

AB,nm,�
�A�d�

† �B��An
† �Bm��n�f�

† �m�f�
† + �n�f��m�f��

�16�

with the normalization factor 1 /M coming from the follow-
ing relation:

�
p,�

��n�f�
† �p�f�

† �p� + �n�f��p�f��p�� = M�n� . �17�

We can thus summarize the nondiagonal relation between
physical and quasiparticle degrees of freedom in the form

d��
† = R��

�p�����f�
† + R��

�h����f� �18�

�summation over repeated indices is implied�, where we have
defined the R-matrix operators as

R��
�p����� =

1

M
�

AB,nm

�A�d�
† �B��An

† �Bm�m�f��n� , �19�

R��
�h���� =

1

M
�

AB,nm

�A�d�
† �B��An

† �Bm�m�f�
† �n� . �20�

In the above expressions, we have taken advantage of the
reality of the matrix elements between Fock states,
�n�f��m�= �m�f�

† �n�, in order to guarantee the correct transfor-
mation properties of the R operators under the gauge group
transformations discussed in Sec. II D.

At the saddle-point level, on the other hand, when the
boson fields are treated as probability amplitudes and the
constraints are satisfied only on average, the expression of d��

†

must be modified,2 in order to recover the correct normaliza-
tion of transition amplitudes in the noninteracting limit. For
this purpose, it is easier to define the physical electron op-
erator in the orbital basis �		 in which the quasiparticle and
quasihole density matrices are diagonal


̂��
�p� � �

Anm

�An
� �Am�m�f�

† f��n� = �
	

U�	�	U	�
† , �21�


̂��
�h� � �

Anm

�An
� �Am�m�f�f�

† �n� = �
	

U�	�1 − �	�U	�
† ,

�22�

where �	=�An��An�2n	 is the probability to find the system in
a state such that n	=1, i.e., with a quasiparticle in the orbital
	 �note that �An��An�2=1�. In these expressions, the quasi-
particle operators referred to the new orbitals are related to
the old ones by the unitary transformation

f�
† = �

	

U�		
† �23�

while the boson fields transform with the corresponding ro-
tation of the Fock states �summation over repeated indices is
implied�

�n� f = U�U�nm�m�, �An = U�U�nm�Am. �24�

In such basis, the transition amplitude between states with
n	=0 in the initial �final� configuration, and n	=1 in the final
�initial� one, must be normalized by the factor 1 /��	�1−�	�,
yielding the following expression for the physical electron
operator:

d��
† = �

AB,nm,	

�A�d�
† �B��An

� �Bm

��	����1 − �	����

���n�	
†�m�	

† + �n�	�m�	� . �25�

Rotating back to the original basis, we finally get, for the
saddle-point expressions of the R matrices

R��
�p����� = �

AB,nm,�
�A�d�

† �B��An
� �Bm�m�f��n�M��,
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R��
�h���� = �

AB,nm,�
�A�d�

† �B��An
� �Bm�m�f�

†�n�M��, �26�

where

M�� = �1

2
�
̂�p�
̂�h� + 
̂�h�
̂�p��

��

−1/2
�27�

is the particle-hole symmetrized version of the normalization
factor, expressed in the original basis.

D. Functional integral representation

The partition function of a generic multiorbital Hamil-
tonian �8� can be formally written, in terms of auxiliary
fields, as

Z =� D�f , f†�D���	,�A	�e−�0
�d�L���, �28�

where we have introduced, along with slave bosons and aux-
iliary fermions, a set of Lagrange multiplier fields �Ai���	
that allow to enforce, at each lattice site i and imaginary-time
value �, the constraints Eqs. �12�–�14�. The Lagrangian func-
tional entering the above expression reads

L��� = �
i

��An,i
† ���An,i + f�,i

† ��f�,i + H� const�i� + H� loc�i�� + H� kin

�29�

�except for lattice sites, summation over repeated indices is
always implied throughout this section�, where H� loc and H� kin
are, respectively, the representatives of the local and kinetic
part of the Hamiltonian �8� in the enlarged Hilbert space,
while H� const contains the constraint interactions between aux-
iliary fields and Lagrange multipliers.

In order to derive the expressions of the Hamiltonian
terms in Eq. �29�, and thereby identify the underlying sym-
metry group of the Lagrangian, it is convenient to collect all
the local fermionic degrees of freedom �either physical or
auxiliary� into a 2M-component Nambu-Gor’kov spinor

�i � ��d�,i	
�d�,i

† 	
�, �i � ��f�,i	

�f�,i
† 	

� .

In such formalism, the representation of physical electrons in
terms of bosons and quasiparticles Eq. �18� is simply written
as �� i=Ri�i, where the local 2M�2M matrix operator

Ri � R��i� = �R�p���i� R�h���i��

R�h���i� R�p���i�� � �30�

is defined in terms of the boson fields �An,i associated to the
corresponding site i �note that, to lighten the notation, site
indices were omitted in previous sections�. The representa-
tion of the kinetic Hamiltonian is then readily obtained as

H� kin = �
ij

tij
��d��,i

† d��,j =
1

2�
ij

�� i
†t̃ij�� j =

1

2�
ij

�i
†Ri

†t̃ijR j� j ,

�31�

t̃ij = �tij 0

0 − tij
� � , �32�

tij being the real-space hopping matrix, whose Fourier trans-
form gives the band dispersion matrix ��k� defined in Eq.
�9�.

On the other hand, the local terms of the model Hamil-
tonian, which may include any kind of on-site interaction
between �physical� electrons, are represented, within the en-
larged Hilbert space, by a purely quadratic boson Hamil-
tonian

H� loc�i� = �A�Hloc�B��An,i
† �Bn,i = E���n,i

† ��n,i, �33�

where the physical states ����	 denote the eigenstates of Hloc.

1. Gauge invariance

In order to discuss the symmetry structure of the Lagrang-
ian Eq. �29�, we begin to notice that the auxiliary-fields
Hamiltonian H� =H� kin+�iH� loc�i� is invariant under the follow-
ing gauge transformations:

�i��� → Ui����i��� , �34�

�An,i��� → ei�i
0���U�U�nn��An�,i��� . �35�

The unitary matrix Ui��� in Eq. �34� represents an arbitrary
SO�2M� rotation of quasiparticle operators acting indepen-
dently on each site, and it is conveniently parameterized as

Ui��� = ei�i
a���Ta

, �36�

the Ta matrices being a 2M-dimensional representation of
the M�2M −1� group generators. We note, however, that such
matrices are not expressed in the usual form of an orthogonal
group generator �namely, as purely imaginary antisymmetric
matrices� but are instead of the form

Ta = � TH
a TA

a

− �TA
a �� − �TH

a �� � , �37�

with TH
a and TA

a denoting, respectively, M�M Hermitian
and antisymmetric matrices. In other words, the
2M-dimensional Nambu spinors do not transform with real
orthogonal matrices under SO�2M� rotations, even though
they clearly form a real representation of the gauge group

�i
† =�i

TE , �38�

Ui
� = EUiE , �39�

E = �0 1

1 0
� . �40�

The transformation law of the boson fields, on the other
hand, is characterized by the unitary transformation of Fock
states �n�→U�U�nn��n�� that is associated to the SO�2M� ro-
tation of quasiparticle operators, plus an additional U�1� fac-

tor ei�i
0��� under which the Nambu spinors are neutral. Fol-

lowing the exponential parameterization of Ui���, we can
then similarly write
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U�U�nn� = �ei�i
a���Ja

�nn�, �41�

where Jnn�
a are the SO�2M� group generators expressed in

the Fock-space representation.
While the gauge invariance of H� loc�i� follows immediately

from its definition Eq. �33�, in the case of H� kin we still need
to establish the transformation properties of the Ri operators,
defined in Eq. �30�. These, however, can be readily obtained
by writing such operators directly in terms of the physical
and auxiliary Nambu spinors, in matrix notation

Ri =
1

M
�A���B��An,i

† �Bm,i�m��†�n� , �42�

Ri��� → Ri���Ui
†��� . �43�

The above transformation law ensures the gauge invariance
of the physical electron operator �� i=Ri�i and hence of the
whole kinetic Hamiltonian �31�. In the discussion of the
gauge invariance of the Lagrangian Eq. �29�, we are thus left
with the time-derivatives and constraints terms, whose trans-
formation properties are closely related to each other. The
time-derivative terms, in fact, are clearly not invariant under
the transformations Eqs. �34� and �35�, which generate inho-
mogeneous terms proportional to the time derivatives of the
rotation parameters �e.g., ���i

a and ���i
0�. Such terms, how-

ever, can be reabsorbed by a corresponding inhomogeneous
transformation of the Lagrange multiplier fields8,17 �which
may be regarded as “gauge bosons”� making the whole La-
grangian gauge invariant.

To show how this mechanism works, we rewrite the M2

+M�M −1� local constraints Eqs. �13� and �14� in the follow-
ing way:

�An,i
† �An�,i�n���†Ta��n� =�i

†Ta�i, �44�

where we have made use of the “orthogonality” between the
SO�2M� Ta matrices. It is then straightforward �though
somewhat lengthy� to verify that the Fock-space generators
Jnn�

a , introduced in Eq. �41�, are represented by

Jnn�
a = −

1

2
�n���†Ta��n� �45�

�in other words, the above matrices provide a faithful repre-
sentation of the SO�2M� Lie algebra� so that we can finally
write:

H� const�i� = Ai
a�1

2
�i

†Ta�i + �An,i
† Jnn�

a �An�,i�
+ Ai

0��An,i
† �An,i − 1� . �46�

Together with the time-derivative terms, the above interac-
tions may be arranged in “covariant derivatives” acting on
the auxiliary fields �fermions and bosons�

1

2
�i

†D��i =
1

2
�i

†��� + Ai
aTa��i, �47�

�An,i
† D��An,i = �An,i

† ���� + Ai
0��nn� + Ai

aJnn�
a ��An�,i,

�48�

where the role of gauge fields is played by the Lagrange
multipliers Ai

a and Ai
0. It is then easily checked that the

Lagrangian

L = �
i
��An,i

† D��An,i +
1

2
�i

†D��i + H� loc�i� − Ai
0 + H� kin

�49�

is indeed invariant under the SO�2M� � U�1� gauge group,
provided the Lagrange multipliers transform as gauge fields
in the adjoint representation18

Ai
0 → Ai

0 − i���i
0��� , �50�

Ai
aTa → Ui����Ai

aTa + ���Ui
†��� . �51�

Note that the transformation law of Ai
aTa induces a corre-

sponding transformation of Ai
aJnn�

a that has exactly the same
structure of Eq. �51� with the Ui matrix replaced by U�U�nn�.
More precisely, both transformation laws descend from that
of the Lagrange multiplier field Ai

a���, which for infinitesi-
mal rotations transforms as

Ai
a → Ai

a + fabcAi
b�i

c − i���i
a + O��2� , �52�

fabc being the structure constants of the group.
Finally, it is worth mentioning that for M =2 �single-band

models� the orthogonal group SO�4� is locally isomorphic to
SU�2� � SU�2� so that the gauge group structure of the
present formalism reduces to that of the spin-charge invariant
formalism of Ref. 8.

2. Gauge fixing

As discussed in Ref. 8, the gauge invariance of the
functional-integral representation causes Eq. �28� to contain
integration over spurious degrees of freedom, namely, the
physically equivalent field configurations connected to each
other by gauge group trajectories. It is thus necessary to im-
pose a “gauge fixing” condition that removes the integration
over the unphysical degrees of freedom, as it is usually done
in gauge-field theories.19

We choose to work in the so-called “radial gauge,”20 in
which the complex boson fields are represented through real
amplitudes and complex phase fields. In this representation,
the SO�2M� � U�1� gauge transformations allow to remove
M�2M −1�+1 phase variables so that a corresponding num-
ber of boson fields can be reduced to purely real amplitudes
with no phase fluctuations. The boson fields that remain fully
complex, on the other hand, continue to display some phase
dynamics, which is responsible for the incoherent features of
the spectrum21 �e.g., lower and upper Hubbard bands�.

It is beyond our purpose to enter into the formal details of
the radial gauge representation, thoroughly derived in Ref.
17. Nevertheless, it is worthwhile to observe, here, that such
gauge fixing procedure allows to avoid Elitzur’s theorem,22

which would prevent the slave bosons to acquire a nonzero
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expectation value, making therefore legitimate the use of the
saddle-point approximation.

E. Saddle-point approximation

The saddle-point approximation of the functional integral
Eq. �28� is obtained by considering the slave bosons and
Lagrange multipliers as static variables, corresponding to the
time averages of these fields. Moreover, we will assume a
homogeneous spatial structure of the saddle-point solution so
that we can finally set: �An,i�����An, Ai

a����Aa, and
Ai

0����A0.
In such approximation, all the bosonic amplitudes �An are

assumed to have a constant phase, in contrast to the radial
gauge representation, where we are allowed to remove �fix� a
limited number of complex phases �namely, M�2M −1�+1�.
The phase fluctuations of those fields that remain intrinsi-
cally complex are thus ruled out, precluding the possibility
of describing the high-energy physics of a given model. The
low-energy features, on the other hand, will be suitably de-
scribed in terms of coherent Landau-Bogoliubov quasiparti-
cles, providing a Fermi-liquid description of metallic and
superconducting states.

At the saddle point, the free-energy per site �=
−�1 /�N�ln Z is obtained as the �minimum� stationary value
of the following free-energy functional:

����	,�A	� = −
1

�N
ln Z f − A0 + �

ABnm

�An
� ��A�Hloc�B��nm

+ �A0�nm + AaJnm
a ��AB��Bm, �53�

where N is the total number of sites and Z f represents the
Gaussian integral over the auxiliary fermions

Z f =� D� exp�−
1

2
�

0

�

d��
ij

�i
†��ijD� + R†t̃ijR�� j

=� D� exp�−
1

2
�

0

�

d��
k
�k

†��� + h�k���k� . �54�

In the last expression, h�k� denotes the momentum-space
quasiparticle energy matrix

h�k� = R†������k� 0

0 − ��− k�� �R��� + AaTa. �55�

To evaluate the functional integral in Eq. �54�, we note that,
up to irrelevant constants, Z f

2=det���+h�k��, so that we can
write

ln Z f =
1

2
ln det��� + h�k�� =

1

2�
k

tr ln�1 + e−�h�k�� .

�56�

The saddle-point equations are then obtained by setting to
zero all the partial derivatives of the free-energy functional
Eq. �53� with respect to the slave-boson amplitudes and
Lagrange multipliers. For practical calculations, however, it
is useful to consider a different basis set for the M�2M −1�
Lagrange multipliers Aa, belonging the adjoint representa-

tion of SO�2M�. In place of them, in fact, we can equiva-
lently use the set of independent matrix elements of AaTa,
parameterized as follows:

AaTa = � � �

− �� − �� � ,

��� = ���
� ,

��� = −���. �57�

With this choice, the saddle-point equations can be derived
without knowing the explicit expressions of the Ta matrices,
differentiating the free-energy functional directly with re-
spect to ��� and ���. To this end, we note that ����	 , �A	�
can be easily expressed in terms of the new set of Lagrange
multipliers by means of the following relation:

AaJnn�
a = −

1

2
�n���†�AaTa���n�

= −
1

2
�����n���f�

† f� − f�f�
†��n�

+����n��f�
† f�

† �n� +���
� �n��f�f��n�� . �58�

F. Green’s functions and observables

After solving the saddle-point equations, we can finally
obtain the expressions for the quasiparticle and physical
electron propagators, conveniently written here in Nambu
notation. For quasiparticles, the propagator is defined as

D f�k,�� = − �T�k����k
†�0�� = �G f�k,�� F f

†�k,− ��
F f�k,�� − G f

T�− k,− ��
 ,

�59�

where Gf�k ,����=−�Tfk����fk�
† �0�� and Ff�k ,����=

−�Tf−k�
† ���fk�

† �0�� are the normal and anomalous quasiparti-
cle Green’s functions. Following Eq. �54�, we can then
readily write the quasiparticle inverse propagator as

D f
−1�k,�� = � − h�k� . �60�

The physical electron propagator, on the other hand, is de-
fined by

Dd�k,�� = − �T�k����k
†�0�� , �61�

where �k
† ���dk�

† 	 , �d−k�	� is the Nambu spinor containing
the physical degrees of freedom, represented in terms of
slave-boson amplitudes and quasiparticles by �� k=R����k.
The expression for the inverse physical propagator is thus
written as

Dd
−1�k,�� = �R†�−1�� − h�k��R−1. �62�

Using the corresponding expression for the “bare” physical
propagator

Dd0
−1�k,�� = � − ��̃0 + �̃�k�� , �63�
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�̃0 + �̃�k� = ��0 + ��k� 0

0 − ��0 + ��− k��� � �64�

��0 represents the one-body part of Hloc�, we can then find
the saddle-point approximation for the self-energy

�d��� = Dd0
−1 − Dd

−1 = ��1 − �RR†�−1� − �̃0

+ �R†�−1� � �

− �� − �� �R−1. �65�

The cancellation of the k dependence, in the above equation,
follows from the definition of the QP energy matrix, Eq.
�55�. Indeed, this form of the self-energy is just the one we
would expect from the saddle-point �mean-field� approxima-
tion, which freezes spatial and dynamical fluctuations. From
the linear term in �, one readily obtains the matrix of quasi-
particle spectral weights

Z = �1 −
��d

��

�=0

−1

= RR†. �66�

We conclude this formal section by writing the represen-
tation, in the enlarged Hilbert space, of the local physical
density operator, whose expectation value defines the aver-
age number of electrons per site

n̂�
�d� = �

�

d��
†d�� = �

A

NA�
n

�An
† �An. �67�

As mentioned previously, we remark that this expression dif-
fers substantially from that for the local quasiparticle density

�
�

f�
† f� = �

An
�
�

n��An
† �An, �68�

which is not a physical quantity and depends from the choice
of the QP basis set. More generally, the representation of any
�local� two-particle physical operator may be easily obtained
in terms of boson operators only: for particle-hole operators
we find

d��
†d�� = �

AB

�A�d�
†d��B��

n

�An
† �Bn �69�

while for particle-particle operators we have

d��
†d��

† = �
AB

�A�d�
†d�

† �B��
n

�An
† �Bn. �70�

III. APPLICATION TO THE THREE-ORBITAL MODEL
FOR FULLERIDES

A. The model

In this section we present an explicit application of the
rotationally invariant slave-boson approach. To this aim we
have chosen a three-orbital Hubbard-type model that has
been used to understand the role of strong correlations in
alkali-doped fullerides. The physics of alkali-doped fullerene
systems AnC60 represents an optimal playground in under-
standing the key role of strong correlations on high-
temperature superconductors: indeed, these systems display a

relatively high Tc compared to ordinary Bardeen-Cooper-
Schrieffer �BCS� superconductors, and, similarly to what is
found in cuprate systems, the enhancement of Tc seems to be
closely related to the proximity of a Mott-insulating
phase.13,14,23 Although the nature of the pairing mechanism is
most likely different from that characterizing cuprate super-
conductors, in fullerene systems being due to ordinary
electron-phonon �vibron� interaction,24 and in spite of the
different symmetry of the order parameter �s wave in ful-
lerides�, the phase diagram as a function of the intermolecu-
lar separation in these systems presents strong similarities to
that of cuprates as a function of doping,23 providing an inde-
pendent example of the key role of electronic correlations in
enhancing superconductivity.

The local Hamiltonian describing the C60
n− molecular ion,

assuming rotational invariance within the threefold degener-
ate level t1u hosting the valence electrons provided by the
alkali metals, can be written, for a generic site i, as

Hloc�i� =
U

2
n̂i

2 − JH�2Si · Si +
1

2
Li · Li +

5

6
�n̂i − 3�2 + HJT,

�71�

where the three terms represent, respectively, the global on-
site Coulomb repulsion, Hund’s rules splitting �JH�0� and
the Jahn-Teller coupling between electrons and the vibra-
tional modes �vibrons� of C60. In the above expression, n̂i
=�a�di,a�

† di,a� is the local electron-number operator �a
=1,2 ,3 labels the t1u orbitals and �= ↑ ,↓ the spin compo-
nents� while Si and Li are, respectively, the local spin and
orbital angular-momentum operators

Si =
1

2 �
a,���

di,a�
† �̂���di,a��, �72�

Li = �
ab,�

di,a�
† �̂abdi,b�, �73�

where �̂��� are the Pauli matrices and �̂bc
�a�= i�bac the O�3�

group generators characterizing orbital rotations.
The Jahn-Teller Hamiltonian involves both electron and

vibron field operators but if we are interested only in the
electron dynamics we can formally integrate out the vibronic
degrees of freedom obtaining an effective action for the elec-
tron operators only. If performed exactly, this procedure
would clearly generate noninstantaneous �i.e., time-
dependent� interaction terms, preventing a purely electronic
Hamiltonian formulation of the effective action; however, if
we assume the vibronic frequencies to be much higher than
the relevant electronic scales, we can take the antiadiabatic
limit of the electron effective action, neglecting retardation
effects and considering an instantaneous interaction term
which preserves the symmetries of the original local Hamil-
tonian. While this approximation may be questionable for
fullerides, it will not affect our claims since the neglect of
retardation can only disfavor superconductivity, and analo-
gous results have been obtained in a similar model that takes
into account the phonon dynamics.25 The Jahn-Teller inter-
action can then be reabsorbed in Hund’s term and the result-
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ing Hamiltonian is simply given by the first two terms of Eq.
�71� with a renormalized Hund’s coupling JH�−J=JH

− 3
4EJT�0, EJT being the characteristic Jahn-Teller energy

gain.26 The net effect of the electron-vibron coupling is
therefore that of reversing Hund’s rules, favoring atomic
configurations with low spin and orbital angular momentum.
The inversion of the Hund’s rule is experimentally confirmed
by the low-spin state of both tetravalent27 and trivalent28 ful-
lerides and by the presence of a spin gap.29

Given the local Hamiltonian for the C60
n− molecular ion,

the expression for a tight-binding electronic Hamiltonian de-
scribing AnC60 solids will then read

Hlatt = �
ij,ab,�

tij
abdi,a�

† dj,b� + �
i

Hloc�i� − ��
i

n̂i, �74�

where tij
ab are the intersite hopping amplitudes �including

possible interband hybridization terms� and � is the chemical
potential controlling the average electron density. We should
note, however, that interband hybridization can actually be
avoided whenever the hopping terms are restricted to nearest
neighbors only, tij

ab= tab��ij�; in such case, indeed, we can ex-
ploit the O�3� orbital symmetry of Hloc in order to diagonal-
ize tab, so that we can set, without loss of generality, tij

ab

= ta�ab��ij�. Throughout our analysis we will use the latter
expression for the hopping-matrix elements, focusing in par-
ticular on the orbitally degenerate case ta=−t �we will con-
sider the possibility of a crystal-field splitting of the three
bands and of different bandwidths in a future study�.

B. Slave-boson representation of the model

As pointed out in previous studies,13,14,27,30 the zero-
temperature phase diagram of the model Eq. �74� as a func-
tion of the ratios J /W and U /W �W being the noninteracting
bandwidth� displays several interesting features, the most
striking one being undoubtedly the presence of a strongly
enhanced superconducting phase in the proximity of the
metal-to-insulator Mott transition. The model represents
therefore a valuable test for the rotationally invariant slave-
boson method, at the same time providing an analytical tool
to treat strongly correlated superconductors.

1. Slave-boson amplitudes

From the rotationally invariant slave-boson representation
of physical states defined by Eq. �11�, it should be clear that
there are, in principle, 22M−1 �with M =6 in our model� slave-
boson fields �An describing the system. However, we must
note that when the partition function is approximated at
saddle-point level, i.e., when the slave-boson fields are re-
placed by their mean-field expectation values ��An→ ��An�
��An�, the number of independent slave-boson amplitudes
entering the saddle-point equations becomes much smaller,
as we will show in the following, its specific value depend-
ing on which symmetries of the model Hamiltonian remain
unbroken.

As discussed at end of Sec. III A, we choose the hopping
matrix to be diagonal and degenerate in both spin and orbital
indices so that the atomic SU�2� � O�3� symmetry character-
izing Hloc can be promoted to a global symmetry for the full

lattice Hamiltonian Hlatt. If we impose this symmetry to be
preserved at saddle-point level, i.e., we do not allow for any
spin and orbital ordering, we must then set to zero all the
possible order parameters which are not invariant under
SU�2� � O�3�, and this will strongly limit the possibility of
independent slave-boson amplitudes. Indeed, considering the
normal-state solution of the saddle-point equations, i.e., do
not allowing for a superconducting order parameter, it is
quite straightforward to prove, using Wigner-Eckart’s theo-
rem, that the nonzero slave-boson amplitudes must be of the
form

��n = �n�����E�� , �75�

where we have taken as the basis set for the local physical
states the eigenstates ����	 of Hloc with eigenvalues E�. Note
that in this case the quasiparticle Fock states �n� have exactly
the same number of particles of the physical state ��� to
which they are linked, assuring the solution to represent a
normal state; indeed, as long as the latter condition is satis-
fied, no superconducting order parameter can be ever devel-
oped, as can be easily seen taking the expectation values of
Eq. �70�

�d�
†d�

†� = �
���

���d�
†d�

† �����
n

��n
� ���n. �76�

On the other hand, if we do allow for a superconducting
symmetry breaking, we must add to the normal amplitudes
defined in Eq. �75� also those amplitudes connecting physical
states to QP states with a different number of particles so that
particle number would no longer be conserved; however, if
we still want to preserve the SU�2� � O�3� symmetry as in
the normal case, we should consider only those amplitudes
which correspond to an invariant, with respect to spin and
orbital rotations, superconducting order parameter. Assuming
pairing to be purely local, corresponding to an s-wave order
parameter, the only invariant pairing amplitude is then given
by the spin and orbital singlet channel

sc
0 � ��a

di,a↑
† di,a↓

† � . �77�

At this point, it is worthwhile to observe that Eq. �77� rep-
resents the most favorable pairing channel even if we do not
explicitly impose the SU�2� � O�3� symmetry since the local
pairing attraction is driven by the reversed Hund’s term,
which favors the formation of two-particle states locked in
the L=S=0 spin-orbital configuration. Our assumption of
preserving the SU�2� � O�3� symmetry is then fully justified
whenever the system turns out to be superconducting since
any rotational symmetry-breaking pairing would be ruled out
by the singlet channel; on the other hand, in our study we
will only compare the superconducting solution with a rota-
tionally invariant normal state and therefore we cannot ex-
clude the possibility that some other ordered phase would
win the competition for the lowest-energy phase.

We can now turn to the problem of establishing the inde-
pendent slave-boson amplitudes required by our model in
order to describe a superconducting solution characterized by
the L=S=0 order parameter defined in Eq. �77�. Using the
Wigner-Eckart theorem as for the normal-state solution, in
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this case we find the following expression for the nonzero
amplitudes:

��n = �n�����E�� + �
q=1

3 � �n�̂q���

�����̂†�q̂q���
��E�,2q�

+
�n��̂†�q���

����̂q�̂†�q���
��E�,− 2q� , �78�

̂ = �
a

da↑
† da↓

† .

We have denoted with ��E�� the “normal” slave-boson am-
plitudes, which relate physical and quasiparticle states char-
acterized by the same number of particles and with
��E� ,
N� the “anomalous” ones, in which the number of
particles characterizing the QP state �n� differs by 
N from
that of the physical state ���. We remark, however, that the
presence of nonvanishing anomalous amplitudes is not suffi-
cient, by itself, to assure a superconducting solution, the lat-
ter requiring the superconducting order parameter sc

0 , which
is a specific quadratic form in the slave-boson amplitudes, to
be finite. The normalization factors for the anomalous ampli-
tudes, in Eq. �78�, are chosen in order to simplify the expres-
sion for the probability associated with the physical configu-
ration ���

P��� = �
n

���n�2 = ���E���2 + �

N

���E�,
N��2. �79�

Using Eq. �78�, which relates all the slave-boson ampli-
tudes ��n to the independent variables ��E�� and
��E� ,
N�, we are almost ready to write the free-energy
functional Eq. �53� in terms of only �’s and �’s, obtaining
therefore a much smaller number of saddle-point equations
to be solved. The last step needed to achieve this goal, in

fact, is to evaluate the matrix elements �n�Ôd��� between the
eigenstates of Hloc and the Fock states �n�d expressed in
terms of the physical electron operators da�

† .
As discussed in Sec. III A, the effective local Hamiltonian

for the electron dynamics of the C60
n− ion is given, in the

antiadiabatic limit, by

Hloc =
U

2
�n̂ − 3�2 − �n̂ + J�2S · S +

1

2
L · L +

5

6
�n̂ − 3�2 ,

�80�

where we have included also the chemical-potential term, as
required by the general formalism described in Sec. II, and
we have dropped, for simplicity, the redundant lattice site
index. In comparison to Eq. �71�, the Coulomb interaction is
here written in a particle-hole symmetric form by properly
redefining the chemical potential.

We can then readily identify the eigenstates of Hloc among
the atomic multiplets ��� which are simultaneous eigenstates
of the density operator n̂ and of the orbital and spin angular-
momentum operators L2 and S2, with eigenvalues

E� = E�n,�,s� =
U

2
�n − 3�2

− �n + J�2s�s + 1� +
1

2
��� + 1� +

5

6
�n − 3�2 .

�81�

The degeneracy associated to each eigenvalue is given by

g�n,�,s� = �2� + 1��2s + 1� �82�

and it is therefore natural to choose as a basis set for the
corresponding degenerate subspace the simultaneous eigen-
states of both one of the components of L and S, say Lz �Ref.
31� and Sz, so that we can finally set

��� � �n,��,�z�,�s,sz�� . �83�

These states must then be expressed in terms of the Fock
states �n�d, in order to evaluate the matrix elements which
characterize Eq. �78�. We note, however, that

�n�d � 

a=1

3



�=↑,↓

�da�
† �na��vac� �na� = 0,1� �84�

are not eigenstates of any of the orbital angular-momentum
operators La, making the representation of the atomic multi-
plets Eq. �83� in terms of such states a bit involved: it is
more convenient, instead, using the rotational invariance of
Hloc, to choose an orbital basis for the physical electron op-
erators in which Lz is diagonal

cm�
† = �

a

Umada�
† , �85�

Lz = �
m,�

mcm�
† cm�, �m = 1,0,− 1� �86�

so that the corresponding Fock states

�n�c � 

m,�

�cm�
† �nm��vac� = U�U�nn��n��d �87�

are eigenstates of both Lz and Sz. Since we are assuming the
three bands to be degenerate, the rotation of the orbital basis
Eq. �85� does not change the form of the kinetic term in Hlatt

while the expression for the singlet pair-creation operator ̂
��ada↑

† da↓
† reads, in the new basis

̂ = c1↑
† c−1↓

† − c1↓
† c−1↑

† − c0↑
† c0↓

† . �88�

The representation of the atomic eigenstates ��� in terms
of the Fock states �n�c is listed in Table I, where they are
classified according to the quantum numbers �n ,� ,s� which
determine, through Eq. �81�, the corresponding eigenvalues;
note, however, that for a given value of the particle number
n, the Pauli-principle prevents the orbital and spin angular
momenta � and s to take independent values, so that each
degenerate multiplet can actually be identified specifying
only two quantum numbers, n and �. For each multiplet, we
have written out explicitly only the component characterized
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by the maximum value of �z and sz, all the other components
being easily obtainable from the former by repeatedly acting
on it with the lowering operators

L− = �2�
�

�c0�
† c1� + c−1�

† c0�� , �89�

S− = �
m

cm↓
† cm↑. �90�

The last column of the Table contains the independent slave-
boson amplitudes ��n ,�� and ��n ,� ;
N� associated, ac-
cording to Eq. �78�, to all the components of a given degen-
erate multiplet: the total number of amplitudes required by
our model is therefore 35, if we consider the full rotationally
invariant solution, while it reduces to 13 if we force the
system into the normal state, setting ��n ,� ;
N��0.

2. Lagrange multipliers

The Lagrange multipliers A0, ���, and ���, introduced in
Secs. II D and II E to enforce the constraints Eqs. �12�–�14�,
form, together with the slave-boson amplitudes, the set of
variables on which the free-energy functional Eq. �53� is
defined. However, similarly to what we established in the
case of the slave-boson amplitudes, we must note that the
symmetries of our problem greatly reduce the number of
independent Lagrange multipliers required for the solution of
the model and in the following we will identify the form of
such variables.

Denoting with ���m ,�� both the orbital and spin indi-
ces, the constraints Eqs. �12�–�14� read, at the saddle-point
level

�
�

P��� = 1, �91�

Q��
N = �f�

† f�� = �
k

Gf�k,0−���, �92�

Q��
A = �f�

† f�
†� = �

k
Ff�k,0−���, �93�

where P��� is the probability distribution defined in Eq. �79�,
G f�k ,�� and F f�k ,�� are the normal and anomalous quasi-
particle Green’s functions, and

Q��
N � �

�nn�

��n
� ��n��n��f�

† f��n� , �94�

Q��
A � �

�nn�

��n
� ��n��n��f�

† f�
† �n� �95�

are defined as the normal and anomalous quasiparticle den-
sity matrices. As for P���, we can then make use of Eq. �78�
in order to rewrite the left-hand side of Eqs. �92� and �93�
directly in terms of the independent slave-boson amplitudes,
obtaining the following expressions:

Q��
N = QN��,�����, �96�

Q��
A = QA��,����,�̄�− 1���,

�� = m + � +
1

2
, �� = �

1

2
 �97�

where the spin and orbital indices of �̄ are opposite to those
of �. The specific choice we have made for the independent

TABLE I. Electronic eigenstates of the C60
n− molecular ion and

the corresponding slave-boson amplitudes: the latter are selected in
order to preserve, at the saddle-point level, the rotational invariance
of the local Hamiltonian.

��� n �� ,�z� �s ,sz� ��n

�0,0 ,0� 0 �0,0� �0,0�

��0,0�
��0,0 ;2�
��0,0 ;4�
��0,0 ;6�

�↑ ,0 ,0� 1 �1,1� � 1
2 , 1

2 �

��1,1�
��1,1 ;2�
��1,1 ;4�

�↑↓ ,0 ,0� 2 �2,2� �0,0�
��2,2�
��2,2 ;2�

�↑ , ↑ ,0� 2 �1,1� �1,1�
��2,1�
��2,1 ;2�

1
�3

��↑ ,0 ,↓�− �↓ ,0 ,↑�− �0, ↑ ↓ ,0�� 2 �0,0� �0,0�

��2,0�
��2,0 ;−2�
��2,0 ;2�
��2,0 ;4�

�↑↓ , ↑ ,0� 3 �2,2� � 1
2 , 1

2 � ��3,2�

1
�2

��↑ , ↑ ↓ ,0�+ �↑↓ ,0 ,↑�� 3 �1,1� � 1
2 , 1

2 �

��3,1�
��3,1 ;−2�
��3,1 ;2�

�↑ , ↑ ,↑� 3 �0,0� � 3
2 , 3

2 � ��3,0�

�↑↓ , ↑ ↓ ,0� 4 �2,2� �0,0�
��4,2�
��4,2 ;−2�

�↑↓ , ↑ ,↑� 4 �1,1� �1,1�
��4,1�
��4,1 ;−2�

1
�3

��↓ , ↑ ↓ ,↑�− �↑ , ↑ ↓ ,↓�− �↑↓ ,0 , ↑↓�� 4 �0,0� �0,0�

��4,0�
��4,0 ;−4�
��4,0 ;−2�
��4,0 ;2�

�↑↓ , ↑ ↓ ,↑� 5 �1,1� � 1
2 , 1

2 �

��5,1�
��5,1 ;−4�
��5,1 ;−2�

�↑↓ , ↑ ↓ , ↑↓� 6 �0,0� �0,0�

��6,0�
��6,0 ;−6�
��6,0 ;−4�
��6,0 ;−2�
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slave-boson amplitudes thus reflects in a very simplified
form of the quasiparticle density matrices and it is not hard
to recognize in this structure the symmetry properties which
characterize our model, i.e., the band degeneracy and the
SU�2� � O�3� rotational invariance. The quasiparticle energy
matrix h�k� �Ref. 32� must then be rotationally invariant as
well, in order to yield quasiparticle expectation values with
the same structure of the QP density matrices

�f�
† f�� � ���, �f�

† f�
†� � ��,�̄�− 1���.

The kinetic part of h�k�, namely, R†�̃�k�R, is guaranteed to
be SU�2� � O�3� invariant, since it depends only on the de-
generate band dispersion ����k�=��k���� and on the slave-
boson amplitudes ��n�� ,�� �through the R matrices� which
have been properly selected in order to yield rotationally
invariant solutions. On the other hand, the Lagrange multi-
pliers matrices � and � are, in principle, two generic Her-
mitian and antisymmetric matrices, respectively, and we
must therefore set

��� = ����, ��� =���,�̄�− 1���, �98�

in order to guarantee the rotational invariance of the quasi-
particle Hamiltonian.

In the end, we are left with just three Lagrange multipli-
ers, A0, �, and �, to which we can eventually add the
chemical potential � if we decide to solve the model keeping
the physical electron density fixed: in the latter case, in fact,
the chemical potential plays the role of a Lagrange multiplier
for the number equation

nphys � �
m,�

�cm�
† cm�� = �

�

n���P��� �99�

rather than being an external parameter as in the grand-
canonical ensemble.

3. Spectral weight and low-energy excitations

As shown in Sec. II F, the expression for the quasiparticle
spectral weight matrix Z, defined as

Z = �1 −
��

��

�=0

−1

�100�

is given, in terms of the slave-boson amplitudes, by

Z = RR†, �101�

R���	� being the matrix which relates the physical electron
operators to the quasiparticle ones �see Eqs. �18� and �30� for
its definition�. In our model, this relation reads

cm�
† = rp��,���fm�

† + �− 1�m+�+1/2rh��,��f−m�̄ �102�

and it can be easily recognized, as in the case of the quasi-
particle density matrices, the specific structure of the normal
�rp� and anomalous �rh� terms, dictated by the symmetries of
the problem. Inserting this relation in the definition of the
quasiparticle weight matrix, we finally obtain

Z = ��rp�2 + �rh�2�1 , �103�

which states that, for rotationally invariant solutions to this
model, all the electronic degrees of freedom are renormal-

ized by the same factor and do not mix each other due to the
interaction terms.

Besides the quasiparticle spectral weight, we can actually
extract, from the saddle-point values of the slave-boson
fields and Lagrange multipliers, the entire low-energy spec-
trum of the system, i.e., its coherent single-particle excita-
tions. They are defined as the frequency poles of the physical
electron propagator

Dc�k,�� = RD f�k,��R† = R�� − h�k��−1R† �104�

and, in terms of the saddle-point variables, they are given by
the sixfold degenerate branches

E1p�k� = ����k��rp�2 + �rh�2� + 	�2 + �
̃�2,

	 =
���rp�2 − �rh�2� + rprh� + �rprh���

�rp�2 + �rh�2
,


̃ =
rp

2� − �rh
2��� − 2�rprh

�

�rp�2 + �rh�2
. �105�

From Eq. �105� we can then readily establish the expression
for the low-energy spectral gap


 =��
̃�2 + R2��	� −
W

2
��rp�2 + �rh�2� ,

R2�x� � x2��x� , �106�

where we have assumed, for the free-electron dispersion,
�k� �− W

2 , W
2 �, W being the uncorrelated bandwidth. It is im-

portant, however, to keep in mind that the onset of supercon-
ductivity in the system is signaled by the presence of a non-
zero order parameter sc

0 rather than by the opening of a gap
in the spectrum: these two quantities, in fact, are directly
proportional to each other only in the weak-coupling regime
�J /W 1 and U!J�, where we find the solution to be BCS
like, becoming instead disentangled for stronger values of
either the electron correlation U or the pairing attraction J.

IV. ILLUSTRATION OF RESULTS

As mentioned previously, the major strength of slave-
boson approaches relies in the possibility of obtaining, with a
relatively low computational effort, approximate analytical
solutions which describe quite well, on a qualitative footing,
the effects of electronic interactions on the low-energy part
of the spectrum. With such methods we can thus investigate
the behavior of a given model over the entire range of vari-
ability of the parameters on which the model is defined.

Using the slave-boson representation introduced in the
previous section for the description of superconducting ful-
lerides, we will here illustrate the behavior of the saddle-
point solutions across the zero-temperature “phase diagram,”
where the external parameters of the model are represented
by the electron density nphys and the two ratios U /W and
J /W, which measure, respectively, the strength of the Cou-
lomb and Jahn-Teller interactions with respect to the kinetic
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bandwidth W� t. We will primarily focus on the half-filled
case, where it can be found the most interesting experimental
feature of these systems, namely the relatively high super-
conducting critical temperature in comparison to the strength
of the pairing coupling and then we will briefly analyze how
the superconducting behavior extends to finite values of dop-
ing. The solutions are obtained using, for simplicity, a flat
density of states D���= 1

W since the qualitative behavior of
the system does not depend much on the specific form of
D���.

A. Half-filling (nphys=3)

We begin the analysis of the half-filled model illustrating,
in Fig. 1, the normal and superconducting solutions obtained,
at U=0, for increasing values of the Jahn-Teller coupling
J /W. Since we are turning off the Coulomb repulsion, this is
a purely attractive model, with the Jahn-Teller coupling play-
ing the role of an attractive local interaction acting on spin
and orbital degrees of freedom; the physics of this system is
therefore characterized by the competition between singlet
formation and kinetic delocalization, and we find the results
of this competition to be remarkably different whether we
are considering a purely normal-state solution or we are al-
lowing for a superconducting order parameter. As expected
for a purely attractive interaction, the superconducting solu-
tion is always energetically favored at finite J.

As soon as the pairing interaction J is turned on, the be-
havior of the normal-state solution is initially characterized
by a slow decrease in the quasiparticle weight ZN from the
noninteracting value ZN�0�=Z�0�=1, which is then followed
by a steep descent toward zero for J /W"0.2; finally, when
the coupling is further increased, the metallic state turns into
an insulating one, where all the electrons are locked in local
singlets formed by two or four electrons,33 the binding en-
ergy of the singlet configuration being much more favorable
than the kinetic-energy gain associated to the electron hop-

ping. This state is analogous to the paired insulator found, at
strong coupling, in the normal solution of the attractive Hub-
bard model within dynamical mean-field theory �DMFT�.34

On the other hand, if we do allow for superconducting order-
ing, we find the static singlet-formation mechanism charac-
terizing the normal solution to be replaced by the more fa-
vorable Cooper-pair formation, in which the singlet pairs can
still gain some kinetic energy through their propagation: the
solution, in this case, is therefore characterized by a finite
quasiparticle weight Z over the entire range of the pairing
interaction. We must however notice that the difference in
the behavior of the normal solution between the weak- and
strong-coupling regimes �metallic vs insulating� can still be
traced in the behavior of the superconducting solution. In
fact, for increasing values of J /W, we observe a crossover
between a weak-coupling BCS-like superconductivity, where
the gap 
 /J and the superconducting order parameter sc

0 are
proportional to each other and exponentially small in the
pairing coupling �Fig. 2�


/J = 10
9 sc

0 � 1
	e−1/	, 	 = 10

3 �J/W� �107�

and a strong-coupling superconductivity associated to Bose-
Einstein condensation �BEC� of preformed pairs, where both
the gap and the superconducting order parameter are
saturated.35 While in the former regime the formation of
Cooper pairs subtracts some kinetic energy from the normal
state in order to gain the binding energy associated to the
superconducting singlets, as evidenced by the lower spectral
weight Z�ZN, which corresponds to more localized par-
ticles, in the large J /W regime, where the local singlets are
already formed, the energy gain of the superconducting state
is due to the finite kinetic energy of the Cooper pairs in
comparison to the static singlets characterizing the insulating
normal state.36

The most interesting aspect of the half-filling solutions,
however, is represented by the behavior of the quasiparticle
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∆/J
(Ω−ΩN)/W

FIG. 1. �Color online� Normal and superconducting solutions at
half filling and U=0:ZN and Z are the corresponding quasiparticle
weights, 
 and sc are the superconducting gap and order param-
eter, and ��−�N� represents the free-energy difference between the
normal and the superconducting state.
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FIG. 2. �Color online� Superconductivity in the weak-coupling
regime: slave-boson solution �circles and crosses� vs BCS estimate.
For J /W 1 and U=0 the superconducting parameters satisfy the
BCS relation 
 /J= 10

9 sc
0 and, apart from a constant prefactor, they

follow the BCS functional form 
�J�BCS=We−1/	 �	= 10
3 �J /W� is

the dimensionless superconducting coupling constant�.
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weight and of the superconducting observables �spectral gap
and order parameter� as functions of the electron correlation
U, at different values of the Jahn-Teller coupling J. In Fig. 3
we plot the U dependence of the normal quasiparticle weight
ZN and of the observables characterizing the complete solu-
tion �Z, 
, and sc

0 � at J /W=0.04, corresponding to a cou-
pling strength located in the upper end of the weak-coupling
regime, or, in other words, just before the U=0 crossover
region. The relevant feature to be noticed in this figure is the
nonmonotonic behavior of the superconducting parameters
for increasing values of the electron correlation: while at
small U the net effect of the Coulomb repulsion is to rapidly
destroy the superconducting order, as expected in a weak-
coupling BCS superconductor �notice the small value of the
superconducting order parameter at U=0 and its sudden dis-
appearance as soon as U is turned on�, at larger U values the
system turns back superconducting, with an enhancement in
the values of 
 and sc

0 in comparison to U=0, until it un-
dergoes a first-order Mott transition at U=Uc, just above the
corresponding Mott transition of the normal state. It is evi-
dent of the huge enhancement of the superconducting ampli-
tude sc

0 with respect to the noncorrelated regime. From a
physical point of view, the reemergence of superconductivity
at large U has been explained in terms of the strongly corre-
lated superconductivity scenario put forward using DMFT to
solve the same model13,14 and a related simplified model.37,38

The key mechanism is the different effect of the correlation
on the various interaction terms: when strong repulsion
freezes charge fluctuations, the resulting strongly correlated
quasiparticles experience a strongly reduced repulsion, while
the attraction is essentially unscreened. As a result, the net
effect is that J /W→J / �ZW�:13 when the electrons become
more localized, the relative strength of the Jahn-Teller inter-
action grows in comparison to the renormalized hopping.
The precise nature of the interaction, involving orbital and
spin degrees of freedom, is crucial in this effect, and proves
the ability of our rotationally invariant slave bosons to prop-
erly treat every kind of interaction. The superconducting be-
havior in this region is clearly non-BCS-like, as evidenced
by the nonproportionality between the gap and the order pa-

rameter: 
 /J is indeed much larger �up to ten times� than sc
0

and its maximum is located much closer to the Mott transi-
tion than the order parameter’s one. On the other hand, the
pairing mechanism cannot be explained within a purely
strong-coupling BEC-like picture since in this case the pair-
ing singlets are not already “preformed” in the normal phase
�which is either a correlated metal or an S=1 /2 Mott insula-
tor� and their fraction is much smaller than in standard BEC
superconductivity. We are rather in the presence of a strongly
correlated superconductor, in which a small local pairing
coupling turns out to be enhanced, rather than suppressed, by
the effects of a strong on-site repulsion.

The correlation-driven enhancement of superconductivity
in the proximity of the Mott transition is even more evident
in Fig. 4, where the solutions are evaluated at a fixed ratio
J /U for increasing values of the correlation; together with
the normal and complete solutions, we have plotted for com-
parison the �BCS-like� superconducting parameters 
 /J and
sc

0 obtained, at U=0, for the same values of J. Besides the
different relation between 
 /J and sc

0 in the correlated case
compared to the U=0 solutions, these plots emphasize how
the enhancement of the superconducting gap becomes stron-
ger �up to 3 orders of magnitude in the lower panel� at
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FIG. 3. �Color online� U dependence of the half-filling solutions
at J /W=0.04. The condensation energy ��−�N� /W is multiplied
by a factor of 10 for visibility reasons.
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FIG. 4. �Color online� U dependence of the half-filling solutions
for fixed ratios J /U=0.02 �top� and 0.01 �bottom�. Circles and
crosses represent the superconducting parameters evaluated at U
=0 for the same values of J.
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smaller values of the pairing coupling: for J /W 1, indeed,
the value of 
 /J in the proximity of the Mott transition turns
out to be O�1� while it is exponentially small in J /W in the
BCS regime �see Fig. 2�.

As already found in DMFT in a two-orbital model,37 a
completely different scenario is instead observed for larger
values of the Jahn-Teller coupling, corresponding to the
strong-coupling regime of the U=0 attractive model �shown
in Fig. 5�. In these cases, in fact, the superconducting order
parameter decreases monotonically with U from the large
U=0 value, until a weakly first-order Mott transition �which
becomes second order when J /W is increased� turns the sys-
tem into an insulator; a similar behavior characterizes the
superconducting gap, except for an initial rise at small values
of U /W in the case J /W=0.1. At strong-coupling values of
the pairing attraction the superconducting solution is there-
fore always energetically favorable compared to the metallic
one and the electronic correlation has only the effect of re-
ducing throughout the noninsulating phase the superconduct-
ing ordering.

We conclude the analysis of the half-filling solutions
showing, in Fig. 6, the nonmonotonic behaviors of the super-
conducting parameters 
 /J and sc

0 , as functions of J, in the
strongly correlated region of the phase diagram: in the top
panel the value of U /W is held fixed while in the bottom one

it follows the Mott-transition line from below, U�J�=Uc�J�
−�U. Combining these results with the ones discussed pre-
viously, we can then infer the existence of a second region in
the J−U plane, beside the strong-coupling BEC-like region
at J#U, in which superconductivity is found to be optimal:
almost surprisingly, it is located at very small values of the
pairing attraction J and at correspondingly large values of the
on-site electron repulsion U, just before the Mott-localization
transition line.

The results presented in this section confirm that the ro-
tationally invariant slave-boson approach is able to accu-
rately treat interactions of different kinds and, particularly, it
is not limited to charge interactions. Indeed we have found
that the present approach is able to reproduce the relevant
physics of a three-orbital Hubbard model for the fullerenes,
and, in particular, the huge enhancement of phonon-mediated
superconductivity in the proximity of the Mott transition.
The only qualitative aspect of the DMFT solution which is
not found in the present study is the second-order �or very
weakly first-order� character of the superconductor-insulator
transition.
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FIG. 5. �Color online� U dependence of the half-filling solutions
at intermediate-to-strong pairing couplings J /W=0.1 �a� and 0.2
�b�.
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FIG. 6. �Color online� J dependence of the half-filling solutions
in the strongly correlated regime: the top panel corresponds to a
fixed value of the correlation, U /W=2.45 while in the bottom panel
the solution follows the Mott-transition line Uc�J�.
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B. Finite doping (nphys=3−�)

In this section we consider the effect of doping the half-
filled three-band model. While this situation cannot be ex-
perimentally realized, at the moment, in fullerides, the effect
of doping is clearly suggestive for analogies with the physics
of cuprates.

The behavior as a function of doping, in the neighborhood
of nphys=3, is shown in Fig. 7 for correlation strengths, re-
spectively, below and above the critical Mott-transition value
Uc�J�; in both cases, however, we have U#J, so that they
both belong to the strongly correlated region of the phase
diagram, where the presence of a finite superconducting or-
der parameter is due to the localization-driven enhancement
of the effective pairing coupling.

We find that for U�Uc the superconducting parameters
decrease monotonically upon doping �eventually vanishing
at larger doping values� while the normal and superconduct-
ing quasiparticle weights increase from their finite half-
filling values; as long as the superconducting order is
present, we have Z�ZN. On the other hand, for U�Uc we
observe a dome-shaped behavior in the superconducting pa-

rameters, the gap reaching its maximum at a very small dop-
ing value �opt�0.1, while the order parameter being maxi-
mum at a slightly larger optimal doping �opt

���0.15. In this
case, both the normal and superconducting quasiparticle
weights grow linearly with the doping � but while in the
overdoped region ���opt we find the standard weak-
coupling behavior Z�ZN, at lower dopings we have Z�ZN.

The behaviors of both the normal and superconducting
solutions in the two correlation regions U$Uc are therefore
remarkably different from each other; however, at a closer
sight, we find that they can be actually explained through the
same physical mechanism, namely, the competition between
Mott localization, which can eventually enhance the super-
conducting pairing as we have seen in the discussion of the
half-filling solutions, and the delocalization tendency intro-
duced by doping. In fact, when the correlation strength at
half filling is not large enough to completely destroy the
quasiparticle coherence �in other words, when the quasipar-
ticle degrees of freedom are nor completely frozen�, we find
the superconducting parameters to be maximum at zero dop-
ing, where the electrons are more localized and the enhance-
ment of the effective pairing coupling is stronger. When the
system is in the Mott-insulating phase, on the contrary, there
are no available quasiparticles at half filling in order to de-
velop a superconducting order parameter: the reintroduction
of quasiparticle coherence due to a finite level of doping
becomes then essential in order to recover a superconducting
solution. At small dopings, therefore, the superconducting
ordering increases, due to the regained coherence of quasi-
particles and a still strong enhancement of pairing due to
Mott localization; for larger values of doping, instead, the
loosening of the localization-induced pairing enhancement
disfavors the superconducting ordering, which turns to de-
crease as in the U�Uc scenario. It is interesting to note that
in the underdoped region we have Z�ZN, which means that
the formation of superconducting pairs is energetically more
favorable also from the kinetic point of view, compared to
the normal state.

V. CONCLUSIONS

We have generalized to superconducting solutions �allow-
ing for the spontaneous breaking of charge symmetry� the
rotationally invariant slave-boson approach introduced by
Lechermann et al.4 on the basis of the work by Li and
Wölfle.7 The crucial ingredient of the rotationally invariant
version of slave-boson methods is that the boson fields can-
not be simply seen as probability amplitudes for the different
quasiparticle states but they are expressed as a nondiagonal
density matrix that connects the different quasiparticle states
to the whole set of physical states. This is easily generalized
to include matrix elements between states with different
number of particles which allow to describe superconducting
ordering.

After a thorough description of the formalism, we apply
the method to solve a three-band model which has been pro-
posed and studied to understand the properties of alkali-
doped fullerides.14,30,37 This model has been previously
solved using DMFT �Ref. 15� for integer fillings, providing a

0.6

0.65

0.6

Z
Z

N

2.5 2.6 2.7 2.8 2.9
n

phys

-0.05

0

0.05

0.1

0.15

2.5 3

0

ψ
sc

∆/J
(Ω−Ω

N
)/W x 10

3

0

0.2

0.4

0

0.2

0.4 Z
Z

N

2.5 2.6 2.7 2.8 2.9
n

phys

0

0.2

0.4

0.6

0.8

2.5 3

0

0.2

0.4

0.6

0.8
ψ

sc
x 10

∆/J
(Ω−Ω

N
)/W x 10

(a)

(b)

FIG. 7. �Color online� Doping dependence of the solutions for
correlation strengths respectively below �top panel, U /W=2, and
J /W=0.03� and above �bottom panel, U /W=5, and J /W=0.02� the
nphys=3 Mott transition.

A. ISIDORI AND M. CAPONE PHYSICAL REVIEW B 80, 115120 �2009�

115120-16



striking realization of strongly correlated superconductivity,
i.e., of a situation in which strong electron-electron correla-
tions favor superconductivity. A crucial element of the model
is that the pairing attraction, which can be modelized as an
inverted Hund’s rule term, only involves spin and orbital
degrees of freedom, which are not heavily affected when the
charge degrees of freedom are frozen by the proximity to the
Mott transition. This interorbital nature of the pairing inter-
action is crucial to give rise to the correlation-driven en-
hancement of pairing. In this light, this model represents an
ideal test field for our approach, which is tailored to properly
treat interorbital interactions that cannot be expressed in a
density-density form. Indeed the method provides good re-
sults for this model and it is actually the first mean-field-like
approach able to reproduce the enhancement of superconduc-
tivity observed in DMFT.

The good performance of the method is very encouraging
in view of other applications. The most challenging direction
is obviously the study of the two-dimensional Hubbard
model, which is believed to be the basic model to understand
high-temperature superconductivity in the cuprates. While
the full solution of the model on a lattice appears too cum-

bersome, a viable direction is the use of cluster extensions of
DMFT, such as the cellular-DMFT �CDMFT� �Ref. 39� or
the dynamical cluster approximation �DCA�,40 where the ro-
tationally invariant slave-boson method can be used as an
approximate analytical impurity solver for the cluster Hamil-
tonian. This approach has been used, for example, in Refs. 4
and 41 for normal solutions without superconducting order-
ing. To investigate the superconducting properties of the
Hubbard model, on the other hand, our formalism can be
applied either to the 2�2 plaquette, where it can be used to
better understand the outcomes of fully numerical
solutions,42 or to slightly larger clusters, such as small rect-
angles in CDMFT or the five-site “cross” in DCA, which
have been proposed as ideal compromises between reason-
able cluster size and adequate accuracy.43

ACKNOWLEDGMENTS

We acknowledge useful discussions with C. Castellani
and A. Georges. M.C. acknowledges financial support of
MIUR PRIN 2007 under Project No. 2007FW3MJX003.

1 P. Coleman, Phys. Rev. B 29, 3035 �1984�.
2 G. Kotliar and A. E. Ruckenstein, Phys. Rev. Lett. 57, 1362

�1986�.
3 R. Raimondi and C. Castellani, Phys. Rev. B 48, 11453 �1993�.
4 F. Lechermann, A. Georges, G. Kotliar, and O. Parcollet, Phys.

Rev. B 76, 155102 �2007�.
5 R. Frésard and G. Kotliar, Phys. Rev. B 56, 12909 �1997�.
6 T. Kopp, F. J. Seco, S. Schiller, and P. Wölfle, Phys. Rev. B 38,

11835 �1988�.
7 T. Li, P. Wölfle, and P. J. Hirschfeld, Phys. Rev. B 40, 6817

�1989�.
8 R. Frésard and P. Wölfle, Int. J. Mod. Phys. B 6, 685 �1992�.
9 B. R. Bułka and S. Robaszkiewicz, Phys. Rev. B 54, 13138

�1996�.
10 J. Bünemann and F. Gebhard, Phys. Rev. B 76, 193104 �2007�.
11 J. Bünemann, W. Weber, and F. Gebhard, Phys. Rev. B 57, 6896

�1998�.
12 M. Fabrizio, Phys. Rev. B 76, 165110 �2007�.
13 M. Capone, M. Fabrizio, C. Castellani, and E. Tosatti, Science

296, 2364 �2002�.
14 M. Capone, M. Fabrizio, C. Castellani, and E. Tosatti, Rev. Mod.

Phys. 81, 943 �2009�.
15 A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.

Mod. Phys. 68, 13 �1996�.
16 The rotation necessarily involves both the physical electron and

quasiparticle orbital basis: these, in fact, must coincide in the
present representation, in accordance to the matching between
physical and QP Fock states imposed by Eq. �3�.

17 R. Frésard and T. Kopp, Nucl. Phys. B 594, 769 �2001�; R.
Frésard, H. Ouerdane, and T. Kopp, ibid. 785, 286 �2007�.

18 To be precise, the transformation law of Ai
0 yields L→L

+ i�i���i
0���, which corresponds to a phase shift of the action S

→S+ i�i��i
0���−�i

0�0��. However, the periodic boundary condi-

tions on the boson fields imply that �i
0���=�i

0�0� mod 2% so that
e−S remains invariant.

19 L. D. Faddeev and V. N. Popov, Phys. Lett. 25B, 29 �1967�.
20 N. Read and D. M. Newns, J. Phys. C 16, 3273 �1983�.
21 Th. Jolicoeur and J. C. Le Guillou, Phys. Rev. B 44, 2403

�1991�.
22 S. Elitzur, Phys. Rev. D 12, 3978 �1975�.
23 P. Durand, G. R. Darling, Y. Dubitsky, A. Zaoppo, and M. J.

Rosseinsky, Nature Mater. 2, 605 �2003�; A. Y. Ganin, Y. Taka-
bashi, Y. Z. Khimyak, S. Margadonna, A. Tamai, M. J. Rossein-
sky, and K. Prassides, ibid. 7, 367 �2008�.

24 O. Gunnarsson, Rev. Mod. Phys. 69, 575 �1997� and references
therein.

25 J. E. Han, O. Gunnarsson, and V. H. Crespi, Phys. Rev. Lett. 90,
167006 �2003�.

26 Formally, in the antiadiabatic limit we have EJT=�&'�&g&
2, with

�& and g& representing, respectively, the vibron frequencies and
the electron-vibron couplings which characterize the Jahn-Teller
Hamiltonian HJT.

27 M. Capone, M. Fabrizio, P. Giannozzi, and E. Tosatti, Phys. Rev.
B 62, 7619 �2000�, and references therein.

28 K. Prassides, S. Margadonna, D. Arcon, A. Lappas, H. Shimoda,
and Y. Iwasa, J. Am. Chem. Soc. 121, 11227 �1999�.

29 V. Brouet, H. Alloul, S. Garaj, and L. Forró, Phys. Rev. B 66,
155122 �2002�; 66, 155124 �2002�.

30 M. Capone, M. Fabrizio, and E. Tosatti, Phys. Rev. Lett. 86,
5361 �2001�.

31 We can identify La as the Cartesian components of L and set, by
convention, L3�Lz.

32 See Eq. �55� for the definition of h�k� and Eq. �60� for its rela-
tion to the quasiparticle Green’s functions.

33 Since there are, on average, three electrons per site, there will be
an equal number of sites with two and four electrons, corre-
sponding to half of the total number of sites.

ROTATIONALLY INVARIANT SLAVE BOSONS FOR… PHYSICAL REVIEW B 80, 115120 �2009�

115120-17



34 M. Keller, W. Metzner, and U. Schollwöck, Phys. Rev. Lett. 86,
4612 �2001�; M. Capone, C. Castellani, and M. Grilli, ibid. 88,
126403 �2002�.

35 D. M. Eagles, Phys. Rev. 186, 456 �1969�; A. J. Leggett, J. Phys.
C 41, 7 �1980�; P. Nozieres and S. Schmitt-Rink, J. Low Temp.
Phys. 59, 195 �1985�.

36 A. Toschi, M. Capone, and C. Castellani, Phys. Rev. B 72,
235118 �2005�; B. Kyung, G. Kotliar, and A. M. S. Tremblay,
ibid. 73, 205106 �2006�.

37 M. Capone, M. Fabrizio, C. Castellani, and E. Tosatti, Phys. Rev.
Lett. 93, 047001 �2004�.

38 M. Schiró, M. Capone, M. Fabrizio, and C. Castellani, Phys.
Rev. B 77, 104522 �2008�.

39 G. Kotliar, S. Y. Savrasov, G. Palsson, and G. Biroli, Phys. Rev.

Lett. 87, 186401 �2001�.
40 M. H. Hettler, A. N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke,

and H. R. Krishnamurthy, Phys. Rev. B 58, R7475 �1998�.
41 M. Ferrero, P. S. Cornaglia, L. De Leo, O. Parcollet, G. Kotliar,

and A. Georges, EPL 85, 57009 �2009�.
42 Th. A. Maier, M. Jarrell, A. Macridin, and C. Slezak, Phys. Rev.

Lett. 92, 027005 �2004�; M. Civelli, M. Capone, A. Georges, K.
Haule, O. Parcollet, T. D. Stanescu, and G. Kotliar, ibid. 100,
046402 �2008�; S. S. Kancharla, B. Kyung, D. Senechal, M.
Civelli, M. Capone, G. Kotliar, and A.-M. S. Tremblay, Phys.
Rev. B 77, 184516 �2008�; K. Haule and G. Kotliar, ibid. 76,
104509 �2007�.

43 A. Isidori and M. Capone, Phys. Rev. B 79, 115138 �2009�.

A. ISIDORI AND M. CAPONE PHYSICAL REVIEW B 80, 115120 �2009�

115120-18


