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Young’s modulus of graphene: A molecular dynamics study
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The Young’s modulus of graphene is investigated through the intrinsic thermal vibration in graphene which
is “observed” by molecular dynamics and the results agree very well with the recent experiment [Lee et al.,
Science 321, 385 (2008)]. This method is further applied to show that the Young’s modulus of graphene
(1) increases with increasing size and saturates after a threshold value of the size; (2) increases from 0.95 to 1.1
TPa as temperature increases in the region [100, 500] K; (3) is insensitive to the isotopic disorder in the low
disorder region (<5%) and decreases gradually after further increasing the disorder percentage.
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The single-layer graphene has unique electronic and other
physical properties thus becoming a promising candidate for
various device applications.!> Among others, excellent me-
chanical property is an important advantage for the practical
applications of graphene. Experimentally, the Young’s modu-
lus (Y) of graphene has been measured by using atomic force
microscope (AFM) to introduce external strain on graphene
and record the force-displacement relation.> The measured
value for Young’s modulus is 1.0*=0.1 TPa in this experi-
ment. Theoretically, the Young’s modulus of graphene can be
studied in a parallel way. Once the external strain is applied
on graphene, the internal force or potential can be calculated
in different approaches, such as ab initio calculations,*~® mo-
lecular dynamics (MD),” and interatomic potentials.®~'° Then
the Young’s modulus can be obtained from the force-
displacement or the potential-displacement relation. For the
carbon nanotubes (CNT), the Young’s modulus is theoreti-
cally studied in a similar way as that in graphene. However,
in the experiment, besides the AFM method,!! another group
measured the Young’s modulus of CNT by observing the
thermal vibration at the tip of the CNT using the transmis-
sion electron microscopy (TEM).!>!3 For some unknown
reasons, possibly technical challenges, this experimental
method does not appear in the study of the Young’s modulus
in graphene. As a supplement to this vacancy, the present
work “observes” the thermal vibration of graphene by MD
instead of TEM and then calculates the Young’s modulus
from the “observed” thermal vibration.

In the engineering application of graphene, it will be ben-
eficial if the mechanical property of graphene can be ad-
justed according to the demand. There are some possible
methods that can manipulate the value of Young’s modulus
in graphene, such as size of the sample, temperature, isotopic
disorder, etc. It is a matter of practical importance and theo-
retical interest to find an effective method to control the me-
chanical property of graphene. The present calculation
method for the Young’s modulus of graphene in this paper is
readily applicable to address these issues.

In this Brief Report, we investigate the Young’s modulus
of graphene by observing the thermal vibrations with MD.
The calculated Young’s modulus is in good agreement with
the recent experimental one. Using this method, we can sys-
tematically study different effects on the Young’s modulus:
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size, temperature, and isotopic disorder. It shows that the
Young’s modulus increases as graphene size increases and
saturates. In the temperature range 100-500 K, Y increases
from 0.95 to 1.1 TPa as T increases. For the isotopic disorder
effect, Y keeps almost unchanged within low disorder per-
centage (<5%) and decreases gradually after further increas-
ing disorder percentage.

In graphene there are both optical and acoustic vibration
modes in the z direction. For the optical phonon modes, the
frequency is about 850 cm™!, which is too high to be con-
siderably excited under 500 K. While the acoustic phonon
mode is a flexure mode with parabolic dispersion w=Bk?,
which will be fully excited even at very low temperature. So
the thermal mean-square vibration amplitude (TMSVA) of
graphene in the z direction is mainly attributed to the flexure
mode under 500 K. In this sense, we consider the contribu-
tion of the flexure mode to TMSVA for an elastic plate in the
following. The x and y axes lie in the plate, and z direction is
perpendicular to the plate. For convenience and without los-
ing generality, we consider a square plate with length L.

The equation for oscillations in z direction of a plate is'*

p— + —A% =0, (1)

where D=11—2Yh3/ (1-u?). A is the two-dimensional Laplac-
ian and p is the density of the plate. Y and w are the Young’s
modulus and the Poisson ratio, respectively. % is the thick-
ness of the plate. We apply fixed boundary condition in x
direction and periodic boundary condition in y direction:

z(t,x=0,y) =0,
Z(tx=L,y)=0,
z2(t,x,y + L) =z(t,x,y). (2)

The solution for the above partial differential equation under
these boundary conditions can be found in Ref. 15:
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2,(t,x,y) = u,, sin(k,x) cos(kyy) cos(w,1),

k=ké,+kye,, (3)

where ky=mn;/L and k,=2mn,/L.
Using these eigensolution, the TMSVA for nth phonon
mode in (x,y) at temperature T can be obtained:!'?

12(1 -2 1

2
y) = dk,T -
Tley) = 4ksT—p 50 K

[sin(kx)cos(kyy)J>.  (4)

We should mention that for those modes with k; #0 and k,

=0, we have a similar result o‘,zl(x, y)
:ZkBT%;—?é(sin kyx)?. The spatial average of the TMSVA
over x and y is
1 12(1-p?) 1
0'2=—ff0'2 Y)dxdy =kyT———=——, (5
(o) s) ) (. y)dxdy = kg v @ (5)

where k; #0 and k,#0. D is the field in x[0,L] and y
€[0,L], and S=L? is the area of D. If k, #0 and k,=0, (0',21)
turns out to have the same expression as this general one.

Because all modes are independent at the thermal equilib-
rium state at temperature 7, they contribute to the TMSVA
incoherently. As a result, the TMSVA at temperature T is
given by

(%)= 2 (0D

n=0

=kgT
L /5 e 5

12(1 — p?) 252

vy A

(1 - u)SksT
=03l—F——. 6
By (6)
The constant C=E;;’112;§=Oenzm~1.2507, the major

part of which is due to the first nonzero phonon mode with
(ny,n)=(1,0). €,=1 for n,=0 and ¢, =2 for other n,
=1,2,3,....

As a result, the Young’s modulus of the graphene is

Y=03—=—7-. (7)
The Poisson ratio in graphene!®!7 ©=0.17 has been used in
this expression for the Young’s modulus. There is arbitrari-
ness in the definition of thickness % of the one-atom-thick
graphene sheet. For convenience of comparison between our
theoretical results and the experimental ones, we choose / to
be 3.35 A, the interlayer space in graphite, which is also
used in the experimental work.?
Figure 1 is the configuration of the graphene sheet in our
simulation. The outmost two columns (red online) on the left
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FIG. 1. (Color online) Configuration of the graphene sample.
The origin O is at the left bottom of the sample. Two columns (red
online) on the left and right sides are fixed. The length of the
sample in this figure is L=40 A.

and right sides are fixed during the simulation while periodic
boundary condition is imposed in the vertical direction. The
origin of the coordinate is set at the left bottom of the
sample. The x axis is in the horizontal direction and y axis is
in the vertical direction.

The MD simulations are performed using the second-
generation Brenner interatomic potential.'® The Newton
equations of motion are integrated within the fourth order
Runge-Kutta algorithm, in which a time step of 0.5 fs is
applied. The typical MD simulation steps in this paper is 5
X 103, corresponding to 0.25 ns simulation time.

The initial velocities of carbon atoms at temperature 7 are
assigned as independent Gaussian random variables drawn
from the Maxwell-Boltzmann distribution. All atoms are at
the optimized position at r=0. A long enough simulation time
is used for the system to reach steady state. In our simula-
tion, 5 X 10° MD steps are used to ensure that the system has
achieved the thermal equilibrium. Another 5 X 103 MD steps
are applied to calculate the time-averaged quantities in this
Brief Report. The typical variation in the total energy of the
system is very small (<2%).

After obtaining the (¢?) from MD simulation, we can cal-
culate the value of Young’s modulus through Eq. (7). We
note that the elastic theory has been successfully applied to
describe atomic graphene system with about 400 carbon
atoms.'” In this Brief Report, the graphene samples have
about 200-500 carbon atoms. So we expect the Eq. (7) re-
sulted from elastic theory can also be applicable. To depress
the possible error created by randomness in the simulation,
we repeat 100 independent processes for each value of the
Young’s modulus in this work.

Figure 2 shows the size dependence of the Young’s modu-
lus. When 10 A <L <40 10%, Y increases from 0.7 to 1.1 TPa
with increasing size, and this value (1.1 TPa) almost does not
change with further increasing L. The increase in Y with
increasing size also shows up in some studies on the Young’s
modulus of CNT by various methods, where Y increases with
increasing diameter and reaches a saturate value.?->3 In Fig.
2, the value of Y in large size sample is 1.1 TPa. This value
agrees quite well with the recent experimental 1+0.1 TPa
result.’
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FIG. 2. (Color online) The Young’s modulus in graphene with
different sizes.

In Fig. 3, we show the temperature dependence of the
Young’s modulus in the temperature range from 100 to 600
K. In the low-temperature region [100, 500] K, Y increases
for 15% as T increases. In the high-temperature region 7
>500 K, Y shows obvious decreasing behavior. This behav-
ior indicates that the suitable temperature region for our
method is 7<500 K. If 7>500 K, the optical phonon
modes in the z direction will also be excited together with the
flexure mode, leading to a larger value for the TMSVA in our
MD simulation. And the result from Eq. (7) will underesti-
mate the value of Young’s modulus.

Now we consider the result of the '“C isotopic disorder in
the pure '2C graphene system. We expect this investigation
of the isotopic disorder effect can give a useful clue to
whether mechanical properties of graphene can be manipu-
lated in this way. In our simulation, to calculate the value of
Y under a particular isotopic disorder percentage, '°C atoms
are randomly substituted by certain number of ¢ atoms.
This procedure is done independently in each of our 100
simulation processes for one value of the Young’s modulus.
Results are shown in Fig. 4. We find that the value of Y
remains almost unchanged for the low isotopic disorder per-
centage (<5%). Further increase of the isotopic disorder per-
centage yields about 15% reduction in Y. This result tells us
that the purification of the natural graphene cannot obtain a
higher value of Y. On the other hand, about 15% reduction in
Y can be realized by increasing the isotopic disorder percent-
age. However, as 20% isotopic disorder only achieves 15%
reduction in Y, it is not an effective method to control the
value of Y by modifying isotopic disorder percentage. This
situation is very different from that in the thermal transport.
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FIG. 3. (Color online) The dependence of the Young’s modulus
on temperature 7T for graphene with L=40 A.
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FIG. 4. (Color online) The isotopic disorder effect on the
Young’s modulus of graphene at T=300 K with L=40 A.

The thermal conductivity has been shown to be very sensi-
tive to the isotopic disorder percentage in the low disorder
region with more than 40% reduction in thermal conductivity
by less than 5% isotopic disorder percentage; while for
higher disorder percentage, the thermal conductivity keeps
almost unchanged.?*~2¢ So the thermal conductivity can be
greatly enhanced by synthesizing isotropically pure
nanotubes.?

In conclusion, we have used MD to obtain the thermal
vibration of graphene and then calculate the Young’s modu-
lus from the thermal mean-square vibration amplitude. The
advantage of this approach is that we don’t have to introduce
external strain on the system and it can be easily applied to
study different effects on the Young’s modulus. The theoret-
ical results agree very well with the experimental ones. As an
application of this method, we study the Young’s modulus of
graphene with different size. The temperature and isotopic
disorder effects on the Young’s modulus are also investi-
gated. It shows that the Young’s modulus increases with in-
creasing size when the graphene sample is smaller than
40 A and reaches a saturated value in samples larger than
40 A. The value of Y increases from 0.95 to 1.1 TPa as T
increases from 100 to 500 K. For the isotopic disorder effect,
Y keeps almost unchanged in the low disorder region
(<5%) and decreases gradually for 15% after increasing the
disorder percentage up to 20%. This finding provides the
information that the isotopic disorder is not an effective
method to control the Young’s modulus of graphene.

We should point out that why we use the constant value of
Poisson ratio u=0.17. Actually w also depends on the size,
temperature, and isotopic doping. By applying external strain
(e,) on the graphene in x direction, and using MD to record
the resulted strain in y direction (e,) under different environ-
ment, i.e., different size, temperatures, or isotopic doping
percentage, we can obtain the value of Poisson ratio from
u=le,/&,|. We find that the value of Poisson ratio will devi-
ate from 0.17, which means that it will introduce some error
if we use a constant value for Poisson ratio under all envi-
ronment. However, as can be seen from Eq. (6), the Poisson
ratio appears in the expression as a factor (1—u?), so the
error is considerably small. For example, we find that the
largest value for Poisson ratio is 0.22 in graphene sheet with
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L=10 A at 300 K without isotopic doping. In this situation,
the relative error is the largest, which is [(1-0.22%)—(1
-0.17%)]/(1-0.17%)==2%. So throughout this Brief Report,
we use a constant value for Poisson ratio, which will intro-
duce relative error for the Young’s modulus less than 2%.
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