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Itinerant electrons in a two-dimensional kagome lattice form a Dirac semimetal, similar to graphene. When
lattice and spin symmetries are broken by various periodic perturbations this semimetal is shown to spawn
interesting nonmagnetic insulating phases. These include a two-dimensional topological insulator with a non-
trivial Z2 invariant and robust gapless edge states, as well as dimerized and trimerized “Kekulé” insulators. The
latter two are topologically trivial but the Kekulé phase possesses a complex order parameter with fractionally
charged vortex excitations. A charge-density wave is shown to couple to the Dirac fermions as an effective
axial gauge field.
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Certain physical observables in solids, such as the mag-
netic flux in a superconductor or the Hall conductance in a
quantum Hall liquid, are precisely quantized despite the fact
that the host material may contain a significant amount of
disorder. In all known cases this quantization phenomenon
can be attributed to the notion of topological order. The bulk
of such systems are characterized by a topological invariant
that is insensitive to microscopic details and robust with
respect to weak disorder. Recently, a class of topological
invariants has been established to characterize all time-
reversal �T� invariant band insulators in 2 and 3 spatial
dimensions.1–4 These invariants are of the Z2 variety and the
precisely quantized physical observable is the number of
gapless edge �surface� states modulo 2. Topological insula-
tors �TI� exhibit an odd number of edge �surface� states while
trivial insulators exhibit an even number, possibly zero. In
many ways the edge �surface� states of a TI behave as a
perfect metal and are predicted to exhibit various unusual
properties.5–7 They also show promise as possible compo-
nents of future quantum computers.8

Experimentally, HgTe/�Hg,Cd�Te quantum wells of cer-
tain width and composition have been identified as two-
dimensional �2D� topological “spin Hall” insulators with ro-
bust edge states.9 In addition, several three-dimensional
compounds involving bismuth have been so identified10,11

and several more have been predicted12,13 as likely candi-
dates. In view of these rapid developments it appears likely
that TIs might be a fairly common occurrence in nature.
Given their exotic properties and their potential for techno-
logical applications it is important to identify and study vari-
ous model systems that exhibit this behavior. Such theoreti-
cal understanding will aid experimental searches for
materials and help understand their unusual properties.

In this Brief Report, we advance the above agenda by
describing a class of two-dimensional topological insulators
on the kagome lattice, Fig. 1�a�. Although the properties of
spin systems on the kagome lattice have been extensively
studied, relatively little attention has been paid to the non-
magnetic insulating phases of itinerant electrons. In what fol-
lows we demonstrate, both analytically and numerically, that
a simple tight-binding model of electrons on the kagome
lattice at both 1

3 and 2
3 filling becomes a topological insulator

upon inclusion of the spin-orbit �SO� coupling. Other T in-

variant insulating phases include the dimerized and a trimer-
ized band insulators; both have trivial Z2 invariants but the
latter possesses a complex order parameter with vortices that
carry fractional charge, in analogy to what happens in the
Kekulé phase of graphene.14 We demonstrate that a charge-
density wave �CDW� modulation of the on-site energies does
not produce a spectral gap but instead generates terms that
couple as a U�1� gauge field to the low-energy Dirac fermi-
ons at 1

3 filling. Consistent with T invariance, the gauge field
couples with opposite sign to the two species of Dirac fer-
mions, thus furnishing a concrete realization of an axial
gauge field in a solid state system.

We now proceed to substantiate the above claims. Our
starting point is the tight-binding model

H0 = − t �
�ij��

ci�
† cj�, �1�

where ci�
† creates an electron with spin � on the site ri of the

kagome lattice and �ij� denotes nearest neighbors. In mo-
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FIG. 1. �Color online� �a� Kagome lattice is a triangular Bravais
lattice with a three-point basis forming a shaded triangle. �b� The
first Brillouin zone with the nodal points K� and time-reversal
invariant momenta �n marked. �c� The tight-binding band structure
Eq. �3�. �d� In the dimerized phase hopping amplitude along the
thick �thin� bonds in a1 direction is t+�1 �t−�1�. In the spin-orbit
phase spin-up electrons hop between second neighbor sites with
amplitude i� when moving along the arrow, −i� against the arrow.
For spin-down electrons the arrows are reversed. �e� Trimerized
“Kekulé” phase.
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mentum space Eq. �1� becomes H0=�k��k�
† Hk

0�k� with
�k�= �c1k� ,c2k�,c3k��T and

Hk
0 = − 2t� 0 cos k1 cos k2

cos k1 0 cos k3

cos k2 cos k3 0
� . �2�

The index l=1,2 ,3 in clk� labels the three basis sites in the
triangular unit cell; a1= x̂, a2= �x̂+�3ŷ� /2, and a3=a2−a1 de-
note the three nearest-neighbor vectors, and kn=k ·an.

The spectrum of Hk
0, Fig. 1�c�, consists of one flat band

Ek
�3�=2t and two dispersive bands

Ek
�1,2� = t	− 1 � �4Ak − 3
 , �3�

with Ak=cos2 k1+cos2 k2+cos2 k3. Bands 1 and 2 touch at
two inequivalent Dirac points K�= ��2� /3,0� located at the
corners of the hexagonal Brillouin zone �BZ�, Fig. 1�b�.
Bands 2 and 3 touch at the center of the BZ.

At 1
3 filing the lowest band is filled and the low-energy

electronic excitations of H0 resemble those of graphene. To
produce an insulator we now seek terms bilinear in the elec-
tron operators that lead to the formation of a gap at the Dirac
points. First, we focus on perturbations that do not further
break the translational symmetry of H0 and preserve T. We
have been able to identify two such terms: �i� a spin-
independent lattice dimerization and �ii� a spin-orbit interac-
tion induced hopping between the second neighbors.1,15,16

The former term breaks the inversion symmetry of the lattice
while the latter breaks the SU�2� spin symmetry.

The dimerization is described by Hdim=−��ij���tijci�
† cj�,

where �tij = ��n describes an alternating pattern of bond
hopping integrals along the three principal spatial directions
as illustrated in Fig. 1�d�. In k space this becomes

Hk
dim = 2�0 i�1 sin k1 i�2 sin k2

0 i�3 sin k3

0
� , �4�

for both spin projections. �The lower triangle of the matrix is
understood to be filled so that the matrix is hermitian.� The
full expression for the spectrum of Hk

0 +Hk
dim is complicated

but it is easy to see that a gap 	dim�2��� with �=�1+�2
+�3 exists at the Dirac points.

The spin-orbit term takes form

HSO = i
2�

�3
�

��ij��
�

�dij
1 � dij

2 � · �
�ci

† cj�, �5�

where � is the spin-orbit coupling strength, dij
1,2 are nearest-

neighbor vectors traversed between second neighbors i and j,
and � is the vector of Pauli spin matrices. Since dij

1,2 all lie in
the xy plane in our 2D model, only �3 appears in Eq. �5� and
the Hamiltonian decouples for the two spin projections along
the z axis. The pattern of spin-orbit induced second neighbor
hoppings then resembles the Haldane model15 and is illus-
trated in Fig. 1�d�. In k space one obtains

Hk
SO = � 2��0 i cos�k2 + k3� − i cos�k3 − k1�

0 i cos�k1 + k2�
0

� , �6�

where the +�−� sign refers to spin-up �-down� electrons.
Once again, although the full spectrum is complicated it is
easy to deduce that a gap 	SO=4�3��� opens up at the Dirac
points. We remark that HSO opens a gap also between bands
2 and 3 while Hdim does not.

In order to develop some intuition for these insulating
phases it is useful to examine the form of the low-energy
Hamiltonians governing the excitations in the vicinity of the
two Dirac points. This is obtained by linearizing Hk=Hk

0

+Hk
dim+Hk

SO near K� and subsequently projecting onto the
subspace associated with bands 1 and 2. Assuming that both
� and � are nonzero we obtain four independent Dirac
Hamiltonians,

hk�
 = v�3kx + 1ky� + 2m�
, �7�

labeled by the spin index 
=� and “valley” index �=�.  j
are Pauli matrices acting in the space spanned by the degen-
erate eigenstates of HK+

0 and HK−

0 , v=�3t is the Fermi veloc-
ity and

ml
 = 2�3
� + �� �8�

are Dirac masses whose relative signs define two distinct
phases of the system. When ����2�3��� dimerization domi-
nates and the Dirac masses at K+ and K− exhibit opposite
signs, independent of spin. When ����2�3��� the SO inter-
action dominates and the mass signs at the two Dirac points
are the same for a given spin but differ for the opposite spin
projections. The two phases meet at a pair of critical lines
���=2�3���. When crossing these lines, two out of four gaps
close and the associated Dirac masses change signs.

To understand the significance of the mass signs consider
a boundary between the two phases, running along, say, the
x=0 line in real space. For concreteness and simplicity we
take ��0, �=0 in the left half-plane and �=0, ��0 in the
right half-plane. Focusing first on the Dirac point K+, we
note that the spin-up mass m++ remains positive for all x,
suggesting a fully gapped spectrum everywhere. The spin-
down mass, however, necessarily undergoes a sign change
across the x=0 boundary. Such a soliton mass profile is
known to produce massless states17 in the associated Dirac
equation, localized near the boundary. Specifically, Dirac
equation

	v�− i3�x − i1�y� + 2m�x�
��x,y� = E��x,y� �9�

with m�x→ ���= �m0 has a gapless solution

�k�x,y� = 1

1
�eikye−1/v�0

xm�x��dx�, �10�

extended along the boundary but localized in the transverse
direction, with linearly dispersing energy Ek=vk. Similar
analysis leads to a gapless state at node K−, but now for spin
up and with Ek=−vk.

A pair of spin filtered, oppositely dispersing gapless edge
states is a hallmark of the topological spin-Hall insulator.1–3
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The fact, apparent from the above construction, that these
edge states depend only on the bulk band structure of the two
insulators and not on the details of the edge indicates their
topological origin. It follows that one of these phases must
be a topological insulator. It is easy to see that the dimerized
phase is smoothly connected to a trivial insulator. Consider
increasing all �’s continuously until �1=�2=�3= t. At this
point the kagome lattice breaks down into a collection of
disconnected elementary triangles. This, clearly, is a trivial
insulator. The spin-orbit phase, on the other hand, cannot be
smoothly deformed into a trivial insulator and we show be-
low by an explicit calculation that it indeed possesses a non-
trivial Z2 invariant.1–3

When a crystal possesses inversion symmetry the Z2 to-
pological invariant � is easy to evaluate. According to Ref.
18 � is related to the parity eigenvalues �2m��i� of the
2 m-th occupied energy band at the four T-invariant mo-
menta �i. Our system is inversion symmetric when all �’s
vanish and so we can use this method to find �. If we select
site 1 of the unit cell as the center of inversion then the parity
operator acts as P	�1�r� ,�2�r� ,�3�r�
= 	�1�−r� ,�2�−r
−2a1� ,�3�−r−2a2�
 on the triad of the electron wave func-
tions in the unit cell labeled by vector r. In momentum space
the parity operator becomes a diagonal 3�3 matrix Pk
=diag�1,e−2ia1·k ,e−2ia2·k�. The four T-invariant momenta in
our system are marked in Fig. 1�b� and can be expressed as
�i=��x̂+ ŷ /�3�ni /2+��−x̂+ ŷ /�3�mi /2 with ni ,mi=0,1. It
is straightforward to obtain the eigenstates of H�i

numeri-
cally and determine the parity eigenvalues of the occupied
bands. We find that three �’s are positive and one is negative.
Which of the four �’s is negative depends on the choice of
the inversion center but the product �i���i�= �−1�� is inde-
pendent of this choice and determines the nontrivial Z2 in-
variant �=1, confirming our hypothesis that the spin-orbit
phase at 1

3 filling is a topological insulator. Similar consider-
ations for 2

3 filling also yield �=1.
When the dimerization is present the inversion symmetry

is broken and we must use the more general method of Ref.
1 to find �. This relies on counting the number of pairs of
first order zeros of the quantity P�k�=Pf�umk���unk�, where
umk is the m-th eigenstate of Hk, � is the time-reversal op-
erator and the Pfaffian is taken over occupied bands m and n.
We obtain umk by the numerical diagonalization of Hk and
use it to straightforwardly evaluate P�k�. We find that the
latter contains exactly one pair of first order zeros �located at
K�� in the SO phase when ����2�3���, indicating �=1.
When ����2�3��� the zeros disappear and the system be-
comes a trivial insulator with �=0.

To further support our identification of the SO phase as a
topological insulator we have performed numerical diagonal-
izations of the lattice Hamiltonians H0+Hdim and H0+HSO
using the strip geometry. In accord with the above arguments
we find a pair of robust spin-filtered gapless states associated
with each edge in the SO phase, Fig. 2�a�, traversing the gap
between bands 1 and 2. A similar pair of states traverses the
gap between bands 2 and 3, confirming that the SO phase is
a topological insulator at 1

3 and 2
3 filling. In the dimerized

phase there are generically no such robust edge states, Fig.
2�b�, although for certain values of parameters and types of

edges gapless edge states can occur. The latter mirror the
edge states found along certain types of edges in graphene19

but are not topological in character.
In graphene, a staggered on-site potential is known to

open up a gap at the Dirac points.20 We thus investigate the
effect of the analogous CDW term,

Hk
CDW = diag��1,�2,�3� , �11�

on the kagome semimetal, where �l represent the on-site
potentials of the l=1,2 ,3 basis sites of the lattice, indepen-
dent of spin. Repeating the procedure leading to Eq. �7� we
find the low-energy Dirac Hamiltonians

hk�
 = v	3�kx − Ax
�� + 1�ky − Ay

��
 + 1� , �12�

for node � and spin 
, with �= ��1+�2+�3� /3 and

Ax
� = �2�3 − �1 − �2��/6�3t ,

Ay
� = ��1 − �2��/6t . �13�

The CDW couples to the Dirac fermions as a gauge field.
Owing to the factor � in Eq. �13�, the gauge potential has the
opposite sign at the two Dirac points. Consequently, A must
be thought of as an axial gauge field. This is consistent with
the fact that the CDW does not break T.

If we allow for additional fermion bilinears that break the
translational symmetry of H0 then many other insulating
phases become possible. Of these, we briefly mention but
one that realizes the analog of the Kekulé phase in
graphene.14 This occurs for a perturbation with a wave vector
spanning the two nodal points K+ and K− in Fig. 1�b�. In the
linearized theory such a perturbation leads to a Dirac mass
that is off-diagonal in the space of nodal Hamiltonians and is
in general complex-valued. In graphene, vortices in such a
complex mass are known to carry a fractional charge �e /2
�assuming spinless electrons�14 and obey fractional exchange
statistics.21 On the kagome lattice one possible realization of
such a perturbation is the “trimerization” depicted in Fig.
1�e�. The unit cell contains nine atoms and there are three
distinct degenerate ground states related to the one depicted
by translations through 2a1 and 2a2. We have verified that
this perturbation indeed opens up a gap at the Dirac points
and the three patterns produce off-diagonal Dirac masses
with different complex phases. In analogy with the domain
wall in the trimerized one-dimensional chain22 we expect the

E
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FIG. 2. Edge states in the lattice model for �a� spin orbit and �b�
dimerized insulator. A strip of width Ny =16 unit cells with open
boundary conditions along y and infinite along x is used with � / t
=0.1 and �1 / t=0.1 for �a� and �b�, respectively.
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vortex in the complex mass to bind fractional charge �e /3,
�2e /3. This is also suggested by the Goldstone-Wilczek
type counting argument23 generalized to two spatial
dimensions24 that can be constructed for the kagome
lattice.25 We leave the details of this and other interesting
related problems, such as the exchange statistics of these
objects, to future study.

A question naturally arises as to the experimental realiza-
tion of a system of itinerant electrons on the kagome lattice
that would support the exotic phenomena predicted
above. Copper atoms in ZnCu3�OH�6Cl2, known as
Herbertsmithite,26 and iron atoms in Jarosites,27 provide
good model Heisenberg kagome antiferromagnets. The
kagome lattice has also been argued to play a role in trans-
port and magnetic properties of layered cobalt oxides such as
NaxCoO2.28 We hope that our theoretical findings will pro-
vide motivation for future experimental searches into pos-
sible realizations of the kagome lattice with itinerant elec-
trons close to 1

3 or 2
3 filling. We note that it might be possible

to artificially engineer Hamiltonian Eq. �1� by modulating
the two-dimensional electron gas with a periodic potential

with kagome symmetry, as recently demonstrated for “artifi-
cial graphene.”29

When the basic tight-binding Hamiltonian is at hand the
additional terms required to form an insulator can come
about in various ways. In a crystal the SO coupling arises
naturally. In graphene the relevant coupling strength is too
small to open up a significant gap but in a lattice made of
heavier ions � will be larger. The perturbations considered
above can also arise as interaction-driven instabilities of itin-
erant electrons on the lattice. For the Dirac semimetal at 1

3
filling a finite interaction strength U �of order t� is needed to
open up a gap.30 At 2

3 filling, however, the band crossing is
quadratic and the instability toward the insulating phase oc-
curs at infinitesimal �repulsive� interaction,31 making such
system a promising candidate for a 2D topological insulator.
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