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The charge fluctuations of a quantum dot defined by depletion gates in a semiconductor heterostructure can
be observed using a charge sensor. The charge sensor can observe electrons transiting on and off of the
quantum dot in real time. From such data information about the quantum states of electrons on the dot can be
inferred. We present an approach to analyzing charge sensor data based on the hidden Markov model �HMM�.
HMM theory provides a mathematical approach for inferring the details of a stochastic process from indirect
observations. We discuss how this applies to the problem of charge sensor data analysis. We apply HMMs to
data from a previous quantum dot experiment and demonstrate its usefulness in extracting the electron transi-
tion rates. Further potential for the HMM in the context of quantum dot experiments is discussed.
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The conductance of a quantum point contact �QPC� �Refs.
1 and 2� or single electron transistor �SET� �Refs. 3 and 4�
near to a quantum dot can be sensitive to the charge on the
dot, with sufficient resolution to count individual electrons
on the dot.5,6 In a typical experiment a quantum dot is
coupled by tunnel barriers to one or more leads, which are
thermal reservoirs of electrons.7 An electron can tunnel from
a lead onto a quantum dot if it has the same energy as the
quantum dot state it will occupy; likewise an electron on the
quantum dot can tunnel off if there is an unoccupied state in
the lead at the same energy. When the lead�s� are tuned so
that there are both occupied and unoccupied states at the
energy level of a quantum dot state, electrons transition on
and off of the dot stochastically, a process which can be
observed in real time by a QPC or SET acting as a charge
sensor. The conductance of the charge sensor shows random
transitions between two levels that are commonly referred to
as a random telegraph signal �RTS�. An example of RTS data
is shown in Fig. 2.

From a sequence of observations of the transitions of
electrons between the quantum dot and the lead�s�, we would
like to be able to determine what electron states are possible
in the quantum dot and describe their dynamics quantita-
tively. This paper proposes an approach to analyzing charge
sensor data in quantum dot experiments based on the hidden
Markov model �HMM�. A HMM is a statistical model, dia-
grammed in Fig. 1, in which the state of the system is a
Markov process that cannot be observed directly; instead, at
regular time steps the system produces an observation that
depends probabilistically on the state the system is in at that
time. Information about the sequence of states must be in-
ferred indirectly from the observations. In our application,
the Markov process models the electron state of the quantum
dot and the observations are the charge sensor data. The state
is “hidden” because the signal inevitably contains noise, and
it represents only the charge state of the quantum dot and
does not contain any information about other degrees of free-
dom such as spin or orbital quantum numbers. The HMM is
well suited for dealing with both of these limitations. Using

HMM analysis we can extract the transition rates between
the various states of the system. HMM analysis also offers
the possibility to infer the existence of multiple states with
the same number of electrons, i.e., distinct orbital or spin
states that cannot be distinguished directly by a charge sen-
sor.

Hidden Markov modeling is a well-developed statistical
field dating from the 1960s.8 HMMs have been applied to
data analysis problems in a variety of other fields, including
automatic speech recognition,9 financial modeling,10 and a
number of biological applications, but to our knowledge it
has not been used in a quantum physics context. The type of
model proposed here is closely related mathematically to
HMMs developed in the study of biological ion channels.11,12

A good introduction to HMMs is given by Rabiner;9 a recent
comprehensive text is by Cappe et al.13

In our approach the electron state of the quantum dot is
modeled as a discrete first-order Markov process. At each
discrete unit of time t the system is assumed to be in one of
a finite number M of definite quantum states, denoted by
X1 ,X2 , . . . ,XM. The system transitions randomly between
states, with the probability of the system being in state Xj at
time t depending only on the state of the system at time

FIG. 1. Diagram of a general HMM, which consists of a Markov
process x= �x1 ,x2 , . . . ,xN� and a sequence of observations
y= �y1 ,y2 , . . . ,yN�. Arrows indicate conditional dependence be-
tween variables. The state xt depends only on the previous state xt−1

and the observation yt depends only on the current state xt. In our
implementation the Markov process x represents the electron state
of the quantum dot as it changes over time and the observations y
represent charge sensor measurements.
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t−1. Let xt represent the state of the system at time t. We
define the transition matrix of the system, A, whose elements
are the probability of being in state Xj at time t+1, given that
the system was in state Xi at time t,

Aij = P�xt = Xj�xt−1 = Xi� . �1�

The transition rate from state i to state j is Aij /�t, where �t
is the time between data points. Introducing a probability
vector p�t� such that pi�t� is the probability that the system is
in state Xi at time t, the evolution of the system is described
by the Markov equation,

pt+1 = ATpt. �2�

This equation is the discrete-time analog of the classical
master equation �also known as the continuous-time Markov
equation� commonly used to describe the dynamics of meso-
scopic systems.

In the HMM paradigm the sequence of states
x=x1 ,x2 , . . .xN is not known. At each time t, the system pro-
duces a random output or observation, yt, which depends
only on the current state of the system xt �not on any previ-
ous state or observation�. In our models we assume that if the
system is in state Xi the conductance through the charge sen-
sor yt is a value gi, which is a function of the number of
electrons in state Xi, plus Gaussian white noise with ampli-
tude �i,

p�yt = y�xt = Xi� =
1

�2��i

exp�−
�y − gi�2

2�i
2 � . �3�

Together, Eqs. �2� and �3� constitute a HMM. The model is
fully characterized by the set of parameters
�= �A ,g1 ,g2 , . . .gM ,�1 ,�2 , . . .�M�. The parameters can be
constrained as appropriate, for example if state i and state j
have the same number of electrons we make the constraint
gi=gj. We assume the noise amplitudes are equal for each
state.

Existing HMM theory provides a number of useful ana-
lytical tools. From Eqs. �2� and �3� we can compute the like-
lihood p�y ��� of obtaining the sequence of observations y
given a set of model parameters �, which is useful for judg-
ing how well a model � fits the observed data y. For prac-
tical details of computing the likelihood function, see
Rabiner.9 Given a model � and a sequence of observations y,
we can determine the most likely sequence of states the sys-
tem was in at each time step using the Viterbi algorithm.9,14

That is, we can find the sequence of states x which maxi-
mizes the likelihood p�y �x ,��.

More interestingly, from a data set y we can find the set of
model parameters �̂ which best fit the data, in the sense of
maximizing p�y ���, using the Baum-Welch algorithm.8,9

The physics of the system are encapsulated in the transition
probabilities Aij, so those parameters we are especially inter-
ested in estimating. The Baum-Welch algorithm is a
hill-climbing algorithm: each iteration takes as input a set of
observations y and a set of model parameters �, and
computes a set of model parameters �� such that
p�y ����� p�y ���. Thus, beginning with an initial guess for
�, repeated applications of the Baum-Welch algorithm con-

verge to a maximum in the likelihood function. Finding the
true maximum-likelihood estimator �̂ of the model param-
eters such that p�y ��̂� is maximal depends on having a initial
guess for the model parameters which leads to the global
maximum and not a suboptimal local maximum. To obtain
the initial guesses for signal means and standard deviations,
we form a histogram of all the conductance data points and
fit them to a mixture of Gaussian functions. The initial guess
for the transition matrix is chosen arbitrarily. The Baum-
Welch algorithm can be repeated with multiple initial
guesses to increase the chance of finding the global maxi-
mum of the likelihood function; in our analyses so far this
has not been necessary. The maximum-likelihood estimator
�̂ has been shown to have advantageous properties such as
strong consisistency15 and asymptotic normality16 for the
type of model described here.

To illustrate the use of HMMs on charge sensor data we
present analysis of data from a previous quantum dot
experiment.17 In this experiment a lateral quantum dot was
defined by depletion gates in a two-dimensional electron gas
in a GaAs/AlGaAs heterostructure, shown in Fig. 2. The dot
was coupled to a single lead by a tunnel barrier. The Fermi
level of the lead was tuned so that one electron remains fixed
on the dot while a second electron may tunnel to and from
the dot. The transitions are observed by measuring the cur-
rent through a nearby QPC; an example of such a data set is
shown in Fig. 2. The chemical potential of the quantum dot
states can be changed relative to the Fermi level of the res-
ervoir by changing the voltage on the plunger gate, VP. As
the chemical potential of the quantum dot state is increased,
the occupancy of electron states in the reservoir that can
couple to the quantum dot decreases, decreasing the rate of
electron transitions onto the dot and increasing the transition
rate off of the dot. Assuming the quantum dot transitions
between just two states, state 1 having n=1 electrons and
state 2 having n=2, the transition matrix can be written

A = 	1 − pON pON

pOFF 1 − pOFF

 , �4�

where pON and pOFF are the probability of an electron
tunneling onto and off of the dot, respectively, at each
time step. For each value of VP, 50 s of QPC data were
taken at a sampling rate of 4096 Hz and the Baum-Welch
algorithm was used to estimate the transition rates
�ON/OFF=4096· pON/OFF.

The transition rates extracted by fitting the two-state
model to our data are shown in Fig. 3. These transition rates
were determined by fitting the QPC data to the purely math-
ematical HMM; next we fit them to a physical model. As-
suming electrons tunnel to and from the lead at a rate �0
multiplied by the fraction of occupied �unoccupied� states in
the lead for transitions on �off� the dot,

�ON/OFF = �0f	���� − �eVP�
kBT


 , �5�

where ��=�L−�D is the difference between the Fermi level
of the lead and the chemical potential of the dot at VP=0,
and � is the relative capacitance between the dot and gate P,
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which was determined from Coulomb diamond measure-
ments to be �=0.011 for this device. The electron tempera-
ture was T=0.5 K. f is the Fermi distribution function,
which represents the occupation of electron states in the lead.
The results of fitting the transition rates to this model are
shown in Fig. 3. The transition rates fit the thermal reservoir
model well except for the tail of the �OFF rates, which do not
go to zero as expected but level off at about 15–20 Hz. It
appears that there is an unexpected slow process by which
electrons leave the quantum dot that is independent of VP.

In this experiment it is not clear a priori that only two

states are participating in electron transitions. It is also pos-
sible that more than one quantum state with the same number
of electrons has a chemical potential level within the thermal
broadening of the lead and electrons can tunnel into any of
these states. If the transition rates of these states are signifi-
cantly different from one another HMM analysis should be
able to distinguish the states and determine the transition
rates. For the data sets presented here we applied different
HMMs containing an extra 1-electron state, an extra
2-electron state, and a four state model that had both. The
HMMs were constrained so that states with the same number
of electrons had the same average conductance measurement
�gi=gj if Xi and Xj have the same number of electrons�. In all
of these cases the results of such models did not fit the data
significantly better �as judged by the maximum likelihood�
than the simple two-state model. We conclude that there is
not sufficient evidence in these data to justify a model with
more than two states. Detection of “hidden” states may be a
useful application of HMMs; we hope to demonstrate this in
a future experiment.

Robustness against noise is a major advantage of the
HMM approach relative to previous analyses of charge sen-
sor data. Most previous studies applied a thresholding or
change-detection18 procedure to the signal to determine
when it transitioned from one conductance level to the next;
the timing of these events was then analyzed. In another
approach, Yuzhelevski et al.19 proposed a method for esti-
mating transition rates that is substantially similar to the one
presented here for the case of a system with two states and
two conductance levels, except that at each step of their al-
gorithm a definite state of the system is assigned to each data
point. The HMM performs better in the presence of noise
because it never assigns a definite state to the system. In-
stead, for each data point it computes a probability of the
system being in each state. The final transition rate estimates
are weighted averages over every available data point, in-
stead of being unweighted averages over a relatively smaller
number of transition events. To illustrate how errors in re-
moving noise can bias estimates of the transition rates, we
made several simulations of a Markov process and compared

FIG. 2. �Left� SEM image of the quantum dot structure used in the experiment described. Negative voltages on the metal gates deplete
the 2DEG �dark areas, below the gates�, forming a quantum dot in the center of gates M, P, R, and T. A tunnel barrier is formed between
gates M and T so that electrons can tunnel to/from the lead �dark area to the left�. A QPC is formed between gates R and Q so that the current
passing between them is sensitive to the presence of electrons on the dot. �Right� Example of charge sensor data set taken from the
experiment described in the text. The QPC conductance alternates between two distinct levels as electrons enter and leave the quantum dot.
In this case the upper level corresponds to n=1 electron on the quantum dot and the lower level corresponds to n=2.

FIG. 3. Electron transition rates �ON �closed circles� and �OFF

�open circles� determined from HMM analysis. The voltage VP is
varied in each plot, which changes the chemical potential for the
electron to tunnel onto the dot relative to the Fermi level of the lead.
Four different values of the voltage on gate M are shown:
�a� VM =−775 meV. �b� VM =−800 meV. �c� VM =−825 meV. �d�
VM =−850 meV. Lowering the voltage on gate M raises the tunnel
barrier to the lead and lowers the tunnel rate. Solid lines show fits to
a Fermi distribution as described in the text.
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the HMM estimates of the transition rates to two other tech-
niques, the results of which are shown in Fig. 4. Each simu-
lation is a two-state Markov process, with a noisy conduc-
tance measurement generated for each data point. The
transition probabilities were then estimated from the simu-
lated data using three different approaches: fitting to a HMM,
digitization by a change-detection algorithm,18 and digitiza-
tion by a threshold determined from a two-Gaussian fit to the

data. The transition rate estimated by each method is plotted
against the true transition rate used in the simulation. The
change-detection method underestimates transition rates be-
cause it tends to fail to detect transition events. The threshold
method tends to overestimate transition rates because it
counts spurious transitions. The HMM approach can estimate
transition rates with a signal-to-noise ratio as low as 3, and
could do better if longer data sets were used.

In conclusion, we believe that the approach to analysis of
charge sensor data described in this article will prove useful
in understanding the results of future quantum dot experi-
ments. It has already demonstrated superior robustness with
respect to noise than our previous data analysis techniques,
and holds the possibility of distinguishing multiple states
with the same number of electrons. We applied the technique
to experimental data and extracted the transition rates for
electrons to tunnel on and off the quantum dot. We tried
fitting the data to models with additional quantum states and
did not find compelling evidence for such states in this ex-
periment, but we believe such models will find use in the
future. It may be possible in future work to extend the tech-
nique to model the system using a quantum master equation,
allowing estimation of the density matrix of the system and
of coherent processes.
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FIG. 4. Results of applying various data analysis techniques to
100 simulated RTSs. The transition rates estimated by three differ-
ent analysis techniques are plotted against the true transition rate
that was used in the simulation. The analysis techniques are HMM
�closed circles�, digitization by a change-detection algorithm �Ref.
18� �open squares�, and digitization by a threshold determined from
a two-Gaussian fit to the data �open triangles�. The signal-to-noise
ratio is: �a� SNR=3. �b� SNR=5.
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