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A user friendly scheme based on the quantum kinetic equation is developed for studying thermal transport
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alternative to the Kubo formula, which for the thermal transport is rather cumbersome.
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Measurements of thermal and thermoelectric transport in
electron systems of various kinds attracted considerable at-
tention in recent years.1 Among such experiments one can
find the measurement of the critical behavior of the ther-
mopower near the metal insulator transition,2 the Nernst ef-
fect in high-Tc and conventional superconductors,3–6 thermal
transport in quantum Hall systems,7 as well as thermopower
in quantum dots.8 To benefit from these experimental efforts,
theoretical studies are required. In this paper, we develop a
new theoretical apparatus for analyzing thermal and thermo-
electric transport in interacting electron systems in the pres-
ence of disorder. The strength of our scheme is in its gener-
ality that allow us to apply it for different kinds of
interactions. We believe that this scheme can be adopted as
an alternative to the Kubo formula.

The validity of the Kubo formula for thermal and thermo-
electric conductivities was proved by Luttinger.9 A main in-
gredient in the Kubo formula is the quantum-mechanical ex-
pression for the current operators entering the correlation
functions. The correlation functions describing the thermo-
electric or the thermal current involve the heat current opera-
tor which was derived by Luttinger9 for a system of interact-
ing electrons. In the absence of the electron-electron
interactions, the expression for the heat current operator is

jh�q = 0,�� = �
p

��p

�p
��p − ��cp

†���cp���

+ �
p,p�

��p

�p
Vimp�p,p��cp
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where cp
†��� �cp���� is the creation �annihilation� operator of

an electron in a state with energy �p. Here � is the chemical
potential, Vimp�p ,p�� is the potential created by the disorder
and � is the imaginary time. With the help of the equations of
motion10 and after transforming to the Matsubara frequen-
cies, the current operator can be written as
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When interactions between the electrons are included, the
expression for jh becomes more complicated. In general,
even when the equations of motion are employed, the result-

ing expression for the current is not just the frequency mul-
tiplied by the velocity but rather contains additional terms.11

Unfortunately, the heat current operator of free electrons is
frequently used for interacting systems even when there is no
justification for it. We demonstrate in Appendix B that the
simplified form of the Kubo formula fails to reproduce the
phenomenological thermal conductivity of a Fermi-liquid
system, i.e., the result does not satisfy the Wiedemann-Franz
law. The problems induced by the simplified Kubo formula
do not necessarily imply that the use of the Kubo formula for
thermal transport is generally wrong. The weak point is in
replacing Luttinger’s expression for the heat current by the
simplified form. The problem with using the full expression
for the heat current is that it is too complex.12

The difficulties related to the Kubo formula lead us to turn
to the quantum kinetic equation. Although derivations of the
transport coefficients using the kinetic equation already exist
�see, for example, Refs. 13–17�, our method differs in few
aspects. We developed a simple scheme that, as we demon-
strate in this paper, can be applied for various electron sys-
tems. The scheme is well suitable for both a general analysis
and a systematic perturbation expansion. In our method, both
the kinetic equation and the currents are derived directly
from the action and the corresponding conservation laws.
The systematic formulation of the quantum kinetic equation
in the presence of a temperature gradient has been achieved
using Luttinger’s idea of introducing a gravitational field.9

As a result, we found the expressions for the currents from
which all four components of the conductivity tensor can be
extracted

�je

jh
� = ��̂ �̂

�̂̃ 	̂
�� E

− �T
� . �3�

Moreover, we obtained that all the currents share a common
simple structure

je,h�r� =� d�

2

dr��e,h����v̂�r,r�,��Ĝ�r�,r,����. �4�

Here we use the notation �e���=−e for the electric current
and �h���=� for the heat current. Both the velocity and the
quasiparticle Green’s function in the above equation are fully
renormalized by the interaction. The currents are related to
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the lesser component in the Keldysh space of the product of
the renormalized velocity and Green’s function. Equation �4�
is one of the central results of this paper; it is shown that the
flow of energy occurs with the renormalized velocity. This
structure of the heat current guarantees that the Wiedemann-
Franz law is satisfied in the framework of the Fermi-liquid
theory. Finally, let us remark that although in this paper we
consider electrons interacting via the Coulomb interaction,
the generality of the method allows accounting for different
interactions with a minimal effort. In particular, this scheme
was highly useful in the analysis of the Nernst effect in dis-
ordered films in the presence of superconducting
fluctuations.18

The paper is organized as follows. In Sec. I we calculate
the electric conductivity. We deliberately choose the well-
elaborated example of the electric conductivity in order to
illustrate the main steps of our approach. We consider two
scattering mechanisms: the Coulomb interaction between the
electrons and the elastic scattering by impurities. In Sec. II
we repeat the scheme introduced in Sec. I in order to obtain
the quantum kinetic equation for a system of electrons in the
presence of a temperature gradient. In Sec. III we derive the
expressions for the different currents induced by the tem-
perature gradient. For completeness, we present the expres-
sion for the heat current generated by an electric field. Sec-
tions II and III constitute the core of the paper. In the rest of
the paper, we demonstrate how to apply this scheme for vari-
ous calculations and check that this method reproduces some
known results. In particular, in Sec. IV we show that the
Wiedemann-Franz law is satisfied for a Fermi-liquid system.
Then, in Sec. V we discuss the fate of the Wiedemann-Franz
law when diffusive corrections arising due to the interplay of
the electron-electron interaction and disorder are considered.
In Sec. VI we examine Onsager’s relations. The scheme de-
veloped in this paper allows us to calculate the two thermo-
electric currents separately. As an additional test, we demon-
strate in Sec. VI that our expressions for �xx and �̃xx satisfy
the Onsager relation, �̃xx=T�xx. Appendix A contains addi-
tional technical details of the derivation of the electric con-
ductivity. In Appendix B we present the calculation of the
thermal conductivity for a Fermi-liquid system using the
simplified version of the Kubo formula. We show that the
simplified formula leads to an erroneous result. In Appendix
C we concentrate on the contribution of the Coulomb drag to
the different transport coefficients. We emphasize the differ-
ence between the role of the Coulomb drag in electric con-
ductivity and that in thermal conductivity. Finally, in Appen-
dix E we briefly describe the generalization of the scheme
developed in this paper for superconducting fluctuations.

I. QUANTUM KINETIC SCHEME FOR ANALYZING THE
ELECTRIC CONDUCTIVITY

In this paper we limit ourselves to the well-known ex-
ample of electrons interacting through the density channel
�e.g., the Coulomb interaction� in order to demonstrate the
logic of our scheme for studying transport phenomena. For
the electric conductivity we start with the following action:

S =� drdt	†�r,t�i�t�r,t� −
��†�r,t�����r,t��

2m

− †�r,t��er · E + Vimp�r���r,t�

−
1

2
� dr�†�r,t�†�r�,t�U�r − r���r�,t��r,t�
 .

�5�

Here, �r� and †�r� are the Grasmannian fields describing
the quasiparticles, †�r�=�pcp

†e−ipr. The electric field is as-
sumed to be constant and we choose to work in the gauge
E=−���r�. In general, the field operators include a spin
index that is summed over in the above action. Here and in
the following, we do not indicate �whenever it is possible�
the spin indices because we do not consider any scattering
mechanisms that flip the spins or the Zeeman splitting. For
convenience, we introduce the Hubbard-Stratonovich field
��r� into the action

S =� drdt	†�r,t�i�t�r,t� −
��†�r,t�����r,t��

2m

− †�r,t��er · E + Vimp�r���r,t� − ��r,t�†�r,t��r,t�

+
1

2
� dr���r,t�U−1�r − r����r�,t�
 . �6�

After this transformation the system is described by two
propagators: the quasiparticle Green’s function,
G�r , t ;r� , t��, and the propagator of the � fields,
V�r , t ;r� , t��. �We use the term propagators when referring to

both these functions, while separately we name Ĝ�r , t ;r� , t��
the quasiparticle Green’s function and V̂�r , t ;r� , t�� the
propagator of the interactions.�

The general formulation of the quantum kinetic equation
for transport phenomena assumes that at time t=−�, the sys-
tem is at equilibrium. Then, an external field is adiabatically
switched on generating currents in the system. We follow the
Keldysh-Schwinger approach and use the matrix form of the
propagators.19–21 We find it convenient to work in the basis
of the retarded, advanced and Keldysh propagators. At equi-
librium, the three components of the matrices are not inde-
pendent, GK���= �1−2nF�����GR���−GA���� and VK���= �1
+2nP�����VR���−VA����; here nF��� is the Fermi distribu-
tion function and nP��� is the Bose distribution function. The
equilibrium propagators give the properties of the system at
t=−�. In order to describe the system in the nonequilibrium
state caused by the external field, one should derive the sys-
tem of equations for the propagators, i.e., the quantum ki-
netic equation. The starting point is the Dyson equations cor-
responding to the action which includes the external field.
The Dyson equation for the electric field dependent Green’s
function of the quasiparticles is
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2m
− Vimp�r� − erE + ��Ĝ�r,t;r�,t��

= ��r − r����t − t�� +� dt1dr1�̂�r,t;r1,t1�Ĝ�r1,t1;r�,t�� .

�7�

The chemical potential appears because we work in the
grand canonical ensemble. Note that the specific time depen-
dence of the retarded, advanced, and Keldysh propagators is
encoded in the definition of the different components of the
matrix propagators. Correspondingly, when the matrix propa-
gator is Fourier transformed, each of its components acquires
the proper analytic structure in the complex frequency plane.

We choose to postpone the averaging over impurities until
the last stage of the derivation of the current. Therefore, the
Green’s function of the quasiparticles contains open impurity
lines as illustrated in the two coupled equations presented in
Fig. 1,

Ĝ�r,t;r�,t�� = Ĝint�r,t;r�,t�� +� dr1dt1Ĝint�r,t;r1,t1�

�Vimp�r1�Ĝ�r1,t1;r�,t�� , �8a�

Ĝint�r,t;r�,t�� = Ĝb�r,t;r�,t�� +� dr1dt1dr2dt2Ĝb�r,t;r1,t1�

��̂�r1,t1;r2,t2�Ĝint�r2,t2;r�,t�� . �8b�

Here, Ĝint�r , t ;r� , t�� is the Green’s function of interacting

electrons, while Ĝb�r , t ;r� , t�� is free from both interactions

and scattering by impurities. Note that Ĝint�r , t ;r� , t�� in-
cludes partially the scattering by impurities. We will rewrite
the Green’s function and the kinetic equation in terms of the
center of mass coordinates, R= �r+r�� /2, T= �t+ t�� /2, and
the relative coordinates, �=r−r�, �= t− t�. There are two
sources for the dependence of the Green’s function on the
center of mass coordinate: the electric field and the scattering
by the impurities. To separate these two dependencies, we

use the notation Ĝ�R ,T ;� ,� ; imp�, where the explicit depen-
dence on R is caused by the electric field, while the one

arising due to the impurity potential is incorporated into imp.
Next, we Fourier transform the Green’s function with respect
to the relative time coordinate. Simultaneously, we wish to
write the quantum kinetic equation in the gauge-invariant
form. Owing to the fact that the gauge-invariant time deriva-
tive includes the scalar potential, one can modify the Fourier
transform in the following way:21,22

G�̂ �R,T;�,�;imp� =� d�ei��+eER��Ĝ�R,T;�,�;imp� . �9�

The underscore is used to mark gauge-invariant quantities.

After linearizing the quantum kinetic equation for G�̂ with
respect to the electric field, one obtains

	�� + � +
�2

2m
� −

eE

2m

�

��
� − Vimp�R + �/2� −

e�E

2



�G�̂ ��,�;imp� = ���� +� dr1��̂ �� − r1,�;imp�

�	1 −
eE

2
�r1

��

��
− �� − r1�

��

��
�
G�̂ �r1,�;imp� .

�10�

A detailed derivation is presented in Appendix A. Here, �
= 1

2�R+��. Clearly, for a constant electric field, there is no
explicit dependence of the gauge-invariant Green’s function
on the center of mass coordinate and the entire dependence

of G�̂ �� ,� ; imp� on R is incorporated into imp. To find G�̂ , we
write the Green’s function as a sum of two terms: the equi-
librium Green’s function ĝeq�� ,� ; imp� and the E-dependent

part ĜE�� ,� ; imp�. The equation for the equilibrium Green’s
function is

�� +
�2

2m
+ � − Vimp�ĝeq��,�;imp�

= ���� −� dr1�̂eq�� − r1,�;imp�ĝeq�r1,�;imp� .

�11�

Notice that the Laplacian in the above equation includes the
derivatives with respect to the center of mass and relative
coordinates. �The dependence on the center of mass coordi-
nate is caused by Vimp.� At equilibrium, the components of
the matrix Green’s function are

geq
R,A��,�;imp� = �� + �2/2m + � − Vimp − �eq

R,A��,�;imp��−1,

geq
K ��,�;imp� = �1 − 2nF�����geq

R ��,�;imp� − geq
A ��,�;imp�� .

�12�

Here geq
R�A� is analytic on the upper �lower� half of the com-

plex frequency plane �.

The detailed calculation of ĜE presented in Appendix A
yields

= +

(a)

(b)

= +
G Gint

Σ

Gint G

Gint Gb Gb Gint{G,V}

FIG. 1. �a� Illustration of Eq. �8a� for the full Green’s function

Ĝ. �b� The Dyson equation for Ĝint �see Eq. �8b��. Note that Ĝint

includes scattering by impurities only through �̂G ,V�, which is a

functional of the propagators Ĝ and V̂. The bare Green’s function,

denoted by Ĝb, is free from the interactions and the scattering by
impurities.
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ĜE��,�� = ĝeq����̂E���ĝeq��� −
ieE

2

�� � ĝeq���
��

v̂eq���ĝeq��� − ĝeq���v̂eq���
� ĝeq���

��
� .

�13�

From now on, whenever the dependence on the coordinates
in the product of matrices is not specified, it should be un-
derstood as a convolution in real space. The matrix v̂eq is the
velocity of the quasiparticles renormalized by the interac-
tions at equilibrium

v̂eq�r,r�,�� = − i lim
r�→r

�− ��

2m
− i�r − r���̂eq�r,r�,�� . �14�

The equation for ĜE contains the electric field dependent

self-energy, �̂E, which by itself is a function of the

E-dependent propagators. Thus, in order to find ĜE, one has
to determine the structure of the self-energy. Once the form
of the self-energy is fixed, one should take into consideration

that each of the propagators in �̂E may depend on the electric
field.

To find the response to the applied electric field, we need
also to derive the quantum kinetic equation for the propaga-

tor of the interaction. The Dyson equation for V̂ is

� dr1dt1U−1�r − r1���t − t1�V̂�r1,t1;r�,t�� = ��r − r��

−� dr1dt1�̂�r,t;r1,t1�V̂�r1,t1;r�,t�� , �15�

where �̂ is the self-energy �polarization operator� for the
interaction field ��r , t�. Unlike the kinetic equation for the
quasiparticle Green’s function, the electric field does not ap-

pear explicitly in the equation for V̂. Indeed, since the inter-
action field � is neutral, the electric field can only enter

through the self-energy term �̂ that contains the Green’s

functions of the charged quasiparticles Ĝ. For the same rea-

son, the Fourier transform of the relative time in V̂�r , t ;r� , t��
should be performed without the gauge factor.

The calculation of the electric conductivity requires the
expression for the electric current in terms of the propagators
depending on the electric field. We derive the electric current
through the continuity equation. We start from the density
which can be related to the lesser Green’s function in the
following way:

n�r,t� = 2 lim
r�→r

t�→t+

�†�r�,t���r,t�� � − 2i lim
r�→r

t�→t

G��r,t;r�,t�� .

�16�

We use the notation t�→ t+ to indicate that the limit should
be taken in such a way that t is on the upper branch of the
Keldysh contour, while t� is on the lower branch.20 The sum-
mation over the spin projection results in a factor of 2. The

lesser component of the Green’s function can be written in
terms of the retarded, advanced, and Keldysh Green’s func-
tions through the relation G�= �GK−GR+GA� /2. Here �A�
denotes the quantum-mechanical averaging with the action
given in Eq. �6�. Therefore, the Green’s function is fully
dressed by the interactions and depends on the impurity po-

tential. In addition, Ĝ is a function of the electric field. Since
we find the current by extracting it from the continuity equa-
tion, we assume that the electric field has some spatial modu-
lations that will be set to zero at the end of the procedure.

The continuity equation for the charge density, −eṅ�r , t�
+�je�r , t�=0, can be written as

�je�r,t� = 2e lim
r�→r

t�→t+

� �

�t
+

�

�t�
��†�r�,t���r,t�� . �17�

Under the average, the equations of motion for the fields 
and † allow us to rewrite the continuity equation as follows:

�je = 2ie lim
r�→r

t�→t+

���2 − ��2

2m
− e�r − r��E − Vimp�r� + Vimp�r��

− ��r,t� + ��r�,t���†�r�,t���r,t�� . �18�

We may express the right-hand side �RHS� of the above
equation in terms of the Green’s functions and self-energies

�je = 2e lim
r�→r

��2 − ��2

2m
Ĝ�r,t;r�,t�

−� dr1dt1�̂�r,t;r1,t1�Ĝ�r1,t1;r�,t�

+� dr1dt1Ĝ�r,t;r1,t1��̂�r1,t1;r�,t���

. �19�

We use the notation � . . . �� to indicate that the expression
inside the square brackets is a matrix and the current corre-
sponds to the lesser component of this matrix. The explicit
dependence on E in Eq. �18� dropped out as a result of taking
the limit r�→r. However, the Green’s functions as well as
the self-energies in the expression for the electric current
depend on the electric field.

To resolve the expression for the electric current, we have
to represent the RHS of Eq. �19� as a gradient of some func-
tion. With this in mind, we write the convolutions of the
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Green’s functions and self-energies in terms of the center of
mass and relative coordinates

�Ĝ�̂ − �̂Ĝ�� = lim
�→0
� dr1dt1�Ĝ�R +

r1 + �/2
2

;
�

2
− r1,

− t1;imp��̂�R +
r1 − �/2

2
;
�

2
+ r1,t1;imp�

− �̂�R +
r1 + �/2

2
;
�

2
− r1,− t1;imp�

�Ĝ�R +
r1 − �/2

2
;
�

2
+ r1,t1;imp���

. �20�

To extract the current out of the continuity equation, we ex-

pand ��̂Ĝ− Ĝ�̂�� with respect to the deviation from the cen-
ter of mass coordinate. �This step resembles the gradient ex-
pansion discussed, for example, in Refs. 20 and 21.� As a
consequence of the structure of Eq. �20�, one may immedi-
ately see that all even terms in the expansion vanish. Gener-
ally speaking, the expansion includes both the explicit de-
pendence on R arising due to the external field and the one
entering through the impurity potential. Recall that ulti-
mately we are interested in the current averaged over space.
Owing to the fact that any correlation function between the
impurity centers depends only on their relative distance, the
derivatives of Vimp with respect to the center of mass coor-
dinate vanish upon averaging. Therefore, in the regime of
linear response, it is enough to keep only the first nonvan-
ishing term in the expansion

�Ĝ�̂ − �̂Ĝ�� �� dr1dt1�R�Ĝ�R;− r1,− t1;imp�

�
r1

2
�̂�R;r1,t1;imp���

+ H.c. �21�

After performing the gauge-invariant Fourier transform on
the current, one come to the very compact expression

je = ie� d�

2

dr��v�̂ �r,r�,��G�̂ �r�,r,���� + H.c. �22�

We used the fact that Ĝ and v̂ in the expression for the
current have the same center of mass coordinate, while their
relative time coordinates differ by a sign. Therefore, when
we Fourier transform both the velocity and the Green’s func-
tion according to Eq. �9�, the two gauge factors cancel each
other. As a result, je becomes a simple convolution of two
gauge-invariant quantities. The expression for the current
contains the renormalized velocity as defined in Eq. �14�
with the only difference that the self-energy may depend

on the electric field, v�̂ = v̂eq+ v̂E, where v̂E�r ,r� ,��
=−i�r−r���̂E�r ,r� ,��.

The final step in the derivation of the electric conductivity

is to insert the expressions for ĜE and v̂E into Eq. �22� and
complete linearizing it with respect to the electric field �for

more details, see the end of Appendix A�. Using the known
relations between the components of the Green’s function at
equilibrium, one gets

je
i = −

e2Ej

2
� d�

2


�nF���
��

�vi
R���geq

R ���v j
A���geq

A ���

+ vi
R���geq

R ���v j
R���geq

A ��� − vi
R���geq

R ���v j
R���geq

R ���

− geq
R ���v j

R���geq
R ���vi

A���� − e2Ej� d�

2

nF���

��vi
R���

�geq
R ���
��

v j
R���geq

R ��� − vi
R���geq

R ���v j
R���

�geq
R ���
��

�
− ie� d�

2

vi

R���geq
R ����E

�����1 − nF���� + �E
����nF����

��geq
R ��� − geq

A ���� + c.c. �23�

The second term in the above expression is zero for the lon-
gitudinal current, but it becomes important when the trans-
verse current in the presence of a magnetic field is consid-
ered.

The obtained result for the electric current is expressed in
terms of the renormalized Green’s functions and velocities,
i.e., it holds to all order with respect to the electron-electron
interaction. In practice, to get a quantitative result, one has to
specify the form of the self-energy and to average over the
disorder. In the case of the electric conductivity, the terms in
Eq. �23� are equivalent to those given by the Kubo formula
after performing in the latter the analytic continuation to the
real frequency. The derivatives with respect to the frequency
are the same derivatives that one gets after expanding the
Kubo formula with respect to the external frequency. While
the derivatives with respect to the frequency in the first two
terms of Eq. �23� appear explicitly, in the last term they
reveal themselves only after linearizing the self-energy with
respect to E. If interested, one can generate the perturbative
expansion order by order in a systematic fashion and give a
diagrammatic interpretation for each of the terms. This tech-
nique automatically determines the analytic structure, the
way the distribution functions enter, as well as the numerical
factors of all the diagrams. �We checked that for the electric
conductivity, the set of diagrams obtained in the quantum
kinetic approach coincides with the one given by the Kubo
formula. We reproduced all the diagrams contributing to the
Altshuler-Aronov corrections to the conductivity.23,24 In or-
der to get these known corrections, one should properly per-
form the averaging over the disorder in Eq. �23�.�

To summarize, we demonstrated the main steps in the
derivation of currents in response to an external field using
the electric conductivity as an instructive example. In par-
ticular, we showed how to find from the continuity equation
the current in terms of the renormalized �dressed� quantities.
In the subsequent sections, we shall follow the same scheme
in order to find the heat and electric currents as a response to
a temperature gradient. In addition, in Appendix E we de-
scribe how this scheme can be applied for an interaction in
the Cooper channel.
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II. DERIVATION OF THE KINETIC EQUATION IN THE
PRESENCE OF A TEMPERATURE GRADIENT

Similar to the calculation of the electric conductivity de-
scribed in the previous section, the derivation of the electric
and heat currents as a response to a temperature gradient
consist of two steps. One has to derive the kinetic equation
and to find the expressions for the currents from the conti-
nuity equations.

We start with the quantum kinetic equation for the matrix
Green’s function. Since the temperature gradient is not a me-
chanical force, one cannot obtain the response to �T just
following the route we elaborated for the electric field. To
overcome this obstacle, we �following Luttinger9� introduce
an auxiliary gravitational field that enters the action. We will
show how to establish a direct connection between the re-
sponse to the gravitational field and the response to the tem-
perature gradient.

In the Keldysh-Schwinger approach,19–21 the Green’s
functions are defined using the time-ordering operator TC
along the Keldysh contour C �see Fig. 2�

Ĝ�r,t;r�,t�� = − i�TCe−i�Cd��H���−�N��r,t�†�r�,t���� .

�24�

The integration in the exponent contains two parts. The first
part of the contour is parallel to the imaginary axis starting at
t=−�+ i� and ending at t=−�+ i�. The second, which is
parallel to the real time axis, gives the evolution of the sys-
tem in time. The Green’s function along the second part of
the contour is described by the kinetic equation. In the deri-
vation of transport properties, we usually assume that the
driving force is switched on adiabatically, starting at t=−�
+ i�. Thus, the integration of the Hamiltonian in the exponent
along the first part of the contour yields the thermal distribu-
tion of a system in the unperturbed state. As a result, at t=
−�+ i� when the external perturbation starts to act, the sys-
tem is at thermal equilibrium.

In contrast to the electric field described in the preceding
section, a space-dependent temperature, T�r�, influences the
first part of the integration. In principle, one may try to gen-
eralize the integration along the first part of the Keldysh
contour in the following way:

�̂ = exp	− i� dr�
−�+i��r�

−�+i�

dt�h�r� − �n�r��
 , �25�

where h�r� is the Hamiltonian density. Clearly, the density
matrix obtained as a result of this integration corresponds to
a nonuniform state. On the other hand, the integration along
the second part of the Keldysh contour �parallel to the real
axis� is independent of the temperature and, therefore, the
quantum kinetic equation does not include any external per-
turbation. In other words, we face the problem of finding
highly nontrivial initial state before we even start to study its
time evolution. To avoid this complicated task, we shall re-
formulate the problem in such a way that the initial state of
the system is uniform in space.

A similar problem of treating a spatial varying initial state
appears when the response to a gradient of the density is
studied. According to Einstein’s construction, in the case of a
density gradient, the stationary state can be obtained by add-
ing a scalar potential at time t=−� in such a way that the
electrochemical potential is kept constant, ��r�=��r�
−e��r�=const, and the initial state is uniform. Then, the re-
sponse to the gradient of the chemical potential �density� can
be derived by adiabatically switching off the scalar potential,
��r�. �This is one way to interpret the Einstein relation.� In a
similar fashion, Luttinger9 introduced a gravitational field,
��r�, as a counterpart of the nonuniform temperature. This
auxiliary field allows deriving the equivalent of the Einstein
relation for studying thermal transport.

We wish to introduce Luttinger’s gravitational field ��r�
into the quantum kinetic approach. Since the gravitational
field can be considered as a spatial-dependent measure of the
time coordinate, we shall study the following action:

S =� drdt��r�	†�r,t�
i�t

��r�
�r,t� −

��†�r,t�����r,t��
2m

− �Vimp�r� − ��†�r,t��r,t� − ��r,t�†�r,t��r,t�

+
1

2
� dr���r,t�U−1�r − r����r�,t�
 . �26�

Let us first fix ��r� in such a way that under the combined
effect of the spatially dependent temperature, T�r�=T
+�T�r�, and the gravitational field, the system remains at
equilibrium with a uniform effective temperature �0T. In
other words, the distribution function that describes the state
of the system does not evolve in time and it is equal to
nF���= �e�/��0T�+1�−1. One may notice that the gravitational
field enters Eq. �26� only through the product t��r�. Corre-
spondingly, after Fourier transforming the time coordinate,
this field is coupled to the frequency as � /��r�. Therefore,
under the combined effect of the temperature and the gravi-
tational field, the equilibrium distribution function becomes

nF��� = �exp� �

��r�T�r�
� + 1�−1

, �27�

where the gravitational field has to be chosen so that the
product ��r�T�r�=�0T is constant in space. �We keep �0 un-
specified until the end of the derivation of the thermal and
thermoelectric currents when it is set to be 1. We shall see

Re t

Im t

t-iδ

t+iδ

∞t=- +iβ

FIG. 2. The Keldysh contour. The first, vertical, part of the
contour is parallel to the imaginary axis starting at t=−�+ i� and
ending at t=−�+ i�. The second, horizontal, part of the contour is
parallel to the real time axis. Here � is the inverse temperature.
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that our choice to leave �0 simplifies the analysis.�
Next, in order to find the response of the system to the

temperature gradient, we adiabatically switch off the gravi-
tational field starting at time t=−�+ i� �or equivalently
switch on the same field with an opposite sign�. Now, the
situation is similar to the one we encountered in studying
electric conductivity. While for the first part of the integra-
tion, parallel to the imaginary axis, the combined effect of
the temperature and the gravitational field maintains the sys-
tem at equilibrium, in the second part of the contour integra-
tion the change in the gravitational field perturbs the system.

In the following, we shall study the kinetic equation in the
presence of the gravitational field as described by the action
in Eq. �26�. Since we are specifically interested in switching
off the field ��r�=�0T /T�r�, in the end of the derivation, we
will set ���r�=�T�r� /T. �The last relation holds for the lin-
ear response. Pay attention to the sign in this relation. It is a
consequence of the fact that switching off the field ���r� is
equivalent to switching on the field −���r�.� According to
Eq. �26�, the Dyson equation for the Green’s function in the
presence of the gravitational field is

	i
�

�t
+

����r���
2m

− ��r��Vimp�r� − ��
Ĝ�r,t;r�,t��

= ��r − r����t − t��

+ ��r�� dt1dr1�̂�r,t;r1,t1���r1�Ĝ�r1,t1;r�,t�� .

�28�

The collision integral contains ��r1� because each integration
over time is accompanied by the gravitational field. At this
stage, if to write the gravitational field as ��r�=�0+r��, it
is possible to expand straightforwardly the kinetic equation
up to the linear order in ��. However, a radical simplifica-
tion may be achieved by applying the following transforma-
tion to the kinetic equation:

Ŷ�r,t;r�,t�� = �−1/2�r�Ŷ
=

�r,t;r�,t���−1/2�r�� , �29�

where Ŷ can be the Green’s function or the self-energy.
When terms of the order ����2 and �2� are neglected, the

equation for the Green’s function Ĝ�� �r , t ;r� , t�� acquires the

form

�1/2�r��i
�

��r� � t
+

�2

2m
− Vimp�r� + ���−1/2�r��Ĝ

=
�r,t;r�,t��

= ��r − r����t − t��

+ �1/2�r�� dt1dr1�̂=�r,t;r1,t1�Ĝ
=

�r1,t1;r�,t���−1/2�r�� .

�30�

Multiplying the above equation by �−1/2�r� and �1/2�r��, we
eliminate the gravitational field from all terms beside the
time derivative.

After Fourier transforming the relative time in Eq. �30�,
the kinetic equation in the regime of linear response becomes

	�1 −
R � �

�0
−

� � �

�0
� �

�0
+

�2

2m
− Vimp�R + �/2� + �


�Ĝ
=

�R;�,�� = ���� +� dr1�̂=�R +
r1

2
;� − r1,��

�Ĝ
=�R −

� − r1

2
;r1,�� . �31�

Here we separated the dependence on the center of mass and
the relative coordinates. Once again, we used �= 1

2�R+��.
Since the gravitational field is independent of time and ow-
ing to the fact that we are interested in the stationary state,
we may omit the center of mass time. It is worth paying
attention to the difference in the way the electric and gravi-
tational fields enter the kinetic equation. The electric field in
the gauge-invariant kinetic equation appears only with the
relative coordinate �. As a result, the gauge-invariant
Green’s function depends on the center of mass coordinate
only due to the scattering by the impurities. �Recall that we
postpone the averaging over the disorder until the end of the
calculation.� The essential feature of the quantum kinetic
equation in the presence of a gravitational field is that ��
multiplies not only � but also R. Consequently, the gravita-
tional field induces an additional dependence of the Green’s
function on the center of mass coordinate.

We shall write the Green’s function Ĝ
=

as a sum of the
equilibrium Green’s function ĝeq and the ��-dependent
Green’s function. The kinetic equation describing ĝeq can be
obtained by setting ��=0,

� �

�0
+

�2

2m
− Vimp�R + �/2� + ��ĝeq��,�;imp� = ����

+� dr1�̂eq�� − r1,�;imp�ĝeq�r1,�;imp� . �32�

The above equation practicably coincides with Eq. �11�; the
only difference is that here, the frequency appears as � /�0.
As we have already done in the preceding section, we sepa-
rate the dependence on R due to the driving force from the
one caused by the impurity potential. In our notation, the
latter has been incorporated into imp. Before averaging, the
dependence of the Green’s function on the disorder is de-
scribed by the set of equations which was already given in
Eq. �8�. After averaging over the disorder, the equilibrium
Green’s function becomes

�geq
R,A��,���imp = � �

�0
+

��
2

2m
+ ��

i

2�
− �eq

R,A��,�/�0��−1

,

�geq
K ��,���imp = �1 − 2nF��/�0���geq

R ��,�� − geq
A ��,��� ,

�33�

where � is the mean-free time. These Green’s functions can
be interpreted as describing the quasiparticles in the equilib-
rium state with temperature T and effective frequency � /�0.

As we already discussed, the explicit dependence on R in

Ĝ
=

�R ;� ,� ; imp� is induced by the gradient of the gravita-
tional field. Therefore, in the process of linearizing the ki-
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netic equation with respect to ��, we expand Ĝ
=

and �̂
=

in the
collision integral with respect to this explicit dependence on
R. In other words, we may rewrite the last term in Eq. �31�
as

� dr1�̂=�R +
r1

2
;� − r1,�;imp�Ĝ

=�R −
� − r1

2
;r1,�;imp�

�� dr1�̂=�R;� − r1,�;imp�Ĝ
=

�R;r1,�;imp�

+� dr1
r1

2

��̂
=

�R;� − r1,�;imp�

�R
Ĝ
=

�R;r1,�;imp�

−� dr1�̂=�R;� − r1,�;imp�
� − r1

2

�Ĝ
=

�R;r1,�;imp�

�R
.

�34�

We will see that the last two terms are indeed proportional to
��.

We separate the part of Ĝ
=

depending on �� into two

pieces. The equation for the first one, Ĝloc−eq, is

� �

�0
+

�2

2m
− Vimp + ��Ĝloc−eq�R;�,�;imp�

−
R � �

�0
2 �ĝeq��,�;imp�

=� dr1�̂eq�� − r1,�;imp�Ĝloc−eq�R;r1,�;imp�

+� dr1�̂loc−eq�R;� − r1,�;imp�ĝeq�r1,�;imp� .

�35�

Following the steps presented in Appendix A for the deriva-
tion of the E-dependent Green’s function, we may rewrite

the expression for Ĝloc−eq�R ;� ,� ; imp� as

Ĝloc−eq��� = �R � ��ĝeq���
�

�0
2 ĝeq���

+ �R � ��ĝeq����̂loc−eq���ĝeq��� . �36�

Once again, one should understand the product as a convo-
lution of the coordinates. The solution of this equation is

Ĝloc−eq�R;�,�;imp� = �R � ��
� ĝeq��,�;imp�

��0
, �37a�

�̂loc−eq�R;�,�;imp� = �R � ��
��̂eq��,�;imp�

��0
. �37b�

We see that the local equilibrium Green’s function,

Ĝloc−eq, is a straightforward extension of the equilibrium
Green’s function for a nonuniform gravitational field/
temperature. This part of the Green’s function describes the
readjustment of quasiparticles to the nonuniform gravita-
tional field/temperature when the system is trying to main-

tain a local equilibrium. This response of the electrons to the
nonuniform perturbation tempts to induce a spatial modula-
tion of the density. Since for charged particles it is impos-
sible to have a large scale charge modulation, the gradient of
the gravitational field transfers into a gradient of the electro-
chemical potential. Therefore, je= �̂�E+�� /e�= �̂E�, where
the effective field E� is the one measured in experiments. In
other words, although this contribution to the current is ini-
tiated by the temperature gradient, it reveals itself through
the electric conductivity. We wish to remark that for a con-
stant electric field, an equivalent for the local equilibrium
Green’s function does not appear. �The role of the local-
equilibrium Green’s function is most peculiar when the re-
sponse to �� is considered in the presence of a magnetic

field. Under these conditions, Ĝloc−eq is responsible for the
nonvanishing contribution to je from the magnetization
current.18�

The equation for the second term of the ��-dependent

part of the Green’s function, denoted by Ĝ���R ;� ,� ; imp�,
includes all the terms in Eq. �31� that did not enter the equa-

tions for ĝeq and Ĝloc−eq,

� dr1ĝeq
−1�� − r1,�;imp�Ĝ���R;r1,�;imp�

−
� � �

2�0
2 �ĝeq��,�;imp� +

1

2m

�2Ĝloc−eq�R;�,�;imp�
�R � �

=� dr1�̂���R;� − r1,�;imp�ĝeq�r1,�;imp�

+� dr1
r1

2

��̂loc−eq�R;� − r1,�;imp�
�R

ĝeq�r1,�;imp�

−� dr1�̂eq�� − r1,�;imp�
� − r1

2

�Ĝloc−eq�R;r1,�;imp�
�R

.

�38�

In the above equation, the derivatives with respect to the
center of mass coordinate act only on the explicit depen-

dence of Ĝloc−eq�R ,� ,� ; imp� and �̂loc−eq�R ,� ,� ; imp� on R
�i.e., through the spatial-dependent gravitational field�. Note
that the derivatives with respect to the center of mass coor-
dinate which act on Vimp in the local equilibrium Green’s
function were already included in Eq. �35�.

Once the explicit expressions for Ĝloc−eq and �̂loc−eq are

inserted into Eq. �38�, the kinetic equation for Ĝ�� becomes

similar to the one for ĜE analyzed in AppendixA �see Eq.
�A2��. After similar manipulations, the kinetic equation ac-
quires a simple form resembling Eq. �13�,

Ĝ����,�; ,imp� = ĝeq����̂�����ĝeq��� +
i � �

2

�� � ĝeq���
��0

v̂eq���ĝeq���

− ĝeq���v̂eq���
� ĝeq���

��0
� . �39�
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The expression for the renormalized velocity was already
defined in Eq. �14�. Let us emphasize that despite of the

similarity in the structure, the equations for ĜE and Ĝ�� are
not identical. The derivative with respect to the frequency in
Eq. �13� is replaced by a derivative with respect to �0 in Eq.
�39�. Since the derivative with respect to �0 acts on the equi-
librium Green’s functions for which �0 accompanies the fre-
quency as � /�0, this derivative can be replaced by
−�� /�0

2�� /��. We see that according to the quantum kinetic

equation for Ĝ��, the derivative with respect to the frequency
is multiplied by the same frequency. As we have pointed out
in Sec. I, the derivative � /�� corresponds to the expansion
with respect to the external frequency in the Kubo formula.
In the simplified version of the Kubo formula given by Eq.
�2�, the frequency multiplies the unrenormalized velocity
vertex, which is not connected to the expansion with respect
to the external frequency. As a result, in the presence of
interactions, the frequency in the derivative and the one mul-
tiplying the velocity vertex are not necessarily the same. The
difference between the expressions obtained by using the two
methods may seem minor. However, it will become clear that
this subtle point actually leads to different expressions for
the thermal conductivity even in the Fermi-liquid theory.

To complete the derivation of the response of the system
to ��, we have to find the dependence of the propagator of

the interaction V̂ on the gravitational field. Let us return to
the action presented in Eq. �26�. In general, for a nonlocal in
space interaction, one should be concerned about which of
the coordinates, r or r�, should be prescribed to �. This ques-
tion is relevant for the last term in the action which describes
the bare interaction via the field �. In this paper we consider
electrons interacting only through the Coulomb interaction.
If one recalls that for the Coulomb interaction,
�dr���r , t�U−1�r−r����r� , t�=e2����r , t��2 /8
, it is clear
that the problem of attributing the coordinate to � does not
exist.

The Dyson equation for the propagator of the interaction
in the presence of a gravitational field is

−
e2

8

� ���r� � V̂�r,t;r�,t��� = ��r − r����t − t��

− ��r�� dr1dt1�̂�r,t;r1,t1���r1�V̂�r1,t1;r�,t�� .

�40�

In the derivation of the above equation, we used the specific
expression for the Coulomb interaction. An important feature
of the kinetic equation for the propagator of the instanta-
neous interaction is that it does not include any time deriva-
tives. As a consequence of this fact, the explicit dependence
on the gravitational field may be eliminated from the equa-
tion in the linear response by transforming to the propagator

V̂
=

,

−
e2

8

�2V̂
=

�r,t;r�,t�� = ��r − r��

−� dr1dt1�̂=�r,t;r1,t1�V̂
=

�r1,t1;r1,t�� .

�41�

Here we employ the same transformation as in Eq. �29�. As

one can see, the entire dependence of the propagator V̂
=

on the
gravitational field is through the quasiparticle Green’s func-

tions that enter the self-energy �̂
=

. Note the similarity be-
tween the kinetic equation for the propagator of the interac-
tion in the density channel in the presence of a gravitational
field and Eq. �15�.

Let us separate the solution of Eq. �41� into the equilib-

rium and ��-dependent propagators, V̂
=

= V̂eq+ V̂loc−eq+ V̂��.
The propagator at equilibrium satisfies the equation

V̂eq�R;�,�� = �U−1��� + �̂eq�R;�,���−1. �42�

The entire dependence of V̂eq�R ;� ,�� on the frequency is

due to the quasiparticle Green’s functions in �̂. Hence, the
frequency enters only in the combination � /�0 because the
frequency in ĝeq appears as � /�0 �see Eq. �31��. The equa-
tions for the ��-dependent propagators are

V̂loc−eq�R;�,�� = − V̂eq����̂loc−eq���V̂eq��� , �43a�

V̂���R;�,�� = − V̂eq����̂�����V̂eq��� . �43b�

We will give a detailed discussion regarding the contribu-
tion of the interaction field to the heat transport in the fol-
lowing section. In addition, in Appendix E we present the
kinetic equation for an interaction field describing the fluc-
tuations in the Cooper channel.

III. ELECTRIC AND HEAT CURRENTS IN THE
PRESENCE OF A TEMPERATURE GRADIENT

In this section we present the derivation of the heat and
electric currents in terms of the Green’s functions as a re-
sponse to a temperature gradient. We also find the heat cur-
rent induced by an electric field which will be used in the
next section for the verification of the Onsager relations.

We first consider the electric current. Just like in the deri-
vation of the electric conductivity, we start from the charge
density given by Eq. �16� and extract the expression for the
electric current from the continuity equation �see Eq. �17��.
Further calculations using the continuity equation require the
equations of motion for the field variables which can be ob-
tained from the action presented in Eq. �26�. At this point,
the derivation of the electric current as a response to a gravi-
tational field departs from the one for the electric field be-
cause the dynamics of the field variables is different. Accord-
ing to the action given in Eq. �26�, the divergence of the
electric current is
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�je = 2e lim
r�→r

t�→t+

� �

�t
+

�

�t�
��†�r�,t���r,t��

= e lim
r�→r

����r� � − ����r����

2m
Ĝ�r,t;r�,t�

− ��r�� dr1dt1�̂�r,t;r1,t1���r1�Ĝ�r1,t1;r�,t�

+� dr1dt1Ĝ�r,t;r1,t1���r1��̂�r1,t1;r�,t���r����

.

�44�

As before, the factor of 2 is due to the summation over the
spin index. Besides the dependence on � through the Green’s
functions and self-energies, the RHS of the above equation
contains the gravitational field explicitly. We may eliminate

this explicit dependence on � by transforming to Ĝ
=

and �̂
=

�using the transformation described in Eq. �29��

�je = − e lim
r�→r

�−
�2 − ��2

2m
Ĝ
=

�r1,t1;r�,t�

−� dr1dt1�̂=�r,t;r1,t1�Ĝ
=

�r1,t1;r�,t�

+� dr1dt1Ĝ
=

�r,t;r1,t1��̂
=

�r1,t1;r�,t���

. �45�

In the above equation, we used the fact that the product
�1/2�r��−1/2�r�� in the limit r�→r becomes 1.

We arrived at an equation which is identical to the one
obtained for the electric current as a response to an electric
field in Sec. I. Therefore, we get the following expression for
the current:

je = ie� dr�dt��v=̂�r,t;r�,t��Ĝ
=

�r�,t�;r,t��� + H.c. �46�

The above expression for the current is valid in the regime of
linear response. One may check that the second nonvanish-
ing term in the expansion described in Eq. �20� yields a

contribution to the current, je�R���dr1d�r1�r1�R�2�Ĝ
=

�R ;

−r1 ,���̂
=

�R ;r1 ,����, which is already beyond the linear re-
sponse.

Next, we shall concentrate on the expression for the heat
current, jh. Following the prescription used for the electric
current, we find jh from the continuity equation for the heat

density, Q̇+�jh=0. We start from the heat density, which in
the presence of the gravitational field is

Q�r,t� = ��r��h�r,t� − �n�r,t�� , �47�

where the energy and particle densities, h�r , t� and n�r , t�, are
defined in the absence of the gravitational field. Extracting
the Hamiltonian density from the action, we may write the
heat density as

Q�r,t� =
1

2
lim

r�→r

t�→t+

�	−
���r��

2m
−

����r����

2m

+ ��r��Vimp�r� + ��r,t�� + ��r��

��Vimp�r�� + ��r�,t��� − ���r� + ��r����

��

s

s
†�r�,t��s�r,t� −

1

2
���r� + ��r���

�� dr1��r,t�U−1�r� − r1���r1,t��� . �48�

Due to the fact that the average heat density is evaluated
under the path integral, Eq. �48� can be rewritten in the fol-
lowing way:

Q�r,t� = i lim
r�→r

t�→t+

�� �

�t
−

�

�t�
��†�r�,t���r,t��

− 2��r − r����t − t��� . �49�

When inserted into the continuity equation, the term in the
heat density proportional to ��t− t�� vanishes. The resulting
continuity equation for the heat current acquires a rather
simple form

�jh = − i lim
r�→r

t�→t+

� �

�t
+

�

�t�
�� �

�t
−

�

�t�
��†�r�,t���r,t�� .

�50�

We have already met the derivative with respect to the center
of mass time acting on �†�r� , t���r , t�� in the calculation of
the electric current as a response to the gravitational field
�see Eq. �44��. Following the same route as in the transition
from Eq. �44� to Eq. �46�, we may express the heat current in
terms of G=,

jh =
1

2
lim

t�→t+
� �

�t
−

�

�t�
�� dr1dt1v=̂�r,t;r1,t1�Ĝ

=
�r1,t1;r,t��

+ H.c. = − i� d�

2

dr���v=̂�r,r�,��Ĝ

=
�r�,r,���� + H.c.

�51�

In the last equality, we performed the Fourier transform with
respect to the relative time coordinate.

It is worth pointing out that although the interaction renor-
malizes both the velocity and the Green’s function in Eq.
�51�, for an instantaneous interaction there is no direct con-
tribution to the heat current from the interaction propagator.
In the scheme developed here, the heat density and current
were expressed in terms of the quasiparticle Green’s function
alone. This observation is consistent with the kinetic equa-

tion for V̂
=

that reveals that the propagator of the interaction
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depends on the gravitational field only through the quasipar-

ticle Green’s functions in the self-energy �̂
=

. The physical
picture behind these two results is connected to the fact that
it is the quasiparticles that are actually coupled to the heat
bath and have a well-defined temperature, while the interac-
tion field does not have a temperature of its own. Our ex-
pression for the heat current is different from the one given
in Ref. 17 where the heat current has been taken as a sum of
two contributions: one from the quasiparticles and the other
from the collective modes. The authors of Ref. 17 introduced
the two terms because their purpose was to construct the
kinetic equation in terms of the local distribution functions of
the quasiparticles and collective modes. Since we keep the
kinetic equation for the propagators to be nonlocal, the qua-
siparticle Green’s function entering the current carries the
information about the collective modes as well. Another dif-
ference is related to the kinetic equation. In Ref. 17, the
temperature gradient enters through the derivative with re-
spect to the spatial coordinate rather than the time. Despite
all the differences, the calculation of the thermal conductiv-
ity presented in Sec. V produces the same result as in Ref.
17.

Extracting the electric and heat currents from the continu-
ity equations is similar to deriving the Ward identities. There-
fore, it is not surprising that the expressions for the currents
contain the renormalized velocity. A similar approach for
finding the vertex correction to the heat current has been
applied by Langer.11 Our expression for the heat current co-
incides with the first term given in Eq. 3.30 of Ref. 11.
Langer’s heat current includes also a nontrivial term with a
derivative of the interaction amplitude with respect to the
momentum. In the present scheme we succeeded to bypass
this complication. We believe that in our scheme this term is
hidden in the ��-dependent self-energy that contains also
contributions in which the gradient of the gravitational field
enters through the propagator of the interaction.

For completeness, we derive the expression for the heat
current as a response to an electric field. In general, the pro-
cedure is similar to that of finding the heat current generated
by a gravitational field, but there is one important modifica-
tion. Here, the continuity equation acquires an additional
term due to the work performed by the electric field on the
electrons

Q̇�r,t� + �jh�r,t� = je�r,t�E�r� . �52�

Unlike the heat density in Eq. �47�, which is a function of the
chemical potential �, in the presence of an electric field, the
heat density is a function of the electrochemical potential.
Therefore, the continuity equation for the heat density should
be written as

ḣ�r,t� − �� − e��r��ṅ�r,t� + �jh�r,t� = − je�r,t� � ��r� .

�53�

Using the continuity equation for the n�r , t�, one gets

ḣ�r,t� − �ṅ�r,t� + ����r�je�r,t�� + �jh�r,t� = 0, �54�

where the charge current is given in Eq. �19�. The additional
term in the heat continuity equation makes the expression for
the heat current generated by an electric field to be gauge
invariant. Following the same steps as in the derivation of
the response to a gravitational field, we obtain

jh =
1

2
lim

r�→r

t�→t+

� �

�t
+ ie��r� −

�

�t�
+ ie��r���

�� dr1dt1v̂�r,t;r1,t1�Ĝ�r1,t1;r�,t�� + H.c. �55�

Applying the gauge-invariant Fourier transform as defined in
Eq. �9�, the expression for the heat current in terms of the
gauge-invariant Green’s function becomes

jh = − i� d�

2

dr���v�̂ �r,r�,��G�̂ �r�,r,���� + H.c. �56�

Here, the frequency carried by the flow multiplies the renor-
malized velocity.

We wish to emphasize the most essential feature of the
expressions for the heat current obtained in our scheme, Eqs.
�51� and �56�. That is, that the frequency factor corresponds
to the legs of the renormalized vertex, but not to the fre-
quency of the two Green’s functions connected to the bare
velocity inside the vertex �for illustration see Fig. 3�. In the
diagrammatic technique, one usually starts with the bare ver-
tex and then adds the interaction. In Appendix B, we show
that for the simplified Kubo formula, where the bare heat
current vertex is �v0, dressing this vertex with interactions is
not enough to reproduce the correct answer. We believe that
this is the reason why the simplified Kubo formula produces
wrong results in the presence of interactions.

We like to point out the similarity in the structure of the
four currents obtained in our scheme �Eqs. �22�, �46�, �51�,
and �56��. One may notice that after using the proper trans-
formations described by Eqs. �9� and �29� �for the response
to an electric field and a gravitational field, respectively�, all
the currents acquire the universal and amazingly simple form
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FIG. 3. �a� The heat current vertex for noninteracting electrons.
�b� The heat current vertex in the presence of interactions is a prod-
uct of the renormalized velocity multiplied by the frequency of the
incoming and outgoing legs.
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of Eq. �4�. In particular, the entire dependence of the currents
on the external fields is only through the renormalized veloc-
ity and Green’s function.

From now on, we will work only with the temperature
gradient. This is possible because we already found the ki-
netic equations and the currents and therefore, the gravita-
tional field fulfilled its role. We now present the expression
for the heat current generated by a temperature gradient. First
we have to adjust the ��-dependent parts of the Green’s
function to describe the response to a nonuniform tempera-
ture. For that we replace �� by �T /T and set �0=1 in Eqs.

�37� and �39�. Next, we insert the expressions for Ĝloc−eq,

Ĝ�T, as well as the �T-dependent velocities into Eq. �51�. In
the regime of linear response, the local equilibrium Green’s
function and the corresponding velocity do not contribute to
the longitudinal current because the dependence on the cen-
ter of mass coordinate makes such contribution vanish after
averaging over the volume. Thus, the heat current is entirely

determined by Ĝ�T and �̂�T,

jh
i =

� jT

2T
� d�

2

�2�nF���

��
�vi

R���geq
R ���v j

A���geq
A ���

+ vi
R���geq

R ���v j
R���geq

A ��� − vi
R���geq

R ���v j
R���geq

R ���

− geq
R ���v j

R���geq
R ���vi

A���� +
� jT

T
� d�

2

�2nF���

��vi
R���

�geq
R ���
��

v j
R���geq

R ��� − vi
R���geq

R ���v j
R���

�geq
R ���
��

�
+ i� d�

2

�vi

R���geq
R �����T

� ����1 − nF���� + ��T
� ���nF����

��geq
R ��� − geq

A ���� + c.c. �57�

We will use this expression to analyze the thermal conduc-
tivity in the following sections.

IV. ELECTRIC AND THERMAL CONDUCTIVITIES IN
THE FERMI-LIQUID THEORY AND THE WIEDEMANN-

FRANZ LAW

In this section we apply the microscopic scheme devel-
oped in this paper in order to calculate the electric and ther-
mal conductivities in the framework of the Fermi-liquid
theory. We demonstrate that the two conductivities are re-
lated through the Wiedemann-Franz law as it should be ac-
cording to phenomenology. We will consider a sufficiently
clean system, so that �F��1. On the other hand, we will not
deal with the hydrodynamic aspect of transport in clean sys-
tems and we will assume T��1.

We start with the calculation of the longitudinal electric
conductivity. For this purpose, we use the expression for the
electric current presented in Eq. �23�. We have to perform the
averaging over disorder. In the Fermi-liquid theory, for a
short-range disorder, each Green’s function is averaged sepa-
rately. Since on average the disordered medium is uniform,
the equilibrium Green’s functions of the quasiparticles be-
come diagonal in momentum space after averaging

geq
R,A�k,�� =

z

� −
m

m�
�k �

i

2�

,

z = �1 − � �R�eq�kF,��
��

�
�=0
�−1

. �58�

From now on, � denotes the renormalized scattering time of
the quasiparticles. The diagonal form of the Green’s func-
tions allows us to rewrite the electric current in momentum
space. As mentioned above, the second term in Eq. �23� van-
ishes for the longitudinal current. The last term is propor-
tional to the imaginary part of the interaction propagator.
This term yields a correction to the Drude conductivity that
is smaller25,26 by a factor of �T��2. �In fact, this correction is
canceled out by other terms. However, as we have already
mentioned, in this paper we will not study contributions that
vanish in the limit T→0.� Therefore, for the calculation
within the framework of the Fermi-liquid theory, only the
first part of Eq. �23� is needed. Let us concentrate on this
term

je
i = −

e2Ej

2
� dkd�

�2
�d+1

�nF���
��

�vi
R�k,�� + vi

A�k,���geq
R �k,��

��v j
R�k,�� + v j

A�k,���geq
A �k,�� − �vi

R�k,�� + vi
A�k,���

�geq
R �k,��v j

R�k,��geq
R �k,�� − geq

A �k,���v j
R�k,�� + v j

A�k,���

�geq
A �k,��vi

A�k,��� . �59�

A nonzero contribution in the Fermi-liquid theory is gen-
erated by products in which one of the two Green’s functions
is retarded, while the other one is advanced �see Fig. 4�. In
the above expression, the last two terms which contain geq

R geq
R

or geq
A geq

A vanish after the momentum integration. Next, we
use the fact that the constant part of the renormalized veloc-
ity can be written as vR,A=vF�1+�R�eq

R,A /��k ��k=0�, where
vF=kF /m is the unrenormalized Fermi velocity. Then, the
longitudinal electric current acquires the form

je = − 2e2E�1 + � �R�eq
R

��k
�
�k=0

�2vF
2

d

�� dkd�

�2
�d+1

�nF���
��

geq
R �k,��geq

A �k,�� , �60�

where d denotes the dimensionality. At this stage, one may
neglect the dependence of the Green’s functions on the fre-
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FIG. 4. The diagrammatic representation of the electric conduc-
tivity in the Fermi-liquid theory.
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quency in the integration over �. After integration over the
frequency and momentum, one obtains for the electric con-
ductivity

� = �1 + �R�eq�k,0�/��k��k=0

1 − �R�eq�kF,��/����=0
�2

m�

m

e2n�

m
, �61�

where m� is the renormalized mass m� /m= �1−�R�eq�k
=kF ,�� /�� ��=0� / �1+�R�eq�k ,�=0� /��k ��k=0�. Thus, we have
reproduced the known expression for the Drude electric con-
ductivity in the Fermi-liquid theory, �=e2n� /m�.

We turn now to the calculation of the thermal conductiv-
ity. Within the framework of the Fermi-liquid theory, the
calculations of the electric and thermal conductivities are
practically parallel. Exactly as in the calculation of the elec-
tric conductivity, the second term in the expression for the
heat current given in Eq. �57� vanishes. The last term is
proportional to the imaginary part of the interaction and it
yields a contribution to 	 /T of the order �T��2 that can be
neglected in the Fermi-liquid theory. �We will come back to
this term in the next section in the discussion following Eq.
�80�.� Therefore, the main contribution to the heat current
arises from the first term in Eq. �57�. Written in momentum
space, this term acquires the form

jh
i =

� jT

2T
� dkd�

�2
�d+1�
2�nF���

��
�vi

R�k,�� + vi
A�k,���geq

R �k,��

��v j
R�k,�� + v j

A�k,���geq
A �k,�� − �vi

R�k,��

+ vi
A�k,���geq

R �k,��v j
R�k,��geq

R �k,�� − geq
A �k,���v j

R�k,��

+ v j
A�k,���geq

A �k,��vi
A�k,��� . �62�

Since the last two lines do not contain a pair of retarded and
advanced Green’s functions, they do not contribute to the
current. Using the fact that the renormalized velocity can be
taken outside of the integrals, the longitudinal heat current
can be written as

jh = 2
�T

T �1 + � �R�eq
R

��k
�
�k=0

�2vF
2

d

�� dkd�

�2
�d+1�
2�nF���

��
geq

R �k,��geq
A �k,�� . �63�

The only difference between Eq. �60� and the above equation
is that the heat current contains a factor of �2 while the elec-
tric current includes the coefficient e2. The obtained expres-
sion is exactly what one expects to get for the heat current
transported by quasiparticles. It can be interpreted as if each
quasiparticle contributes to the heat current its energy �. This
energy is flowing with the velocity of the quasiparticle car-
rying it.

As a result of integrating over �, the thermal conductivity
	 becomes

	 =

2T

3 �1 + � �R�eq
R

��k
�
�k=0

�2vF
2

d
� dk

�2
�d+1geq
R �k,0�geq

A �k,0� .

�64�

The remaining integral over the momentum is identical to the
one encountered while calculating the electric conductivity.
Eventually, we get that the ratio of the thermal and electric
conductivities in the framework of the Fermi liquid is pro-
portional to the Lorentz number

	

�T
=


2

3e2 . �65�

This natural result was obtained in our scheme almost auto-
matically, mostly due to the fact that the currents have been
expressed in terms of the renormalized velocities from the
very beginning. On the contrary, since the Kubo formula
starts from the bare vertices, the derivation of the thermal
conductivity in the Kubo formalism is not a trivial task.11

The situation with the simplified Kubo formula is even
worse. As we show in Appendix B, the simplified Kubo for-
mula generates terms that violate the Wiedemann-Franz law
in the framework of the Fermi liquid.

V. DIFFUSION CORRECTIONS TO THE THERMAL
CONDUCTIVITY

In the previous section we have shown that for a Fermi-
liquid system, the ratio between the thermal and the electric
conductivities is determined by the Lorentz number. One
may wonder whether the Wiedemann-Franz law still holds
for a disordered system when one goes beyond the frame-
work of the Fermi-liquid theory in the diffusive regime, T�
�1. This question was the subject of a long-lasting debate.
While in Ref. 27 it was concluded that the Wiedemann-Franz
law remains valid, later studies show that, in fact, it is
violated.15–17,28 To find the answer to this question using the
scheme presented here, we study the leading-order correc-
tions with respect to ��F��−1 to the thermal conductivity. In
the electric conductivity, these are the Altshuler-Aronov
corrections.23 In two dimensions, the Altshuler-Aronov cor-
rections logarithmically diverge as the temperature goes to
zero, ���e2 ln 1 /T�. Correspondingly, we wish to examine
the singular corrections to the thermal conductivity for which
	 /T logarithmically diverges in the limit T→0. We will
show that some of the corrections, originating from the long-
range Coulomb interaction, violate the Wiedemann-Franz
law. These corrections emerge from the third term in Eq.
�57�, which is related to the imaginary part of the polariza-
tion operator. While in the Fermi-liquid calculation they are
proportional to �T��2, when dressed by the diffusion propa-
gators �diffusons�, they are dramatically increased and do not
contain this smallness anymore. Our result agrees with the
one given in Refs. 15–17 and 28.

To study the corrections to the transport coefficients in the
diffusive limit, T��1, one has to perform properly the aver-
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aging over the disorder. For that one has to construct the
diffusion propagators in the following way:

�geq
R,A�r,r1,��geq

A,R�r2,r,� − ���imp

=� dr�DR,A�r,r�,��geq
R,A�r�,r1,��geq

A,R�r2,r�,� − �� ,

�66�

where the diffusion propagator is

DR,A��,�� = ��i�� − D���
2�−1. �67�

Here, D is the diffusion coefficient. As we shall see, we need
to consider contributions which may include up to four dif-
fusons. To obtain the lowest-order corrections in ��F��−1, all
the diffusons must carry the same momentum. This is be-
cause each integration over the momentum of the diffusion
propagators produces a small factor ��F��−1. This argument
implies that all the diffusons must be affiliated with the same
self-energy. Therefore, we generate the singular corrections
by choosing one of the self-energies to be decorated by the
diffusons. When the chosen self-energy is the equilibrium
one, we denote it by �̂dif f, while for the �T-dependent self-

energy, we use the notation �̂�T
dif f.

Next, we expand the expression for the heat current given
in Eq. �57� with respect to the chosen self-energies. In the
first term of the heat current, we expand both the equilibrium
Green’s functions and velocities with respect to �̂dif f. For
example, the expansion of the Green’s function yields ĝeq
= ĝ+ ĝ�̂dif fĝ, where ĝ is the equilibrium Green’s function
which already incorporates the Fermi-liquid renormaliza-
tions. As has been mentioned before, the second term of the
heat current does not contribute to the longitudinal conduc-
tivity. Unlike the calculation in the previous section, the third
term in Eq. �57� is no longer negligible. In order to compen-
sate the smallness initially associated with the third term, it is

�̂�T that must be decorated by the diffusons. Since the num-
ber of integration over the momentum of the diffusons is
restricted to one, the self-energy chosen to contain the diffu-
sons can have only one effective interaction amplitude as
illustrated in Fig. 5. �Note, that the expansion is with respect
to ��F��−1 and not over the interaction.� For the Coulomb
interaction, the effective interaction amplitude can be ap-

proximated by the propagator V̂. Hence,

�dif f
�,��R;�,�� = iG�,��R;�,��V�,��R;�,�� ,

�dif f
R,A�R;�,�� = iGR,A�R;�,��V��R;�,��

+ iG��R;�,��VR,A�R;�,�� . �68�

The interaction propagator is described by the infinite geo-
metrical series presented in Fig. 6. Each term in this series is
a convolution in space. Symbolically, the result can be writ-
ten as

V̂��� = �U−1 + �̂����−1. �69�

The polarization operator �̂ has the following analytic struc-
ture:

��,��R;�,�� = iG�,��R;�,��G�,��R;− �,− �� ,

�R,A�R;�,�� = iGR,A�R;�,��G��R;− �,− ��

+ iG��R;�,��GA,R�R;− �,− �� . �70�

In Eq. �68�, � denotes either the equilibrium or the

�T-dependent self-energy. For �̂�T we should consider all
possibilities to linearize the expression in Eq. �68� with re-
spect to �T including the Green’s functions inside the polar-
ization operator.

We are now fully equipped to study the leading-order cor-
rections to the thermal conductivity induced by disorder. We
separate the corrections to the current into three groups. The
first group includes all the contributions which arise from the
expansion of the equilibrium Green’s function in the first
term in Eq. �57�

jh hor
i = 2

�iT

dT
� d�

2

dr1 ¯ dr4�

2�nF���
��

v j�r6,r1�

�gR�r1,r2,���dif f
R �r2,r3,��gR�r3,r4,��v j�r4,r5�

��gA�r5,r6,�� − gR�r5,r6,��� + c.c. �71�

Here, we used the fact that for the longitudinal currents
�i= j�, the contribution from the term vigR�dif f

R gRvigR is the
same as the one from vigRvigR�dif f

R gR. After performing the
average over the disorder in jh hor, we get

FIG. 5. The self-energy before averaging over the disorder. Af-
ter averaging, it will be decorated with the diffusons.
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FIG. 6. The series describing the interaction propagator.
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jh hor
i = 2i

�iT

T
� dkd�

�2
�d+1

dqd�

�2
�d+1�
2Veq

R �q,���DR�q,���2	�nF��� − nF�� − ���
�nP�− ��

��
+

�nF���
��

nP�− ��

�	vF

2

d
�gR�k,���2gA�k − q,� − ���gR�k,�� − gA�k,��� −

vF
2

2
 �d
� dk�

�2
�d �gR�k,���2gA�k,���gR�k�,���2gA�k� − q,� − ��

+
1

2
 �d
� dk�

�2
�d

kjkj�

m2 �gR�k,���2gA�k − q,� − ���gR�k�,���2gA�k� − q,� − ��DR�q,��
 + c.c. �72�

The contributions to the current jh hor can be interpreted
in terms of the diagrams with a horizontal interaction as
shown in Fig. 7. The only difference between the expression
written above and the corresponding contributions to the
electric conductivity is that �2 should be replaced by −e2.
This is the proper place to remind that our scheme does not
require a diagrammatic calculation, rather all the contribu-
tions are generated using the quantum kinetic equation. In
this method the analytic structure of each of the terms and
their numerical coefficients are determined by the kinetic
equation. We give a diagrammatic interpretation of the dif-

ferent term for the purpose of illustration only.
In the second group we collect terms related to the renor-

malization of the velocity. These contributions originate from
the first and the third terms in Eq. �57�. In the first term we
expand one of the velocities with respect to �dif f. In the last
term, we consider the contributions in which the temperature
gradient enters ��T

dif f through the quasiparticle Green’s func-
tion. �We relate the other contributions to the Coulomb drag
that will be discussed afterward.� Performing these opera-
tions, we get

jh ver
i = −� d�d�

�2
�2dr1 ¯ dr4�v
i�r4,r1�gR�r1,r2,����1 − nF����Veq

� �r2,r3,��G�T
� �r2,r3,� − �� + nF���Veq

� �r2,r3,��

�G�T
� �r2,r3,� − ����gR�r3,r4,�� − gA�r3,r4,��� +

�iT

2Td
� d�

2

dr1 ¯ dr4�

2�4�v j
R�r4,r1,��gR�r1,r2,��v j�r2,r3�gA�r3,r4,��

− 3�v j
R�r4,r1,��gR�r1,r2,��v j�r2,r3�gR�r3,r4,�� − gR�r1,r2,��v j�r2,r3�gR�r3,r4,���v j

A�r4,r1,���
�nF���

��
+ c.c. �73�

Here, �vi
R,A�r ,r� ,��=−i�ri−ri���dif f

R,A�r ,r� ,��. Since in this calculation G�T includes only the Fermi-liquid renormalizations, it

is described by the last term in Eq. �39�, Ĝ�T���=−i��T /T��ĝ��� /��v̂���ĝ���− ĝ���v̂���� ĝ��� /���. As a result of averaging
over the disorder, we get

jh ver
i = i

�iT

2T
� dkd�

�2
�d+1

dqd�

�2
�d+1 �DR�q,���2	4�2Veq
R �q,��	�nF��� − nF�� − ���

�nP�− ��
��

+
�nF���

��
nP�− ��


+ ���nF��� − nF�� − ���
�nP���

��
�Veq

R �q,�� − Veq
A �q,���
	 kj�kj − qj�

m2 �gR�k,���2�gA�k − q,� − ���2

+
2

2
 �
� dk�

�2
�d

kjkj�

m2 �gR�k,���2gA�k − q,� − ���gA�k�,� − ���2gR�k� + q,��DR�q,��
 + c.c. �74�
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In the transitions between the last two equations as well as
between Eq. �73� and Eq. �74�, we used the standard identi-
ties for the product of Fermi distribution functions

�nF���
��

nF�� − �� = −
�nP�− ��

��
�nF��� − nF�� − ���

− nP�− ��
�nF���

��
, �75a�

nF����1 − nF�� − ��� = nP����nF�� − �� − nF���� .

�75b�

The diagrams corresponding to the second group are pre-
sented in Fig. 8. One can observed that the second group
contains the contributions with a vertical interaction line.
The terms containing �2 in Eq. �74� have their counterparts in
the corrections to the electric conductivity. Together with the
first group, they give a correction to the thermal conductivity
which satisfies the Wiedemann-Franz law

�	WF = 4i D� dqd�

�2
�d+1d��2�nF���
��

���nP�− ���
��

�Dq2Veq
R �q,��DR

3�q,���3 + c.c. =

2T

3e2 ��AA,

�76�

where ��AA is the Altshuler-Aronov corrections to the elec-
tric conductivity. The additional terms that are proportional
to �� in Eq. �74� are responsible for the deviation from the
Wiedemann-Franz law. Only the diagram with two diffusons

gives a singular contribution which in two dimensions is
accumulated in the region of small momenta: � /D	screen
�q��� /D, where 1 /	screen=1 / �2
e2 � is the inverse
screening length in d=2. Eventually, the non-Wiedemann-
Franz law correction to the thermal conductivity is

�	non-WF = − i D�2� dqd�

�2
�3 d����nF��� − nF�� − ���

�
�nP���

��
�Veq

R �q,�� − Veq
A �q,���

��DR
2�q,�� + DA

2�q,��� =
T

12
ln�D	screen

2

T
� .

�77�

Although both �	WF and �	non-WF logarithmically diverge in
d=2, the origins of the singularities are different. The loga-
rithmic correction that does not violate the Wiedemann-
Franz law accumulates over a wide region of momenta
�T /D�q�1 /vF�.

The third group corresponds to the Coulomb drag �see
Fig. 9�. These terms are generated when the temperature gra-
dient enters ��T

dif f through the interaction propagator. To ex-
ploit the symmetry related to the Coulomb drag, we shall use
the fact that the interaction field � is real. Therefore, the

corresponding propagator satisfies the relation V̂�r , t ;r� , t��
=−i�Tc��r , t���r� , t����= V̂T�r� , t� ;r , t� and we may write
the lesser and greater components of the interaction propa-
gator as

V�,���,�� =
1

2
�V�,���,�� + V�,��− �,− ��� . �78�

Consequently, the self-energy given in Eq. �68� can be split
into two parts:

��,��R,�,�� =
i

2
� d�

2

�G�,��R,�,� − ��V�,��R;�,��

+ G�,��R;�,� + ��V�,��R;− �,��� . �79�

This way of writing the propagator V and the self-energy
turns out to be highly useful in the derivation of the Coulomb
drag terms as well as for the proof of the Onsager relation
presented in the next section.

A full analysis of the Coulomb drag contributions to the
thermal conductivity, starting from Eq. �79�, is presented in
AppendixC. We show there that in the thermal conductivity,
unlike the electric conductivity,29 the Coulomb drag can be

(c)

(b)(a)

FIG. 7. The terms with a horizontal interaction line after aver-
aging over the disorder.

(a) (b)

FIG. 8. The diagrams with a vertical interaction line. The obvi-
ous counterpart of diagram �b� is not shown.

FIG. 9. The drag diagrams after the averaging over the
disorder.
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decorated by four diffusons �see Eq. �C9��. After averaging
over the impurities, the correction to the heat current from
the Coulomb drag is

jh drag
i = −

�iT

4Td
� dqd�

�2
�d+1 �Veq�q,���2�2�nP���
��

�	 �

�qj
� dkd�

�2
�d+1 �nF�� − �� − nF����

��gR�k − q,� − ��gA�k,��DA�q,��

− gA�k − q,� − ��gR�k,��DR�q,���
2

. �80�

Owing to the structure of this term, there are no divergencies
related to the region of small momenta indicated above.
Moreover, the integration over the frequency � is restricted
to ���!T. Therefore, this contribution to 	 /T is regular.
�Note that the structure of the Coulomb drag term presented
here differs from the one in Ref. 28 obtained from the sim-
plified Kubo formula.� In the previous section we argued that
in the framework of the Fermi-liquid theory, the third term in
Eq. �57� generates contributions that are proportional to
�T��2. Using the expressions in Eqs. �77� and �80�, one may
check that in the absence of the diffusons the contributions
related to the third term indeed acquire this small factor.

To conclude the section, we return to the singular correc-
tion to the Wiedemann-Franz law presented in Eq. �77�. The
infrared divergency of this kind does not occur in the electric
conductivity due to gauge invariance.16,30–32 To understand
this argument, one has to go back to Eq. �6� describing the
action of interacting electrons. Writing the action in momen-
tum space and considering the limit q→0, one may neglect
the dependence of the quasiparticle Green’s functions on the
momentum transferred by the interaction. Then, after the in-
tegration over the transferred momentum, the field � that
describes the effective electron-electron interaction becomes
only a function of time. An interaction field of the form ��t�
can be gauged out by redefining the quasiparticle field
�r , t�→e−i�tdt���t���r , t�. In the presence of a temperature
gradient, the situation is more complicated. The corrections
to thermal conductivity violating the Wiedemann-Franz law
are proportional to the imaginary part of the interaction

propagator V̂. In other words, these terms are sensitive to the
decay of the interaction into particle-hole pairs. Therefore,
once the inner structure of the interaction becomes impor-
tant, gauging out the interaction field on the level of the
action is no longer justified.

VI. ONSAGER RELATIONS

In Sec. III, we derived the expressions for the electric
current as a response to �T and the heat current generated by
E. The two expressions were obtained independently from
each other. On the other hand, these two currents must be
related through the Onsager relations. In this section, as an
additional test for our scheme, we verify that the expressions
given in Eqs. �46� and �56� indeed satisfy the Onsager rela-
tion.

The Onsager relations33 connect between the off-diagonal
elements of the conductivity tensor �ij�B�=� ji�−B�, 	ij�B�
=	 ji�−B�, and �̃ij�B�=T� ji�−B�. In the absence of magnetic
field, the Onsager relations reduce to �̃xx=T�xx. Here, we
restrict our demonstration of this relation to a system of elec-
trons interacting through the Coulomb interaction as has
been discussed in the previous sections. �In this paper, our
treatment of the electric and heat currents does not include
the modifications needed to account for the effect of a mag-
netic field. The generalization of the present scheme for cal-
culating the thermoelectric transport coefficients in the pres-
ence of a magnetic field is straightforward and was applied
by us in the analysis of the Nernst effect in disordered films
above the superconducting transition temperature.18�

To find the two thermoelectric currents, we have �i� to
insert the E-dependent velocity and Green’s function into the
expression for the heat current given in Eq. �56� and simi-
larly �ii� to insert the �T-dependent velocity and Green’s
function into the electric current described by Eq. �46�. �As
has been already argued in the derivation of the thermal con-
ductivity �see the discussion above Eq. �57��, the local equi-
librium Green’s function does not contribute to the longitu-

dinal currents.� Due to the similarity between ĜE and Ĝ�T
and the common structure of the four currents �Eqs. �22�,
�46�, �51�, and �56��, all the responses determining the lon-
gitudinal components of the conductivity tensor can be writ-
ten as

je,h
i �F� =

1

2d
� d�

2

�e,h���Fi���

�nF���
��

�v j
R���geq

R ���v j
A���geq

A ���

+ v j
R���geq

R ���v j
R���geq

A ��� − v j
R���geq

R ���v j
R���geq

R ���

− geq
R ���v j

R���geq
R ���v j

A����

+ i� d�

2

�e,h���vi

R���geq
R ���

���F
�����1 − nF���� + �F

����nF�����geq
R ��� − geq

A ����

+ c.c. �81�

Here, F��� is equal to eE for the response to an electric field
and to ��T /T for the response to a temperature gradient. For
the electric current, �e���=−e, while for the heat current,
�h���=�. Comparing the expressions for je��T� and jh�E�,
one may immediately see that the contributions described by
the first term in the above expressions satisfy the Onsager
relation, jh

i /Ei=−Tje
i /�iT. Therefore, it remains to show that

the same holds for the last term. The dependence of the last
term in Eq. �81� on the external perturbation F enters through
the self-energy. As has been mentioned in the previous sec-
tion, we need to consider all the possibilities to take one of

the propagators �Ĝ or V̂� in �F to depend on F.
In general, the fulfillment of the Onsager relation de-

mands microscopic reversibility, which in our case implies

that Ĝ�r ,r� ,��= Ĝ�r� ,r ,�� and V̂�r ,r� ,��= V̂�r� ,r ,��. The
Onsager relation is satisfied if by reading the contributions to
je��T� described in Eq. �81� from right to left instead of left
to right, one gets jh�E� and vice versa. Besides the micro-
scopic reversibility, in order to get the desired relation, the
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thermoelectric currents should have a proper symmetry re-
lated to the frequency. There should be a well-defined sym-
metry �for each of the currents� under the exchange of the
frequencies carried by the Green’s functions attached to the
two velocity vertices. The second velocity vertex appears in
the last term of Eq. �81� because, as can be seen from Eqs.
�13� and �39�, the external perturbations are accompanied by
the velocity.

We will show now that this symmetry is embedded in the
structure of the combination Z entering the last term in Eq.
�81�,

Z = �F
�����1 − nF���� + �F

����nF��� . �82�

Recall that �F contains one F-dependent propagator, ĜF or

V̂F, that by itself can include a self-energy that depends on

the external perturbation, �̂F or �̂F, i.e., �F is determined
iteratively. We start our analysis of Z at the point when the
iterative process was already terminated. In other words, we
will use the expression for �F at a stage when the Green’s
function depending on the external perturbation is equal to

ĜFs�� + "� = −
i

2
F�� + "�� � ĝeq�� + "�

��
v̂�� + "�ĝeq�� + "�

− ĝeq�� + "�v̂�� + "�
� ĝeq�� + "�

��
� . �83�

Here the argument of the Green’s function reflects the fact
that in the proof of the Onsager relation, we will apply the
standard trick used in the derivation of the Ward identities.
Namely, we will arrange the arguments of the Green’s func-
tions inside �F��� in such a way that they all include � �even
those inside the loops�.

Any given contribution to ��,� is a sum of few terms
with a different analytic structure of the propagators. Each of
these terms can be cut into two pieces in such a way that the
propagators along the cut are the lesser or greater compo-
nents only. �For a self-energy with two crossed interaction
lines, all possible cuts are shown in Fig. 10.� Therefore, each
term can be written as a product AB, where B includes all the
propagators along the cut, while all the rest of the propaga-
tors are collected in A. Then, each term in ��=AB� has a
counterpart in ��=AB� with the same A but “opposite” B.
Opposite means that if we substitute in B� the lesser propa-
gators by the greater ones and simultaneously all the greater
by lesser, we get B�.

To demonstrate how this prescription works, let us look at
the expression corresponding to the diagram presented in
Fig. 10�b�

��,��r,r�,�� = −
1

2
� d�d��

�2
�2 dr1dr2GR�r,r1,� − ��

�G�,��r1,r2,� − � − ���V�,��r,r2,��

�V�,��r1,r�,���GA�r2,r�,� − ���

−
1

2
� d�d��

�2
�2 dr1dr2GR�r,r1,� + ��

�G�,��r1,r2,� + � + ���V�,��r2,r,��

�V�,��r�,r1,���GA�r2,r�,� + ��� . �84�

In this example A=GRGA, B�=G�V�V�, and B�

=G�V�V�. The above expression contains two contributions
in which the frequencies � and �� appear with opposite
signs. To get the two contributions we split the lesser and
greater components of the interaction propagator into two
pieces according to Eq. �78�. We will use this representation

of V̂ throughout the proof of the Onsager relation in order to
write the self-energy as a sum of two terms in which the
F-dependent Green’s function appears either as GF��−"� or
GF��+"�.

Let us return to the discussion of the general properties of
Z. After a pair, AB� and AB�, is inserted into Eq. �82�, one
has to linearize it with respect to the external perturbation.
Recall that in the end of the iterative process, F enters the

self-energy through the quasiparticle Green’s functions ĜFs.
When this Green’s function belongs to A, the corresponding
contribution to Eq. �82�, AF�1−nF����Beq

� ���+nF���Beq
� ����,

vanishes. This is because the total frequency transferred

along the cut is equal to � and at equilibrium B̂��� has the
same properties as any other fermionic propagator in the
Keldysh technique. Therefore, the only nonvanishing contri-
bution is of the form Z=Aeq�1−nF����BF

�+nF���BF
��. Be-

fore we start analyzing BF, we wish to note that we may
extend Aeq to include all the terms with the same cut. The
Green’s function through which the external perturbation en-
ters BF, GFs���"�, is described by Eq. �83�. The rest of the
propagators in B which are at equilibrium carry altogether
the bosonic frequency " and will be denoted as Peq�"�.
Then, we can write B as B����=GFs

� ��−"�Peq�"�nP�"�
+GFs

� ��+"�Peq�"��1+nP�"�� and, correspondingly, B����
=GFs

� ��−"�Peq�"��1+nP�"��+GFs
� ��+"�Peq�"�nP�"�. In

the last two identities we assumed that the F-dependent
Green’s function in B� is GFs

� , while in B� it is GFs
� . �The

possibility that the external perturbation enters B� �B��
through GFs

� �GFs
� � will be discussed below.� Inserting the

above expression for B�,� into Z, we get

Z = �1 − nF����nP�"�GFs
� �� − "� + nF����1 + nP�"��

�GFs
� �� − "��AeqPeq�"� + �1 − nF�����1 + nP�"��

�GFs
� �� + "� + nF���nP�"�GFs

� �� + "��AeqPeq�"� .

�85�

ω 'ωω 'ω

ω 'ω

(a) (b) (c)

FIG. 10. The self-energy in the second-order expansion with
respect to the interaction.
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Applying the Keldysh rules on the product of matrices in Eq.
�83�, we obtain that GFs

� ��−"�=nF��−"�X+�nF��
−"� /��Y and GFs

� ��−"�= �nF��−"�−1�X+�nF��−"� /��Y.
From the identity given in Eq. �75b�, it follows that the terms
proportional to X in Eq. �85� vanish. Then, using the identity
for the product of distribution functions given in Eq. �75a�,
we get that the discussed contributions to the thermoelectric
currents are of the form

je,h =� d�d�

�2
�2

�nP�"�
�"

�nF��� − nF�� − "���fe,h���I1F�� − "�

+ fe,h�� − "�I2F���� . �86�

In the second term we shifted the frequency � by ". This
shift of the frequency affects I2 in such a way that under the
condition of microscopic reversibility, the functions I1 and I2
transform one into another when read in the opposite direc-
tions. Here we rely on the fact that all the contributions with
the same cut have been included in I1 and I2. Then, it follows
from Eq. �86� that all the contributions to the thermoelectric
current under discussion satisfy the Onsager relation.

It remains to examine the case when the external pertur-
bation enters B� through GFs

� and B� through GFs
� . Then,

B can be written as B�=GFs
� ��−"�Peq�"��1+nP�"��

+GFs
� ��+"�Peq�"�nP�"� and, correspondingly, B�=GFs

� ��
−"�Peq�"�nP�"�+GFs

� ��+"�Peq�"��1+nP�"��. One can
check, in the same way as before, that the contributions to
the current from such terms are also described by Eq. �86�.
Thus, we have shown that the last term in Eq. �81� is com-
patible with the Onsager relation. In Appendix D, we give
representative examples illustrating the general arguments
presented here.

To summarize, we proved that the expressions for the lon-
gitudinal thermoelectric currents obtained using the quantum
kinetic approach �presented in Eq. �81�� satisfy the Onsager
relations. We use the Onsager relations as a check for the
correctness of our scheme. In the presence of a magnetic
field, the transverse thermoelectric currents contain addi-
tional contributions and, hence, the proof of the Onsager
relations should be modified accordingly. A demonstration of
the validity of the Onsager relations for the thermoelectric
transport coefficients in the presence of a magnetic field for
electrons interacting in the Cooper channel will be given in a
separated paper.

VII. SUMMARY

We developed a comprehensive scheme for studying ther-
mal and thermoelectric transport in interacting electron sys-
tems in the presence of disorder. The kinetic equation in the
presence of a temperature gradient was derived directly from
the action. The expressions for the four currents correspond-
ing to the different components of the conductivity tensor,
see Eqs. �22�, �46�, �51�, and �56�, share a uniform and com-
pact structure summarized in Eq. �4�. This equation reveals
that the expressions for both the electric and heat currents
include the renormalized velocity. The frequency factor in
the expression for heat current corresponds to the legs of the
renormalized velocity as illustrated in Fig. 3 �but not to the

frequency of the two Green’s functions connected to the bare
velocity inside the vertex�. This observation, which is the
main advantage of the scheme presented here, implies that in
the heat current the flow of energy occurs with the renormal-
ized velocity. As we demonstrated in Sec. IV, this structure
of the heat current guarantees that the Wiedemann-Franz law
is satisfied for Fermi-liquid systems.

In this paper we considered the Coulomb interaction,
which is instantaneous in time. Applying our scheme for
electron-electron interaction mediated by phonons that by
themselves carry energy is straightforward. An example for
electron-electron interaction of a different kind has been
briefly described in Appendix E. There we consider an inter-
action mediated by superconducting fluctuations. In this
case, the electric current acquires an additional contribution
because the fluctuations in the Cooper channel carry charge.
Nevertheless, this additional contribution does not ruin the
general structure of the current.

The main strength of our scheme is in its generality and
compactness. This is the reason why we believe that it is an
adequate alternative to the Kubo formula, which for the ther-
mal transport is rather cumbersome.
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APPENDIX A: THE ELECTRIC FIELD DEPENDENT
GREEN’S FUNCTION

In this appendix we wish to present additional details of
the derivation of the quantum kinetic equation in the pres-
ence of an electric field. In particular, we show how to obtain
the electric field dependent Green’s function which solves
the kinetic equation �see Eq. �13��.

We start from the Dyson equation for the Green’s function
of the quasiparticles given in Eq. �7�. After performing the
gauge-invariant Fourier transform introduced in Eq. �9�, we
obtain the quantum kinetic equation for the gauge-invariant
Green’s function

� i

2

�

�T
+ �� +

1

2m

�2

��2� +
1

8m

�2

�R2 +
e2E2

8m

�2

��2 −
eE

4m

�2

�� � R

+
1

2m

�2

�� � R
−

eE

2m

�2

�� � �
− Vimp�R + �/2� −

e�E

2 �
�G�̂ �R,T;�,�� = ���� +� dt1dr1d�d�1d�2

�ei��−i�1��−t1�−i�2���̂ �R + r1/2,T + t1/2;� − r1,�1�

�e−ieE/2�r1��−t1�−��−r1�t1�G�̂ �R − �� − r1�/2,T

− �� − t1�/2;r1,�2� . �A1�
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The proof that the Green’s function transformed in this way is gauge invariant as well as other useful technical details can be
found in Ref. 21. The quantum kinetic equation is considerably simplified if to restrict the calculation to the steady-state
response �i.e., a dc electric field�. Then, the dependence of the Green’s functions and self-energies on time is
only through the relative time coordinate �. After expanding the phases in the RHS with respect to the electric field, the kinetic
equation acquires the form presented in Eq. �10�.

Next, we write the Green’s function as G�̂ = ĝeq+ ĜE and, similarly, we replace the self-energy by ��̂ = �̂eq+ �̂E. As the
properties of the equilibrium Green’s function have been already described in Eq. �12�, here we shall examine only the electric
field dependent part of the Green’s function. For this purpose, we collect all the terms in Eq. �10�, which are linear in the
electric field

�� +
�2

2m
+ � + Vimp�ĜE��,�;imp� −� dr1�̂eq�� − r1,�;imp�ĜE�r1,�;imp� =

eE

2
� dr1	���� − r1� −

��̂eq�� − r1,�;imp�
��

�r1

+ ���� − r1�
m

�

�r1
+ �� − r1��̂eq�� − r1,�;imp�� �

��

ĝeq�r1,�;imp� +� dr1�̂E�� − r1,�;imp�ĝeq�r1,�;imp� . �A2�

As we have already mentioned, the entire dependence of the
gauge-invariant Green’s functions and self-energies on the
center of mass coordinates is due to the scattering by the
impurity potential. This dependence has been incorporated in
our notation into imp. We will use the fact that the equilib-
rium Green’s function is ĝeq

−1�� ,� ; imp�=�+ �2

2m +�+Vimp
−�eq�� ,� ; imp� �see Eq. �11��. Then, we may rewrite Eq.
�A2� as

� dr1ĝeq
−1�� − r1,�;imp�ĜE�r1,�;imp�

=� dr1d�̂E�� − r1,�;imp�ĝeq�r1,�;imp�

+
eE

2
� dr1	���� − r1� −

��̂eq�� − r1,�;imp�
��

�r1

+ ���� − r1�
m

�

�r1
+ �� − r1��̂eq�� − r1,�;imp�� �

��



�ĝeq�r1,�;imp� . �A3�

One may check that the following identities for the equilib-
rium Green’s function hold:

� ĝeq��,�;imp�
��

= −� dr1dr2ĝeq�r1,�;imp����� − r1 − r2�

−
��̂eq�� − r1 − r2,�;imp�

��
�ĝeq�r2,�;imp� ,

− i�ĝeq��,�;imp� = − i� dr1dr2ĝeq�r1,�;imp����� − r1 − r2�
m

�
�

�r2
+ �� − r1 − r2�

��̂eq�� − r1 − r2,�;imp��ĝeq�r2,�;imp�

= ĝ���v̂���ĝ��� . �A4�

Using the above identities, one may convert Eq. �A3� into

Eq. �13� describing ĜE.

The expression for ĜE is used in order to transform from
Eq. �22� to the final formula for the electric current presented
in Eq. �23�. Before inserting Eq. �13� into Eq. �22�, one
should recall that the renormalized velocity which appears in
the expression for the current also depends on the electric
field through the self-energy term. Therefore, the current lin-
earized with respect to E contains two terms:

je = −
ie

2
� dr�dt��v̂eq�r,t;r�,t��ĜE�r�,t�;r,t�

+ v̂E�r,t;r�,t��ĝeq�r�,t�;r,t��� + H.c., �A5�

where v̂E�r , t ;r� , t��=−i�r−r���E�r , t ;r� , t��. One may no-
tice that in the limit r�→r and t�→ t �i.e., under the trace�,
the term with the electric field dependent velocity can be
arranged as follows:

− i�r − r���E�r,t;r�,t��ĝeq�r�,t�;r,t�

= �E�r,t;r�,t��i�r� − r�ĝeq�r�,t�;r,t� = − �̂Egeqv̂eqĝeq.

�A6�

Finally, one should replace ĜE in Eq. �A5� with its explicit
expression given in Eq. �13�. To get Eq. �23�, it remains to
extract the lesser component. For this purpose, we use the
fact that the current is diagonal in the energy �convolution in
time� and thus in the basis of the retarded, advanced, and
Keldysh components, the product of matrices obeys the fol-
lowing rules:

�ÂB̂�R = ARBR,

�ÂB̂�A = AABA,

�ÂB̂�K = ARBK + AKBA. �A7�

In addition, we use the relation A�= �AK−AR+AA� /2.
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APPENDIX B: CALCULATION OF THE THERMAL
CONDUCTIVITY USING THE SIMPLIFIED

KUBO FORMULA

In this appendix we wish to examine the thermal conduc-
tivity calculated using the simplified Kubo formula presented
in Eq. �2�. Let us consider one representative term in the
perturbation expansion of the Kubo formula with respect to
the electron-electron interaction. For this purpose, we choose
the second-order term drawn in Fig. 11. In the Fermi-liquid
theory, the main contribution to the transport coefficients
arises from diagrams which contain one pair of Green’s func-
tions with the same arguments but opposite analytic struc-

ture, i.e., one is retarded while the other is advanced. Then,
the quasiparticles corresponding to these two Green’s func-
tions are both on the mass shell. This pair yields a contribu-
tion to the transport coefficients that is proportional to �.

According to Eq. �2�, the expression corresponding to the
diagram presented in Fig. 11 is

	 = −
1

"d
T3 �

�n,�m,�m�

�
k,q,q�

ki − qi

m
i��n − �m +

"

2
� ki − qi�

m
i

���n − �m� +
"

2
�g�k − q,�n − �m + "�

�g�k − q,�n − �m�V�q,�m�g�k,�n + "�g�k,�n�V�q�,�m� �

�g�k − q�,�n − �m� + "�g�k − q�,�n − �m�� . �B1�

Notice that in the above expression, we use the heat current
operators of free electrons. Here, �n=2
T�n+1 /2� and "n
=2
Tn are the Matsubara frequencies and the Green’s func-
tion of the quasiparticles is g�k ,�n�= �i�n−�k+ i

2�sgn��n��−1.
In search for the dc conductivity, we should expand the ex-
pression to a linear order in the frequency of the external
field, ". Keeping only the terms with one gRgA pair �R-A
section�, we get

	 =
1

"d
T3 �

k,q,q�
�

−"���0
� �

�m=−�

−"

�
�m�=−�

−"

+ �
�m=−�

−"

�
�m�="

�

+ �
�m="

�

�
�m�=−�

−"

+ �
�m="

�

�
�m�="

� �
�� ki − qi

m
��n − �m +

"

2
� ki − qi�

m
��n − �m� +

"

2
�V�q,�m�V�q�,�m�� + 2

ki

m
��n +

"

2
� ki − qi�

m
��n − �m� +

"

2
�

�V�−q,−�m�V�q + q�,�m + �m���g�k,�n + "�g�k,�n�g�k − q,�n − �m + "�g�k − q,�n − �m�

�g�k − q�,�n − �m� + "�g�k − q�,�n − �m�� . �B2�

In the above expression, the first line describes all the cases
where the R-A section is in the middle of the diagram, while
in the second line the R-A section is located in one of the
sides. The arguments in Eq. �B2� are arranged in such a way
that each time the frequency of the effective R-A section is
denoted by �n. Then, the sum over the frequency �n is re-
stricted to a narrow window of the width ". Therefore, in the
limit "→0, the external frequency in the Green’s functions,
the heat current vertices, and the sum over the frequencies
�m and �m� can be set to zero.

In the next step we perform the analytic continuation from
the Matsubara frequencies to the real axis, replacing the
sums over the frequencies with integrals. In the present cal-
culation, the only difference between the thermal and the
electric conductivities is that instead of the frequencies in the
heat current vertices, the electric current vertices give a fac-
tor of −e2. Therefore, for the Wiedemann-Franz law to be
valid, the integral over the frequency � should be of the form

�d��� tanh�� /2T� /����2. We are going to check whether all
the contributions to the thermal conductivity given in Eq.
�B2� are indeed of this form. With this in mind, we separate
the contributions to the thermal conductivity into two groups.
The first contains all the terms in which the R-A section is
connected to a bare vertex. Let us concentrate on the � inte-
gration, which is the same for all the terms in this group. In
the limit T��1, we may neglect the dependence of all the
Green’s functions on �. Then, the integral over � reduces to

� d�
� tanh��/2T�

��
��� − ��� . �B3�

Only the �2 part in the above integral results in a finite con-
tribution, while the rest being an odd function of the

(ε − ω + Ω/2)
k - q
m
i i

k-q,ε − ωn
m

k-q
,ε − ω

+Ω

n
m

k,ε +Ωn

k,εn

m'

k-q
',ε

− ω
n

m

k-q',ε − ω
+Ωm'

n

(ε − ω + Ω/2)k - q'
m
i i

m'nmn

FIG. 11. A contribution to the thermal conductivity calculated
using the simplified Kubo formula given in Eq. �2�.
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frequency vanishes. Naturally, the contribution of this group
acquires the following form:

	 =
2

d
�
k
� d�

4


� tanh��/2T�
��

ki

m
�2gR�k,��gA�k,��

�R�2
R�k,��

�ki
,

�B4�

where �2 is one of the contributions to the self-energy with
two interaction lines �see Fig. 12�b��. Clearly, such a contri-
bution is consistent with the Fermi-liquid expression for the
thermal conductivity presented in Eq. �63� and as such satis-
fies the Wiedemann-Franz law.

We turn to the second group that, as we will see, appears
to be inconsistent with the Wiedemann-Franz law. Now the
R-A section is located between the two interaction lines. Ex-
panding with respect to the external frequency and perform-
ing the analytic continuation, one gets

	 =
1

d
�

k,q,q�
� d��

4
i
coth���

2T
�� d�

4
i
coth� �

2T
� ki − qi

m

�
ki − qi�

m
� d�

4


� tanh��/2T�
��

�� − ���� − ���

�gR�k,��gA�k,���VA�q,��VA�q�,���

�gR
2�k − q,� − ��gR

2�k − q�,� − ���

− VA�q,��VR�q�,���gR
2�k − q,� − ��gA

2�k − q�,� − ���

− VR�q,��VA�q�,���gA
2�k − q,� − ��gR

2�k − q�,� − ���

+ VR�q,��VR�q�,���gA
2�k − q,� − ��gA

2�k − q�,� − ���� .

�B5�

The above expression can be arranged in a rather compact
form

	 =
1

d
�
k
� d�

4


� tanh��/2T�
��

gR�k,��gA�k,��

�	 �

�ki
�
q
� d�

4
i
coth� �

2T
��� − ��

��VA�q,��gR�k − q,� − �� − VR�q,��

�gA�k − q,� − ���
2

. �B6�

Note that the expression in the squared brackets is real. With-
out the factor �−�, this expression is precisely the first-order
expansion with respect to the interaction of the renormalized
velocity. For Eq. �B6� to be consistent with Eq. �63�, the

expression in the squared brackets must reduce into
��R�1�k ,�� /�ki �where �1�k ,�� is the self-energy term with
a single interaction line shown in Fig. 12�a��.

Below we shall examine the expression in the squared
brackets following the calculation of the self-energy in the
Fermi-liquid theory presented in Ref. 34. First, we rewrite
this expression in the following way:

#�k,�� = −
�

�ki
R�� dqd��

�2
�d+1 tanh� ��

2T
���VR�q,� − ���

�ImgR�k − q,��� +� dqd�

�2
�d+1coth� �

2T
�

��� − ��gR�k − q,� − ��ImVR�q,��� . �B7�

Next, we use the Lehman representation for the Green’s
function and the interaction propagator

#�k,�� = −
�

�ki
R� dqd��

�2
�d+1�
−�

� d�



��� tanh� ��

2T
�

+ �� − ��coth� �

2T
��ImVR�q,��ImgR�k − q,���

� + �� − � − i�
.

�B8�

One may approximate the imaginary part of the quasiparticle
Green’s function with a � function, ImgR�k ,���−
���
−�k�. For the sake of simplicity, we consider a three-
dimensional system with a parabolic spectrum, �k=k2 /2m
−�. Then, the integration over the momentum q can be writ-
ten as �dq=�0

�2
q2dq�0

sin $d$,

#�k,�� =
�

�ki
R� d��d�

�2
�3 �
0

�

q2dq
ImVR�q,��

� + �� − � − i�

���� tanh� ��

2T
� + �� − ��coth� �

2T
��

��
−1

1

dx���� −
k2 − 2kqx + q2

m
� . �B9�

The integration over x yields nonzero result when
�k−q�2 /2m���� �k+q�2 /2m.

Next, we transform from the integral �−�
� d� to �0

�d�,

(a) (b)

FIG. 12. The contributions to the self-energy of the quasiparti-
cles relevant for the discussion of the diagram presented in Fig. 11.
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#�k,�� =
1

�2
�3

�

�ki

m

k
� d��P�

0

�

d��
0

�

qdq	ImVR�q,��
� + �� − �

��� tanh� ��

2T
� + �� − ��coth� �

2T
��

−
ImVR�q,��
− � + �� − �

��� tanh� ��

2T
� − �� + ��coth� �

2T
��
 , �B10�

where P� denotes the principle value. Finally, simple manipulations of the integrals yield

#�k,�� =
1

�2
�3

�

�ki

m

k
� d��P�

0

�

d��
0

�

qdq
ImVR�q,��

� + ��
	��tanh� � + ��

2T
� + tanh� � − ��

2T
��

+ ���tanh� � + ��

2T
� − tanh� � − ��

2T
�� − 2� coth� �

2T
�
 . �B11�

We may compare now between the expressions for the self-
energy and #. In the self-energy the last two terms do not
exist. The first term in the above equation for # is equal to
the self-energy multiplied by the frequency � and hence it
precisely coincides with the renormalized heat current vertex
�see Eq. �63��. Indeed, one can check that the integral over �
yields

#a�k,�� =
�

�2
�3

�

�ki

m

k
� d���

0

�

qdqRVR�q,���

��tanh� � + ��

2T
� + tanh� � − ��

2T
�� = �

�R�1�k,��
�ki

.

�B12�

This expression is exactly what we anticipate to get in order
to satisfy the Wiedemann-Franz law. Therefore, in the frame-
work of the Fermi-liquid theory, the contribution from the
other two terms in # must be zero. However, only the last
term is zero, while the second one is not

#b�k,�� =
1

�2
�3

�

�ki

m

k
� d��P�

0

�

d��
0

�

qdq
ImVR�q,��

� + ��

���� tanh� � + ��

2T
� − �� tanh� � − ��

2T
��

=
1

�2
�3

�

�ki

m

k
� d���

0

�

qdqRVR�q,���

���� tanh� � + ��

2T
� − �� tanh� � − ��

2T
�� . �B13�

One can see that this integral is not zero �the integrand is an
even function of ���. Moreover, the integration over the fre-
quency �� in Eqs. �B12� and �B13� accumulates over a range
of frequencies that is restricted only by the typical scale of
the interaction. We may conclude that the second term is
comparable to the anticipated contribution of the first term
�Eq. �B12�� and, therefore, the difference between the renor-
malized heat current vertex and # cannot be neglected. Other
second-order contributions cannot save the situation because

in all of them, the R-A section is connected to one of the bare
vertices. Such contributions do not violate the Wiedemann-
Franz law �see the discussion below Eq. �B3� where the first
group was analyzed�.

In this appendix we calculated a particular contribution to
the thermal conductivity in the second-order perturbation
theory with respect to the electron-electron interaction. We
showed that already on the level of the Fermi-liquid theory,
there is a disagreement between the quantum kinetic ap-
proach and the simplified Kubo formula. While the quantum
kinetic approach reproduces the known phenomenological
behavior, the simplified Kubo formula fails this test. There-
fore, the use of the simplified Kubo formula in the presence
of electron-electron interactions is unjustified and may lead
to erroneous results.

APPENDIX C: THE COULOMB DRAG

In this appendix we concentrate on the contribution of the
Coulomb drag to the electric and heat currents. The Coulomb
drag term is generated in the quantum kinetic approach when
the external perturbation �either the electric field or the tem-
perature gradient� enters the self-energy given in Eq. �68�
through the propagator of the interaction.

For the sake of simplicity, we will write the expression for
the Coulomb drag term when the averaging over the disorder
was already performed and therefore we can use the momen-
tum space representation. The explicit decoration of this term
with diffusons can be easily done afterwards. Therefore, we
may Fourier transform the spatial coordinates in the expres-
sion for the self-energy given in Eq. �79�,

��,��k,�� =
i

2
� dqd�

�2
�d+1 �G�,��k − q,� − ��V�,��q,��

+ G�,��k + q,� + ��V�,��q,��� . �C1�

Inserting the self-energy presented above into the third term
in the expressions for the electric and heat currents, Eqs. �23�
and �57�, one obtains
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je,h
i = i� dkd�

�2
�d+1vi
R�k,��geq

R �k,���e,h����F
��q,���1 − nF���� + �F

��q,��nF�����geq
R �k,�� − geq

A �k,��� + c.c.

= −
1

2
� dkd�

�2
�d+1

dqd�

�2
�d+1�e,h����vi
R�k,��geq

R �k,�� − vi
A�k,��geq

A �k,����geq
A �k − q,� − �� − geq

R �k − q,� − ���

��geq
R �k,�� − geq

A �k,����1 − nF����nF�� − ��VF
��q,�� + nF����nF�� − �� − 1�VF

��q,��� −
1

2
� dkd�

�2
�d+1

dqd�

�2
�d+1�e,h���

��vi
R�k,��geq

R �k,�� − vi
A�k,��geq

A �k,����geq
A �k + q,� + �� − geq

R �k + q,� + ����geq
R �k,�� − geq

A �k,���

��1 − nF����nF�� + ��VF
��q,�� + nF����nF�� + �� − 1�VF

��q,��� . �C2�

Recall that the difference between the electric and heat currents is absorbed into the function �e,h���, where �e���=−e while
�h���=�. In addition, F indicates the dependence on the external perturbation. Note that Eq. �C2� describes not only the electric
and thermal conductivities, � and 	, but also the two off-diagonal transport coefficients, � and �̃. One may connect the two
contributions given above with the two possible locations of the velocity vertex inside the polarization operator. Using the
identity for the products of the distribution functions given in Eq. �75b�, the currents can be rewritten as

je,h
i = −

1

2
� dkd�

�2
�d+1

dqd�

�2
�d+1 �e,h����vi
R�k,��geq

R �k,�� − vi
A�k,��geq

A �k,����geq
A �k − q,� − �� − geq

R �k − q,� − ���

��geq
R �k,�� − geq

A �k,��� − �e,h�� − ���vi
R�k − q,� − ��geq

R �k − q,� − �� − vi
A�k − q,� − ��geq

A �k − q,� − ���

��geq
A �k,�� − geq

R �k,����geq
R �k − q,� − �� − geq

A �k − q,� − �����nF��� − nF�� − ���U��� . �C3�

In the second term we have redefined the frequency �+�
→�. Here, U represents the two interaction lines connected
to the polarization operator through which the external per-
turbation enters �see Fig. 9�

U = �nP�− ��VF
� + nP���VF

�� . �C4�

Let us analyze the analytic structure of U. For this purpose,
we need the expression for the F-dependent propagator of

the interaction, V̂F�q ,��=−V̂eq�q ,���̂F�q ,��V̂eq�q ,�� �see

Eqs. �15� and �43��. The lesser and greater components of V̂F
are

VF
�,� = − Veq

�,��F
AVeq

A − Veq
R �F

�,�Veq
A − Veq

R �F
RVeq

�,�.

�C5�

As a consequence of the standard relations between the dif-
ferent components of the propagator at equilibrium, Veq

�

=nP����Veq
R −Veq

A � and Veq
� =−nP�−���Veq

R −Veq
A �, the nonvan-

ishing contributions to Eq. �C4� occur when the two interac-
tion propagators have an opposite analytic structure, VRVA.
�If one identifies VF

��q ,�� with the diagram presented in Fig.
13�a� and VF

��q ,�� with the diagram in Fig. 13�b�, it be-
comes clear that the symmetry with respect to q ,�↔−q
−� is already embedded in U. As shown in Ref. 29, this
symmetry is responsible for vanishing of the Coulomb drag
terms with two retarded or two advanced propagators.�

Let us look at the lesser and greater components
of the polarization operator, �F

�,��q ,��=�dkd� / �2
�d+1

�G�,��k ,��G�,��k−q ,�−��. In the linear response, one
has to exploit the two possibilities to replace one of the
Green’s functions in �F by the appropriate GF presented in
Eqs. �13� and �39�. Examining Eq. �C3�, one can recognize

that the contribution for the electric and heat currents from
the Coulomb drag can be presented in a very compact and
symmetric way as a product of two polarization operators

jeE =� dqd�

�2
�d+1� �nP���
��

�−1

�Veq
R �q,���2�nP�− ���E

�

+ nP����E
���nP�− ���F

� + nP����F
�� , �C6a�

jh � T = − T� dqd�

�2
�d+1� �nP���
��

�−1

�Veq
R �q,���2�nP�− ����T

�

+ nP�����T
� ��nP�− ���F

� + nP����F
�� . �C6b�

Next, we shall focus on one of the triangles in the Coulomb
drag, �nP�−���F

��q ,��+nP����F
��q ,���. We separate the

triangle into two groups of terms, �1 and �2,

ΠF ΠF

(a) (b)

FIG. 13. The two contributions to the Coulomb drag corre-
sponding to U= �nP�−��VF

��q ,��+nP���VF
��q ,���. �a� The dia-

grammatic interpretation for VF
��q ,�� and �b� the diagrammatic in-

terpretation for VF
��q ,��.
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�1 =
1

2
� dkd�

�2
�d+1

�nP���
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F���vR�k,���geq
R �k,���2

�geq
A �k − q,� − �� − vA�k,���geq

A �k,���2

�geq
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��geq
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��nF�� − �� − nF���� , �C7a�

�2 = −� dkd�

�2
�d+1

�nP���
��

F���vR�k,���geq
R �k,���2

�geq
R �k − q,� − �� − vA�k,���geq

A �k,���2

�geq
A �k − q,� − �� − �vA�k,�� + vR�k,���

�geq
R �k,��geq

A �k,���geq
A �k − q,� − �� − geq

R �k − q,� − ���

��nF�� − �� − nF����� , �C7b�

where F��� is equal eE for the response to an electric current
and ��T /T for the response to a temperature gradient. The
expression for the second group, i.e., �2, was simplified us-
ing the symmetry with respect to q ,�↔−q ,−�. The ana-
lytic structure of this group is the same as obtained in the
case of electric conductivity using the Matsubara
technique.29 We will show that the �1 vanishes for the re-
sponse to an electric field. Furthermore, we examine the fate
of this term for the response to a temperature gradient. With
this in mind, we reformulate the products
geq

R,A�k ,��veq
R,A�k ,��geq

R,A�k ,�� as a derivative of a single
Green’s function �geq

R,A�k ,�� /�k. After integrating by parts,
we obtain

�1 =
1

2

�

�q
� dkd�

�2
�d+1 F����geq
R �k,��geq

A �k − q,� − ��

− geq
A �k,��geq

R �k − q,� − ��� + F�� − ���geq
A �k,��

�geq
R �k − q,� − �� − geq

A �k − q,� − ��geq
R �k,����

��nF�� − �� − nF���� . �C8�

For the response to an electric field, when F��� is inde-
pendent of �, Eq. �C8� is identically zero. However, for the
response to a temperature gradient, part of the RHS of Eq.
�C8� survives because F��� and F��−�� are not the same.
The remaining term is proportional to �,

�1 = − �
�T

2T
� dkd�

�2
�d+1 �nF�� − �� − nF����

�
�

�q
�geq

R �k − q,� − ��geq
A �k,��

− geq
A �k − q,� − ��geq

R �k,��� . �C9�

In the presence of disorder, this triangle can be decorated by
two diffusons and, hence, its contribution to the currents is
significantly larger than the one from �2. The leading con-
tribution from the Coulomb drag to the thermal conductivity

has �1 on each side as illustrated in Fig. 9. This term is
discussed at the end of Sec. V.

To conclude, we showed that the analytic structure of
the Coulomb drag terms is different for the responses to an
electric field and a temperature gradient. In Fig. 14 we
present the corresponding drag diagrams. It is interesting to
note that the combination �1VRVA generated by the quantum
kinetic approach cannot be obtained using the simplified
Kubo formula described in Eq. �2�. We believe that the origin
of this contribution is related to the part in Luttinger’s heat
current operator9 that depends on the interaction.

APPENDIX D: EXAMPLES ILLUSTRATING THE
ONSAGER RELATION

In this appendix we present several examples in which we
demonstrate the fulfillment of Onsager relation. We prove the
Onsager relation for the last term in Eq. �81� when the self-
energy contains only one interaction line. This self-energy is
described in Eq. �79� and illustrated in Fig. 5. Inserting the
self-energy given in Eq. �79� into the last term in Eq. �81�,
we get

je,h
i = −

1

2
� d�d�

�2
�2�e,h���vi
R���geq

R ���G��� − ��V����

��1 − nF���� + G��� + ��V�����1 − nF����

+ G��� − ��V����nF��� + G��� + ��V����nF����

��geq
R ��� − geq

A ���� + c.c. �D1�

Here either G=GF is the field-dependent Green’s function
and V=Veq is the equilibrium propagator or the other way
around.

We start with the case when the external perturbation en-
ters through the Green’s function of the quasiparticles. The
F-dependent quasiparticle Green’s function is given by
Eq. �83�. Using the identities for products of the distribution
functions given in Eq. �75�, we obtain that the contributions
for the thermoelectric currents generated by Eq. �D1� are

ε ΠF

A

R

R/Avi

ω Πvi F

R(A)

R(A)

A(R)

ΠF

A

R

R/Avi

(a) (b)

FIG. 14. The analytical structure of the different contributions to
the drag diagram for �a� the electric current and �b� the heat current
as a response to either an electric field or a temperature gradient.
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je,h
i =

i

4d
� d�d�

�2
�2dr2 ¯ dr6
�nP���

��
�e,h���Fi�� − ���nF�� − �� − nF�����VR�r2,r5,�� − VA�r2,r5,���geq

A �r5,r6,��v j�r6,r1�

��geq
A �r1,r2,�� − geq

R �r1,r2,��� − �geq
A �r5,r6,�� − geq

R �r5,r6,���v j�r6,r1�geq
R �r1,r2,����geq

A �r2,r3,� − ��

− geq
R �r2,r3,� − ���v j�r3,r4,�geq

A �r4,r5,� − �� − geq
R �r2,r3,� − ��v j�r3,r4��geq

A �r4,r5,� − �� − geq
R �r4,r5,� − ����

+
i

4d
� d�d�

�2
�2dr2 ¯ dr6
�nP���

��
�e,h�� − ��Fi����nF�� − �� − nF�����VR�r5,r2,�� − VA�r5,r2,����geq

A �r2,r3,��

− geq
R �r2,r3,���v j�r3,r4�geq

A �r4,r5,�� − geq
R �r2,r3,��v j�r3,r4��geq

A �r4,r5,�� − geq
R �r4,r5,����geq

A �r5,r6,� − ��v j�r6,r1�

��geq
A �r1,r2,� − �� − geq

R �r1,r2,� − ��� − �geq
A �r5,r6,� − �� − geq

R �r5,r6,� − ���v j�r6,r1�geq
R �r1,r2,� − ��� . �D2�

The two parts of the above equation originate from the two
terms of the self-energy written in Eq. �79�. In the second
part we have redefined the frequency �+�→�. One can rec-
ognize that Eq. �D2� poses the structure of Eq. �86� and as
such satisfies the Onsager relation. Furthermore, we may re-
formulate the expressions for the electric current as a re-
sponse to �T and the heat current generated by E in a com-
pact way

Eje��T� = − iT� d�d�

�2
�2dr5�nF�� − ��

− nF����−1�Veq
R �r2,r5,�� − Veq

A �r2,r5,���

�GE
��r2,r5,��G�T

� �r2,r5,� − ���

+ �G�T
� �r2,r5,��GE

��r2,r5,� − ��� , �D3a�

�Tjh�E� = iT2� d�d�

�2
�2dr5�nF�� − �� − nF����−1�Veq
R �r2,r5,��

− Veq
A �r2,r5,���G�T

� �r2,r5,��GE
��r2,r5,� − ���

+ �GE
��r2,r5,��G�T

� �r2,r5,� − ��� . �D3b�

The diagrammatic representation of these contributions to
the current is presented in Fig. 15. It is worth nothing that
one may identify AeqPeq appearing in the general proof of the
Onsager relation �see Eq. �85�� with the effective interaction.
Then, the contributions to the thermoelectric currents can be
obtained from Eq. �D2� by substituting VR−VA with AeqPeq.
Correspondingly, the compact form of the currents presented
in Eq. �D3� can be reproduced. To explain what we have in
mind, let us look at the self-energy given in Fig. 10�b� and
Eq. �84�. Following the same manipulations, the electric and
heat currents generated by this self-energy can be written as

Eje��T� = T� d�d�d��

�2
�3 dr2 ¯ dr4�nF�� − � − ��� − nF����−1

��nP��� − nP�− ����geq
R �r1,r2,� − ��

�geq
A �r3,r4,� − ����Veq

R �r1,r3,��

− Veq
A �r1,r3,���G�T

� �r2,r3,� − � − ���

��Veq
R �r2,r4,��� − Veq

A �r2,r4,����

�GE
��r4,r1,��� + �VR�r3,r1,��� − VA�r3,r1,����

�G�T
� �r4,r1,� − � − ����VR�r4,r2,��

− VA�r4,r2,����GE
��r2,r3,��� , �D4a�

�Tjh�E� = − T2� d�d�d��

�2
�3 dr2 ¯ dr4�nF�� − � − ���

− nF����−1�nP��� − nP�− ����geq
R �r1,r2,� − ��

�geq
A �r3,r4,� − ����Veq

R �r1,r3,��

− Veq
A �r1,r3,���GE

��r2,r3,� − � − ���

��Veq
R �r2,r4,��� − Veq

A �r2,r4,����G�T
� �r4,r1,��

+ �VR�r3,r1,��� − VA�r3,r1,����

�GE
��r4,r1,� − � − ����VR�r4,r2,��

− VA�r4,r2,����G�T
� �r2,r3,��� . �D4b�

The diagrammatic interpretation of these currents is pre-
sented in Fig. 16.

Let us return to the discussion of the self-energy presented
in Eq. �79�. We shall examine the contributions to the ther-
moelectric currents in which the external perturbation enters
�F through the propagator of the interactions. These contri-
butions, corresponding to the Coulomb drag terms, were ana-
lyzed in Appendix C. It is shown there that the electric cur-ε ε−ω

ε ε−ω

v ( , )i 1r6r

2r

5r

v ( , )i 4r3r
fe,h( )ε F( )ε−ω

ε−ω ε

ε−ω ε

v ( , )i 1r6r

2r

5r

v ( , )i 4r3r
fe,h( ) F( )εε−ω

FIG. 15. The diagrammatic representation of the contributions
to the currents described in Eq. �D2�. For simplicity we do not show
here the dashed lines that indicate the scattering by the impurities.

fe,h( ) F( )ε ε−ω−ω'ω

ω'

fe,h( ) F( )εε−ω−ω' ω

ω'

FIG. 16. The diagrammatic representation of the contributions
to the currents written in Eqs. �D4a� and �D4b�.

KAREN MICHAELI AND ALEXANDER M. FINKEL’STEIN PHYSICAL REVIEW B 80, 115111 �2009�

115111-26



rent as a response to a temperature gradient can be written as

je
i =

1

E
� d�

2

dr2dr3dr4� �nP���

��
�−1

Veq
A �r3,r4,��

��nP�− ���E
��r4,r1,��

+ nP����E
��r4,r1,���Veq

R �r1,r2,��

��nP�− ����T
� �r2,r3,�� + nP�����T

� �r2,r3,��� .

�D5�

Similarly, the heat current generated by an electric field can
be formulated as

jh
i = −

T

�T
� d�

2

dr2dr3dr4� �nP���

��
�−1

Veq
A �r3,r4,��

��nP�− ����T
� �r4,r1,�� + nP�����T

� �r4,r1,���

�Veq
R �r1,r2,���nP�− ���E

��r2,r3,��

+ nP����E
��r2,r3,��� . �D6�

One may see that Eqs. �D5� and �D6� are connected through
the Onsager relation under the condition of microscopic re-
versibility. However, it is not obvious how to recognize in
the above expression the structure of Eq. �86� used in the
general proof of the Onsager relation. To resolve this issue,
one has to go to Eq. �C2� in Appendix C. Then, instead of

analyzing each polarization operator �̂F separately, one
should concentrate on combinations of the kind �1
−nF����nF��−���F

��q ,��+nF����nF��−��−1��F
��q ,���.

Following Sec. VI, we shift the arguments of the Green’s
functions inside �F��� in such a way that they all contain �.
The polarization operator will be written as

��,���� =
1

2
� d"

2

�G�,��� − "�G�,��� − " − ��

+ G�,��� + "�G�,��� + " − ��� . �D7�

Now, the Coulomb drag term contains four distribution func-
tions. To simplify the expression, we group these functions
into two pairs and use the identities in Eq. �75b� for each of
the pairs. Here, we pair the distributions functions in such a
way that the difference between the two frequencies in each
pair is ". Namely, one pair contains nF��� and nF��−"�,
while the other includes nF��−�� and nF��−�−"�. Follow-
ing the steps described here, one can obtain an expression for
the Coulomb drag term that has the same structure as Eq.
�86�. Consequently, one may present the Coulomb drag con-
tributions to the thermoelectric currents in a compact form
similar to Eqs. �D3a� and �D3b�.

APPENDIX E: THE QUANTUM KINETIC APPROACH IN
THE PRESENCE OF SUPERCONDUCTING

FLUCTUATIONS

In this work, we derived the currents as a response to an
electric field and a temperature gradient for electrons inter-
acting through the density channel, e.g., the Coulomb inter-
action. Here we show that following the same scheme, one

can find the expression for the currents in the presence of
superconducting fluctuations.

The difference between the fluctuations in the two chan-
nels reveals itself most clearly when the electric current or
the response to an electric field is studied. The action for
electrons interacting through the Cooper channel in the pres-
ence of an electric field is

S =� drdt	�
s

s
†�r,t�i�ts�r,t� − �

s

��s
†�r,t����s�r,t��

2m

− �
s

s
†�r,t��er · E + Vimp − ��s�r,t�

− �%�r,t�↑
†�r,t�↓

†�r,t� + H.c.� −
�%�r,t��2

& 
 . �E1�

It follows from the action that the charge of the electrons,
−e��r��2, is not conserved unless the charge carried by the
interaction field, 2e�%�r��2, is also included. Correspond-
ingly, the continuity equation for the current of the quasipar-
ticles acquires a source term −e�s�t�s�r , t��2+�je

qp�r , t�=
−2ie�%†�r , t�↓�r , t�↑�r , t�−%�r , t�↑

†�r , t�↓
†�r , t��. Hence,

the expression for the electric current is the sum of the cur-
rents of the quasiparticles and interacting field

je =
ie

2
� dr�dt��2v�̂ �r,t;r�,t��G�̂ �r�,t�;r,t�

+ 2V�̂ �r,t;r�,t��L�̂ �r�,t�;r,t��� + H.c. �E2�

Here, L�̂ �r , t ;r� , t�� is the gauge-invariant propagator of the
interaction in the Cooper channel and we use the notation

V�̂ �r , t ;r� , t��=−i�r−r����̂ sc�r , t ;r� , t�� to emphasize that this
term is analogous to the renormalized velocity given in Eq.

�14�. �Since the propagator L̂ does not have a dimension of

an inverse energy, V̂ does not have the dimension of veloc-
ity.� The factor 2 in the contribution to the current from the
Green’s function of the quasiparticles is due to the sum over
the two spin directions, while the factor of 2 in the contribu-

tion of L̂ is because the superconducting fluctuations carry a
charge of 2e.

Since % is a charged field, the kinetic equation for its

propagator L̂�r , t ;r� , t�� resembles the kinetic equation of the
quasiparticle Green’s function �see Eq. �10�� rather than Eq.
�15� for the neutral interaction field

− &−1L�̂ ��,�;imp� = ���� −� dr1��̂ �� − r1,�;imp�

�	1 − eE�r1
��

��
− �� − r1�

��

��
�
L�̂ �r1,�;imp� .

�E3�

Using Eqs. �E2� and �E3�, we have reproduced the known
results for the paraconductivity35–37 and for the corrections to
the magnetoresistance in disordered superconducting films.38
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Let us turn to the response to the temperature gradient,
which is analyzed with the help of the gravitational field.
Unlike the response to an electric field, the quantum kinetic

equation and L̂ in the presence of a gravitational field has the

same form as Eq. �41� for V̂,

− &−1L̂
=

�r,t;r�,t�� = ��r − r����t − t��

−� dr1dt1�̂=sc�r,t;r1,t1�L̂
=

�r1,t1;r�,t�� .

�E4�

Here, L̂
=

is transformed according to Eq. �29�. Note that just

like for V̂
=

, the dependence of the propagator L̂
=

on the gravi-

tational field is only through its self-energy �̂
=sc. In view of

the similarity of the kinetic equations for V̂
=

and L̂
=

, it is natu-
ral that the heat current �both as a response to E and �T�
does not acquire any additional terms in the presence of fluc-
tuations in the Cooper channel and Eqs. �51� and �56� are
still valid. Finally, the expression for the electric current as a
response to a temperature gradient includes two contribu-
tions: one is the electric current of the quasiparticles �de-
scribed by the �T-dependent Green’s function� and the other
is from the electric current carried by the interaction field

�described by the �T-dependent propagator L̂
=

�. We applied
this scheme for the calculation of the Nernst effect in disor-
dered films above the superconducting transition.18
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