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The tight-binding model of a graphene bilayer is used to find the gap between the conduction and valence
bands, as a function of both the gate voltage and as the doping by donors or acceptors. The total Hartree energy
is minimized and the equation for the gap is obtained. This equation for the ratio of the gap to the chemical
potential is determined only by the screening constant. Thus the gap is strictly proportional to the gate voltage
or the carrier concentration in the absence of donors or acceptors. In the opposite case, where the donors or
acceptors are present, the gap demonstrates the asymmetrical behavior on the electron and hole sides of the
gate bias.
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Bilayer graphene has attracted much interest partly due to
the opening of a tunable gap in its electronic spectrum by an
external electrostatic field. Such a phenomenon was pre-
dicted by McCann and Fal’ko1 and can be observed in opti-
cal studies controlled by applying a gate bias.2–7 In Refs. 8
and 9, within the self-consistent Hartree approximation, the
gap was derived as a near-linear function of the carrier con-
centration injected in the bilayer by the gate bias. Recently,
this problem was numerically considered10 using the density-
functional theory �DFT� and including the external charge
doping involved with impurities. The DFT calculation gives
the gap which is roughly half of the gap obtained in the
Hartree approximation. This disagreement was explained in
Ref. 10 as a result of both the inter- and intralayer correla-
tions.

In this Brief Report, we study this problem within the
same Hartree approximation as in Refs. 8 and 9, but includ-
ing the external doping. We consider the case, where the
carrier concentration in the bilayer is less than 1013 cm−2,
calculating the carrier concentration on both layers. Then, we
minimize the total energy of the system and find self-
consistently both the chemical potential and the gap induced
by the gate bias. Our results completely differ from those
obtained in Refs. 8 and 9 even for the range where the ex-
ternal doping is negligible. The dependence of the gap on the
carrier concentration, i.e., on the gate voltage, exhibits an
asymmetry at the electron and hole sides of the gate bias.

The graphene bilayer lattice is shown in Fig. 1. Atoms in
one layer, i.e., a and b in the unit cell, are connected by solid
lines and in the other layer, e.g., a1 and b1, by the dashed
lines. The atom a�a1� differs from b�b1� because it has a
neighbor just below in the adjacent layer, whereas the atom
b�b1� does not.

Let us recall the main results of the Slonchewski-Weiss-
McClure model.11,12 In the tight-binding model, the Bloch
functions of the bilayer are written in the form

�a =
1

�N
�

j

eikaj�0�a j − r� ,

�b =
1

�N
�

j

eikaj�0�a j + a − r� ,

�a1 =
1

�N
�

j

eikaj�0�a j + c − r� ,

�b1 =
1

�N
�

j

eikaj�0�a j + c + a − r� , �1�

where the sums are taken over the lattice vectors a j and N is
the number of unit cells. Vectors a and c connect the nearest
atoms in the layer and in the neighbor layers, correspond-
ingly.

For the nearest neighbors, the effective Hamiltonian in the
space of the functions �1� contains the hopping integrals
�0 ,�1 ,�3 ,�4, and �.13 The largest of them, �0, determines
the band dispersion near the K point in the Brillouin zone
with a velocity parameter v. The parameters �3 and �4 giving
a correction to the dispersion are less than �0 by a factor of
10 �see Refs. 4 and 5�. The parameters �1 and � result in the
displacements of the levels at K, but � is much less than �1.
Besides, there is the parameter U induced by the gate and
describing the asymmetry of two layers in the external elec-
trostatic field. This parameter simply presents the potential
energy between two layers, −edE, where d is the interlayer
distance and E is electric field induced both by the gate volt-
age and the external charge dopants in the bilayer. In the
simplest case, the effective Hamiltonian can be written as
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FIG. 1. Bilayer lattice.
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H�k� =�
U vk+ �1 0

vk− U 0 0

�1 0 − U vk−

0 0 vk+ − U
� , �2�

where the matrix elements are expanded in the momentum
k�= � ikx−ky near the K points.

The Hamiltonian gives four energy bands

�1,4�q� = � ��1
2

2
+ U2 + q2 + W�1/2

,

�2,3�q� = � ��1
2

2
+ U2 + q2 − W�1/2

, �3�

where

W = ��1
4

4
+ ��1

2 + 4U2�q2�1/2

and we denote q2= �vk�2.
The band structure is shown in Fig. 2. The minimal value

of the upper energy �1 is �U2+�1
2. The �2 band takes the

maximal value 	U	 at k=0 and the minimal value Ũ
=�1	U	 /��1

2+4U2 at q2=2U2��1
2+2U2� / ��1

2+4U2�. Because
the value of U is much less than �1, the distinction between

U and Ũ is small and the gap between the bands �2 and �3
takes the value 2	U	.

The eigenfunctions C of the Hamiltonian �2� have the
form

C =
1

C�
�U − �n�
��n + U�2 − q2�

− q−
��n + U�2 − q2�
�1�U2 − �n

2�
�1q+�U − �n�

� , �4�

where the C norm squared is

C2 = 
��n + U�2 − q2�2
��n − U�2 + q2�

+ �1
2��n − U�2
��n + U�2 + q2� .

The probability to find an electron, for instance, on the first
layer is 	C1	2+ 	C2	2, as seen from Eqs. �1�.

We assume that carriers occupy only the bands �2,3, so the
chemical potential � and the gap 2	U	 are less than the dis-
tance between the bands �1 and �2, i.e., �	�	 ,2	U	�	�1. The
electron dispersion for the �2,3 bands can be expanded in
powers of q2,

�2,3
2 �q� = U2 − 4

U2

�1
2 q2 +

q4

�1
2 . �5�

Then, for q2
4U2, we can use the simple relations

�2,3�q� = � �U2 + q4/�1
2,

	C1	2 + 	C2	2 = q4/
q4 + �1
2��2,3 − U�2� = ��2,3 + U�/2�2,3.

�6�

Within such the approximation, many observable effects can
be analytically evaluated for the intermediate carrier concen-
tration, 4U2��1

��2−U2��1
2, where we neglect the effect

of the “mexican hat.”
At zero temperature, for the total carrier concentration n

and the carrier concentrations n1,2 on the layers, we obtain

n =
�1

�2v2
��2 − U2 =

n0U

�1

�x2 − 1, �7�

n1,2 =
�1

2�2v2�
U

��� + U

� − U
d� =

n0U

2�1

�x2 − 1

� ln�x + �x2 − 1�� , �8�

where n0=�1
2 /�2v2=1.2�1013 cm−2 and x=� /U.

In order to find the chemical potential � and the gap 2	U	
at the given gate voltage, we minimize the total energy con-
taining both the energy V of the carriers and the energy Vf of
the electrostatic field. Instead of the chemical potential, it is
convenient to use the variable x along with U. Electrons in
the �2 band or holes in the �3 band contribute in the total
energy of the system the energy

V =
2

�2v2� �2�q�qdq =
n0U2

2�1

x�x2 − 1 + ln�x + �x2 − 1�� .

�9�

The energy of the electrostatic field,

Vf =
1

8�
�dE2 + �wdwEw

2 � , �10�

can be written in terms of the carrier concentrations with the
help of relations �see Fig. 3�

4�e�n1 − nd/2� = E and 4�e�n − nd� = �wEw, �11�

where �w is the dielectric constant of the wafer, the negative
�positive� nd is the acceptor �donor� concentration, and we
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FIG. 2. Band structure of bilayer.
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suppose that the donors and acceptors are equally divided
between two layers.

We seek the minimum of the total energy as a function of
two variables, U and x, under the gate bias constraint

eVg = − edE − edwEw. �12�

Excluding the Lagrange multiplier and assuming the inter-
layer distance to be much less than the thickness dw of the
dielectric wafer, we obtain the following equation:

4�e2d�n2 −
nd

2
��n1x

nx
−

n1u

nu
� =

Vx

nx
−

Vu

nu
. �13�

Let us emphasize that this equation is invariant only with
respect to the simultaneous sign change in n1,2 and nd that
expresses the charge invariance of the problem. At the fixed
sign of the external doping nd, the gap on the electron and
hole sides of the gate bias is not symmetrical.

The derivatives in Eq. �13� are calculated with the help of
Eqs. �7�–�11�. As a result, Eq. �13� becomes

�1nd

Un0
= �x2 − 1 �  f�x� +

xf�x�
�
xf�x� − �x2 − 1�� , �14�

with the function f�x�=ln�x+�x2−1� and the dimensionless
screening constant

� =
e2�1d

�v�2 .

For the parameters of graphene d=3.35 Å, �1=0.4 eV, and
v=108 cm /s, we get �=0.447.

First, consider an ideal undoped bilayer with nd=0,
namely, 	�1nd /Un0	�1. We obtain a solution, as x0=6.2784,
only for one sign in Eq. �14� determining the polarity of the
layers 
see Eq. �8��. This value gives 2	U /�	=2 /x0=0.3186
for the ratio of the gap to the chemical potential. According
to Eq. �7�, the gap as a function of the carrier concentration
�see Fig. 4� takes a very simple form

2	U/n	 =
2�1

n0
�x0

2 − 1
= 1.08 � 10−11 meV cm2, �15�

where the right-hand side does not depend on the gate bias at
all, but only on the screening constant �.

We can compare Eq. �15� to the corresponding result of
Ref. 8

2	U/n	 =
e2d

2�0
�1 + 2�

	n	
n0

+ � ln
n0

	n	�−1

. �16�

Both equations are in the numerical agreement at 	n	=0.1n0
�1012 cm−2. However, contrary to Eq. �15�, Eq. �16� con-
tains the carrier concentration in the right-hand side, giving
rise to the more rapid increase in the gap with 	n	�n0. This
increase also contradicts to the DFT calculations.10

For the bilayer with acceptors or donors, nd�0, Eq. �14�
presents a solution w=�1nd /Un0 as a function of x. We ob-
tain, evidently, the small values of w for x close to x0=6.28.
In this region of the relatively large 	U	, we find again with
the help of Eqs. �7� and �14� the linear dependence

2	U	 = 2�1
	n − nd	

n0x0
= 1.08	n − nd	 � 10−11 meV cm2.

For the small gap, 	Un0 /�1nd		1, we obtain different re-
sults for the electron and hole types of conductivity. For
instance, if the bilayer contains acceptors �Fig. 4� with con-
centration nd, the gap decreases linearly with the hole con-
centration and vanishes when the gate bias is not applied and
the hole concentration equals nd. Starting from this point, the
gap increases and, thereafter, becomes again small �equal to
zero in Fig. 4� at the carrier concentration corresponding to
the minimal value of the dc conductivity. Therefore, the dif-
ference observed in Ref. 15 between these two values of
carrier concentrations, at the zero bias and at the minimal
conductivity, gives directly the donor or acceptor concentra-

E Ew

d dw

n n n21

FIG. 3. Electrostatic model; d is the interlayer distance and dw is
the wafer thickness.
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FIG. 4. �Color online� The gap in units of �1=0.4 eV vs the
carrier concentration for the hole doping with concentration nd=
−5�1012 cm−2 �solid line� and in the absence of doping, nd=0
�dashed line�; the positive �negative� values of n correspond to the
electron �hole� conductivity.
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tion in the bilayer. Then, for the gate bias applied in order to
increase the electron concentration, the gap is rapidly open-
ing with the electron appearance.

We see that the asymmetry arises between the electron
and hole sides of the gate bias. This asymmetry can simulate
a result of the hopping integral � in the electron spectrum.14

In order to obtain the gap dependence for the case of electron
doping, nd�0, the reflection transformation n→−n has to be
made in Fig. 4.

The gap in the vicinity of the minimal conductivity point
reaches indeed a finite value due to several reasons. One of
them is the form of the mexican hat shown in Fig. 2. Second,
the trigonal warping is substantial at low carrier concentra-
tions. Finally, the graphene electron spectrum is unstable
with respect to the Coulomb interaction at the low-
momentum values. For the graphene monolayer as shown in
Ref. 16, the logarithmic corrections appear at the small mo-

mentum. In the case of the bilayer, the electron self-energy
contains the linear corrections, as can be found using the
perturbation theory. The similar linear terms resulting in a
nematic order were also obtained in the framework of the
renormalization group.17

In conclusions, the gap 2U opening in the gated graphene
bilayer has an intriguing behavior as a function of carrier
concentration. In the presence of the external doping charge,
i.e., donors or acceptors, this function is asymmetric on the
hole and electron sides of the gate bias and it is linear only
for the large gate bias.
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