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We have studied the normal-to-superconducting phase transition in optimally doped YBa2Cu3O7−� in zero
external magnetic field using a variety of different samples and techniques. Using dc transport measurements,
we find that the dynamical critical exponent z=1.54�0.14, and the static critical exponent �=0.66�0.10 for
both films �when finite-thickness effects are included in the data analysis� and single crystals �where finite-
thickness effects are unimportant�. We also measured thin films at different microwave frequencies and at
different powers, which allowed us to systematically probe different length scales to avoid finite-thickness
effects. dc transport measurements were also performed on the films used in the microwave experiments to
provide a further consistency check. These microwave and dc measurements yielded a value of z consistent
with the other results, z=1.55�0.15. The neglect of finite-thickness, finite-current, and finite-frequency effects
may account for the wide ranges of values for � and z previously reported in the literature.
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I. INTRODUCTION

The high critical temperatures, large penetration depths,
and short coherence lengths of high-temperature supercon-
ductors make it possible to measure critical fluctuations in
these materials, in contrast to conventional super-
conductors.1,2 In spite of nearly two decades of work, how-
ever, there is no experimental consensus on the critical ex-
ponents of the superconducting phase transition in zero mag-
netic field. By performing both dc and microwave
measurements on thin films, and dc measurements on single
crystals, and doing careful analysis of the data that properly
accounts for finite size, current, and frequency effects, we are
able to provide consistent values for the exponents.

There are two fundamental parameters which characterize
a second-order phase transition such as the superconducting
to normal transition.1 The first is the temperature-dependent
correlation length, ��T�, which is close to the transition tem-
perature Tc varies as

��T� � �T/Tc − 1�−�, �1�

where � is the static critical exponent. A second parameter is
the relaxation time ��T�, which close to Tc varies as

� � �z � �T/Tc − 1�−z�, �2�

where z is the dynamic critical exponent.
It is generally accepted that, theoretically, ��0.67 in a

superconductor in zero magnetic field, since the phase tran-
sition belongs to the three-dimensional �3D� XY universality
class.3 The theoretical situation for the dynamical exponent z
is less certain. Fisher et al.1 argue that the number of Cooper
pairs is not conserved, so that model A dynamics,3 which
give z=2, should apply. Other theoretical considerations

yield z=1.5,4 similar to model E dynamics. Lidmar5 and
Weber6 present Monte Carlo simulations that suggest z
�1.5.

The exponent � can be determined experimentally from a
number of static experiments. In zero field, measurements of
penetration depth,7,8 magnetic susceptibility,9–11 specific
heat,9,12 and thermal expansivity13 largely agree that the
static critical exponent ��0.67, and indicate that the phase
transition in zero field belongs to the 3D-XY universality
class. �Note, however, there are some measurements which
yield different results.9,14�

In principle dc conductivity measurements, which depend
on both the statics and the dynamics of the order parameter
near Tc, can determine both the static critical exponent � and
dynamical critical exponent z. The exponents � and z are
expected to be universal but values extracted from conduc-
tivity measurements are not consistent. For example, dc con-
ductivity measurements yield a wide range of values for
critical exponents: �=0.63–1.2 and z=1.25–8.3.15–21

ac measurements can determine both the real and imagi-
nary parts of the fluctuation conductivity, providing another
probe of critical dynamics.1,18,22,23 Measurements over
a broad frequency range allow one to probe the dynamical
behavior of the system and directly measure the fluctuation
lifetime.18 These experiments are difficult and seldom done,
and the available results are inconsistent, with values
of z ranging from 2 to 5.6. Booth et al. investigated
the frequency-dependent microwave conductivity of
YBa2Cu3O7−��YBCO� films above Tc and obtained z
=2.3–3.18 Nakielski et al. measured the conductivity of
YBCO at low frequency ��2 GHz� and obtained z�5.6.24

Osborn et al. did a similar experiment on Bi2Sr2CaCu2O8+�

and obtained z�2.25 For an optimally doped
La2−xSrxCuO4�LSCO� film, Kitano et al. found that their data
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were consistent with the 3D-XY model with diffusive dy-
namics, ��0.67 and z�2 in a certain temperature range.26

Although the critical exponents � and z should be univer-
sal, we see that there is at present no consensus in the litera-
ture as to their values for the zero-field transition in the cu-
prate superconductors. In this paper we report the results of a
variety of complimentary experiments which yield indepen-
dent determinations of the critical exponents. In Sec. II, we
discuss dc transport measurements on both thin films and
thick single crystals. We present different ways to infer each
exponent from measurements and show how finite-thickness
effects in the films can confuse interpretation of the data in
the limit of small currents. We also show that choice of the
proper range of current can avoid the finite-thickness effects
in films and show how application of a small magnetic field
allows the determination of � in both crystals and films.

In Sec. III, we discuss microwave measurements on thin
films. Just as with dc measurements, microwave measure-
ments require a nonzero current density. How the applied
microwave current-density affects the measured response has
not been systematically addressed. Recently Sullivan et al.
argued that a finite-thickness effects at low-current density
was the reason for previous inconsistent results in dc
measurements.19 The question of whether a finite-thickness
effect influences the ac measurement and the extracted criti-
cal exponents, as in dc measurements, inspired us to study
the power dependence of the microwave fluctuation conduc-
tivity. We find that several length scales play a role in ac
conductivity measurements and only after their effects are
properly accounted for can the underlying critical dynamics
be understood. As a further check, after completing the mi-
crowave measurements, we repatterned the same samples
and performed dc measurements.

When finite-size effects are properly accounted for, we
find that all of our results are consistent. As discussed in
detail below, we find � is 0.66�0.10 and z is 1.55�0.15.

II. dc MEASUREMENTS ON SINGLE CRYSTALS AND
FILMS

Our crystals are grown by a flux method using Y2O3 cru-
cibles to ensure crystal purity.27,28 The films are prepared by
the pulsed-laser deposition technique at 850 °C and 150
mbar oxygen pressure on SrTiO3 substrates.29,30 Transport
measurements were carried out using the standard four-probe
method. The currents were applied along the ab plane for the
films and along the a axis for the crystals. All connections to
the sample are made through double T low-pass filters to
reduce noise.31 We measure the samples inside a cryostat
covered with a �-metal shield so that the residual magnetic
field is less than 2	10−7 T. At 96 K, the resistivity of the
crystal is around 70 �
 cm and the resistivity of the film is
around 90 �
 cm.

In theory, log-log plots of electric field E vs current den-
sity J isotherms above Tc have positive curvatures and dis-
play nonlinearities in the high currents, as shown schemati-
cally in Fig. 1�a�.

As Tc is approached from above, in the limit of J→0
�Ref. 1�

E

J
� ��D−2−z�. �3�

Thus, in a log�E� vs log�J� plot, isotherms above Tc exhibit
ohmic behavior—a slope of one—at low currents. The iso-
therms below Tc have negative curvatures and display van-
ishing linear resistance �R→0 as J→0�. At T=Tc, the criti-
cal isotherm is expected to show a power-law behavior1

E � J�z+1�/�D−1� �4�

which is a line with a slope greater than one on a log�E� vs
log�J� plot.

In Fig. 2�a� we show selected E vs J curves in a log-log
plot for an untwinned YBCO single crystal. From the figure,
all isotherms above the dashed line �triangles� have positive
curvatures and have ohmic response in the limit of zero cur-
rent, and all isotherms below the dashed line �squares� have
negative curvatures and display vanishing linear resistivity.
We can verify this curvature by fitting the E−J curves to a
second-order form of log�E�=a0+a1 log�J�+a2�log�J��2,
where we use the sign of a2 to indicate the curvature of each
isotherm. We find that a2 is positive above 93.838 K and
negative below 93.836 K.32 Thus, from Fig. 2�a� we find
Tc=93.837�0.003 K. The dashed line in Fig. 2�a� separates
the superconducting and normal states of the sample and the
high-current part can be fit to E�J1.22�0.10. From Eq. �4�
�using D=3�, we find

z = 1.44 � 0.2. �5�
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FIG. 1. Schematic plots of electric field E versus current density
J. �a� E-J plot in log-log scale and �b� d log10�E� /d log10�J� vs J in
semilog scale.
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Another way to evaluate the power-law behavior is the
� � log E

� log J �T vs J plot.29 From Eq. �4�, at the transition tempera-
ture Tc

	 � log E

� log J



Tc

=
z + 1

D − 1
�6�

thus, the critical isotherm is a horizontal line parallel to the J
axis in a derivative plot. The critical isotherm separates the
monotonically increasing isotherms above Tc and the mono-
tonically decreasing isotherms below Tc in the schematic Fig.
1�b�. The derivative plot generally displays the phase transi-
tion more clearly than a basic plot of E vs J.

In Fig. 2�b�, we show a derivative plot of the data shown
in Fig. 2�a�. The dashed line in Fig. 2�b� separates the normal
and superconducting phases. The intercept of the dashed line
is 1.25�0.10 and is expected to be �z+1� /2 from Eq. �6�.
From the derivative plot, we find

z = 1.50 � 0.20, �7�

which is nearly identical to the result obtained from Fig.
2�a�, using Eq. �4�. Figure 2�b� also qualitatively shows the
change in sign of a2 discussed above.

The exponent � can be found from the low-current ohmic
behavior RL above Tc by combining Eqs. �1� and �3� �Ref. 1�

RL � �T/Tc − 1���z−1�. �8�

The slope of the log�RL� vs log�T /Tc−1� plot in Fig. 3, com-
bined with Eq. �8�, determines �. We find

� = 0.71 � 0.30 �9�

from Fig. 3.
We can apply a perpendicular magnetic field and look at

the transition in finite field. According to Ref. 1, the differ-
ence between the critical temperature Tc and the melting
temperature Tm�g��H� is

Tc − Tm�g��H� � H1/2�, �10�

where � is the zero-field static exponent. Equation �10� is
expected to be true for clean crystals, where the transition is
a first-order melting �m� transition, as well as for disordered
films, where the transition is a glass �g� transition. We show
Tc−Tm�H� vs. �0H in Fig. 4�a� and find

� = 0.68 � 0.10 �11�

from a power-law fit. This result is consistent with the
3D-XY model and is also consistent with the result obtained
from experiments using Eq. �8�.

In Fig. 5�a�, we show the E−J curves for a 150-nm-thick
YBCO c-axis-oriented optimally doped film. The isotherms
differ by 0.05 K from 92.075 to 91.225 K. Unlike Fig. 2�a�,
we cannot find a single straight line in Fig. 5�a� that sepa-
rates the isotherms into two groups which are either concave
or convex exclusively. To help find the true critical isotherm,
we again use the derivative plot,29 where the critical isotherm
ideally will correspond to a horizontal straight line, as in
Figs. 1�b� and 2�b�. However, in Fig. 5�b�, there is no hori-
zontal isotherm, and there are isotherms monotonically de-
creasing above 2	107 A /m2, and also monotonically in-
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FIG. 2. �a� The electric field E versus current density J for an
untwinned YBCO single crystal. The dashed line separates the nor-
mal and superconducting phases. The isotherms above the dashed
line exhibits ohmic behavior at low-current density. The isotherms
below the dashed line display the vanishing linear resistivity. Iso-
therms are separated by 3 mK. �b� Derivative plot of the data in Fig.
2�a�. The dashed line separates the normal and superconducting
phases. The crossing of the dashed line with isotherm of 93.839 K
is due to the noise. Both plots indicate z�1.5.
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FIG. 3. Power law fit to Eq. �8� of the ohmic response of the
isotherms just above the transition temperature Tc. Because RL

� �T /Tc−1���z−1�, we can use this line to find �. By setting Tc

=93.837�0.003 K and z=1.5�0.20, we get �=0.71�0.30.
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creasing below 2	107 A /m2. So, if the experimental setup
were to allow us to measure even smaller voltages, we would
expect all of these isotherms would bend down toward 1
�ohmic behavior� in the derivative plot at smaller current
densities.

The cause of this behavior is most likely finite-size
effects.19,33 Below the transition temperature, thermal fluc-
tuations take the form of vortex loops.34 As discussed in the
Appendix, vortex loops with length scales of order

LJ �� kBT

2�0J
�12�

are probed by current density J.1,33 The loops with length
scale smaller than LJ will shrink and cause no dissipation. At
high-current density, such that LJ is less than the thickness of
the sample d, the vortex loops probed in the experiment are
still 3D like. However, at low-current density, such that LJ
�d, the size of the vortex loops probed will be limited by the
thickness of the sample and vortex antivortex pairs will be
probed. This will lead to a nondiverging energy barrier caus-
ing ohmic behavior even below the bulk transition tempera-
ture. When LJ is equal to 150 nm, the thickness of the film
used to produce the data in Fig. 5, the crossover current
density is on the order of 5	106 A /m2, which is close to
where the isotherms bend towards ohmic behavior in Fig.
5�b�.

Because of the finite-size effects, the conventional method
picks an incorrect critical isotherm and exponent, contribut-
ing to the inconsistent results from previous transport experi-
ments on high-Tc films. However, high-current data are not
affected by finite-size effects, and we can extract the Tc and

z from the high-current regime.19 If we only look at the high-
current regime in Fig. 5�b�, it looks very similar to the sche-
matic derivative plot �Fig. 1�b�� and the actual derivative plot
of crystal data �Fig. 2�b��. The dashed line in Fig. 5�b�,
which coincides in the high-current regime with the isotherm
of 91.825 K, separates the two phases of the film. The tran-
sition temperature determined from the high-current regime
is Tc=91.825�0.025 K and the intercept of the dashed line
is 1.27�0.07. According to Eq. �6�, from the high-current
data

z = 1.54 � 0.14 �13�

which agrees with the result from the crystal data. In addi-
tion, in our other c-axis-oriented YBCO films with the thick-
ness d ranging from 100 to 300 nm, we get consistent values
of z ranging from 1.43 to 1.6.35 In passing, we note that one
should be cautious about the adverse effect of joule heating
when the measurement is to be done in the high-current re-
gime to avoid the finite-size effect. In this regard, while the
result reported in Ref. 36 is interesting in that it pioneered
I-V measurements on high-Tc nanostrips, the extracted criti-
cal exponents were likely to be inaccurate because of the
difficulty of avoiding Joule heating in nanostrips at high cur-
rents. In contrast, we have tested heating in our samples by
using the low-frequency technique of Koch et al.37 and we
have found that heating does not affect the dc data in
samples similar to those measured in this paper at current
densities less than �109 A /m2.38

We are not aware of any way to remove finite-size effects
that will allow us to use Eq. �8� to determine � in films.
Instead, we use Eq. �10� which is also applicable to the
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FIG. 5. �a� E-J isotherms for a 150 nm YBCO film in zero
magnetic field. The spacing between isotherms is 50 mK. �b� The
derivative plot of some selected isotherms from �a�. At low-current-
density regime, the phase transition is obscured by finite-size ef-
fects. The spacing between isotherms is 100 mK.

FIG. 4. �Color online� �a� Tc−Tm vs �0H of an untwinned
YBCO single crystal. Here, as Tc−Tm�H��H1/2�, we can find �
from this line without assuming a value for z, and find �
=0.68�0.10. The inset is the melting line for the crystal up to 7 T.
�b� A similar plot of Tc−Tg vs �0H for a YBCO thin film �d
�150 nm�. From this curve we find �=0.63�0.10. The inset is the
glass transition line for the film up to 6.5 T.
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vortex-glass transition. By applying a magnetic field we in-

troduce a magnetic length scale lB��0

B , which is smaller
than the film thickness for B�0.1 T, effectively removing
the finite-size limitation in the film. We show Tc−Tg�H� vs H
in Fig. 4�b� and find

� = 0.63 � 0.10. �14�

It is important to note that there is more disorder in the
film than in the crystal. Besides the pointlike oxygen-
vacancy disorder as in the untwinned crystals, there are other
kinds of disorder existing in the film such as twin boundaries
and lattice mismatch caused by the substrate. However, the
similar values of z and � for the untwinned crystal and the
film argue that the universality of the phase transition of
high-Tc materials is not affected by disorder.

Hence, taking into account results of dc transport mea-
surements on both thin films and thick single crystals, we
obtained the critical exponents

z = 1.54 � 0.14, �15�

� = 0.66 � 0.10. �16�

III. MICROWAVE MEASUREMENTS ON THIN
FILMS

The samples we used for microwave measurements are
YBCO films �d=100–300 nm thickness� deposited via
pulsed-laser deposition on NdGaO3 and SrTiO3 substrates.
ac susceptibility showed Tc of the films around 90 K with
transition widths about �Tc=0.2 K. The resistivity of the
films is about 120 �
 cm at 2 K above Tc. Using a Corbino
reflection technique, we measured the complex resistivity �̃
=�1+ i�2 of the samples over a wide frequency range. The
measured complex resistivity is converted to conductivity
and the mean-field contribution, as determined from the dc
resistivity measured from room temperature down to the
lowest temperature in the same experiment, is
removed.18,39,40 The process is similar to the method de-
scribed in18 to obtain the fluctuation conductivity � fl.

41

A. Frequency-dependent fluctuation conductivity
and power dependence

According to Fisher-Fisher-Huse �FFH�, in zero magnetic
field when the current density is small the complex ac fluc-
tuation conductivity should scale as1

� fl�T,�� � �z+2−DS����� . �17�

In Eq. �17�, � is the correlation length and � is the fluc-
tuation lifetime. The function S� is a universal scaling func-
tion above �below� Tc, which should be the same for all
members of a given universality class. As temperature ap-
proaches Tc, both � and � will diverge according to Eqs. �1�
and �2�.

The scaling functions behave as S+�y�→ real constant and
S−�y�→1 / �−iy� for y→0, reflecting the low-frequency be-
havior above and below Tc, respectively. As y→�, repre-

senting T→Tc, S+�y��S−�y�� c̃y�D−2�/�z−1� where c̃ is a com-
plex constant and D is the dimensionality of the system.1,22

The complex fluctuation conductivity can be written as
� fl= �� fl�ei�� so both the magnitude and phase are predicted
to scale

�� fl� � �z+2−D�S����z�� , �18�

�� = ����z� . �19�

where � is the phase the of the scaling function S�. At Tc,
one expects22

�� fl� � �−�z+2−D�/z �20�

and

�� =
�

2
�z + 2 − D�/z . �21�

Fig. 6 sketches the expected Fisher-Fisher-Huse ac scaling
behavior of the magnitude and phase of fluctuation conduc-
tivity near Tc.

1,22 Fig. 7 shows the measured complex fluc-
tuation conductivity vs frequency for various temperatures at
two different microwave powers. These data display signifi-
cant and systematic deviations from the expected FFH scal-
ing sketched in Fig. 6. At high frequency, both the magnitude
and phase of the fluctuation conductivity look similar to FFH
theory. However, as frequency decreases the measured mag-
nitude of the fluctuation conductivity below Tc saturates, in-
stead of bending up. All of the phase isotherms below Tc
tend toward zero, indicating ohmic response, instead of ap-
proaching � /2 at low frequency. These deviations are quali-
tatively similar to the low-current-density deviations of E vs
J in dc measurements seen in Fig. 5.19

Fig. 7 also shows that the applied microwave power af-
fects the measured fluctuation conductivity, particularly at
low frequencies. As frequency decreases, the higher applied
microwave power decreases the magnitude of the fluctuation

�

�
FIG. 6. Schematic plots of �a� Magnitude �� fl� vs � in log-log

scale and �b� phase �� vs � in semilog scale at various tempera-
tures around Tc, based on Fisher-Fisher-Huse ac scaling �Ref. 1�.
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conductivity and depresses the phase. These phenomena can-
not be explained by the ac scaling equation, Eq. �17�, and we
need to look at the full version of the FFH dynamic scaling
function, which can be written in the following form with
assumed dimensionality D=3 �Ref. 1�

E

J
= �1−z���J�2,��z,H�2, . . .� . �22�

where E is the electric field.
Since the critical point is located in the limit of zero mag-

netic field H, current density J, and frequency �, increased
applied current should drive the system further away from
the transition and thus into the ohmic regime. In our mea-
surement, the magnetic field term H�2 can be ignored. The
two remaining terms are J�2 and ��z. Qualitatively, at low
frequency, ��z is small so that the applied power term, J�2,
has more effect on the fluctuation conductivity.

To illustrate the effect of different powers, �� fl� vs micro-
wave power at different frequencies is plotted in Fig. 8. The
power dependence of �� fl� clearly varies with frequency. At
low frequencies �60, 80, and 100 MHz�, �� fl� vs incident
power increases first as power increases �Region I� and then
saturates �Region II�. At very high power, �� fl� decreases
again �Region III�. At high frequencies ��0.5 GHz� the
fluctuation conductivity is almost power independent.

The important features in Fig. 8 are that large applied
power affects the fluctuation conductivity and that even
small power depresses the fluctuation conductivity at low

frequency. While the high-frequency and high-power data in
Fig. 8 are consistent with Eq. �22� and thus can be explained
by FFH scaling theory,1,22,23 the low-power low-frequency
behavior is not consistent.

The similarity between this low power and low-frequency
deviation and the low-current-density deviation in dc con-
ductivity measurement suggests the presence of a “probed
length scale” for a finite frequency. As discussed in connec-
tion with Eq. �12� and in the Appendix, when a current with
density J is applied, vortex loops �with large r� will “blow
out” to infinite size �producing dissipation�. Vortex loops
with small r shrink and annihilate �with no dissipation�. A
current-density-induced length scale LJ, given in Eq. �12�
separates vortex loops into two categories, depending on
their ultimate fate.

The shrinking of a loop takes time. This time depends on
the size of the loop, thus relating the size of a vortex loop to
a time scale. In ac measurements, small frequency means
that large length scales are probed and vice versa. By gener-
alizing the order-parameter relaxation-time scale in time-
dependent Ginzburg Landau theory42 one can construct a
frequency-dependent length scale

L� = 	 ckBTc

��

1/z

��0� , �23�

where c is a constant of order 1 and ��0� /��T�= �T /Tc−1��.
In ac conductivity measurements, the probed length scale

should be determined by both frequency and current density.
Since the smaller length scale dominates the measured fluc-
tuation conductivity, we propose a plausible expression for
the probed length scale for ac measurement Lac

1

Lac
=

1

LJ
+

1

L�

. �24�

This formula has the correct limits as J→0 or �→0, which
corresponds to frequency-dependent ��z scaling or current-
density-dependent J�2 scaling, respectively. It is also quali-
tatively consistent with the two-term FFH scaling without
the magnetic term H�2 of Eq. �22� in the crossover range.
Finite-size effects come into play when Lac approaches the
thickness of the film.

FIG. 7. �Color online� �a� Magnitude �� fl� and �b� phase �� vs
frequency at various temperatures for a typical YBCO film
�xuh139�. The black �upper� lines were measured with −22 dBm
power while the red �lower� lines were measured with −2 dBm at
the same temperature. �For clarity, only every other isotherm is
shown.�

FIG. 8. �Color online� �� fl� vs incident microwave power at
different frequencies. � T=89.140 K, sample xuh139 below Tc�
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Fig. 9 summarizes the length scales in an ac measurement
in terms of experimental quantities.43 In this figure, we use
��0�=5 Å, c=1, and z=1.5. The dotted line in the figure
gives the boundary LJ=L�. To the right and below the dotted
line, when L��LJ, the frequency-induced length scale domi-
nates, and one observes mainly frequency-dependent scaling
of the fluctuation conductivity. Above the dotted line, when
L��LJ, current-induced nonlinear effects will dominate the
behavior. This explains the features shown in Figs. 7 and 8,
where the current density has less effect on the fluctuation
conductivity at high frequency and a larger effect at low
frequency.

At low frequency and small current density, Lac may ap-
proach the thickness of the sample �d� or some other length
scale that interrupts the fluctuation vortex loops. Hence de-
viations from the simple scaling theory are expected when
Lac�d.

In our ac measurements, we want to keep to the limit
Lac�d to avoid finite-thickness effect. Hence we choose to
stay at low J but high �. In this region we can find the true
critical behavior without getting into any finite-size effect or
crossover difficulties. Our previous analysis strayed out of
this region and this may account for the larger values of z
reported before18 and elsewhere in the literature.

B. Data-analysis method

In this paper, with very small applied microwave power,
−46 dBm �corresponding to J�2.2	105 A /m2�, and high-
frequency data, we investigated the frequency-dependent
fluctuation conductivity around Tc. Conventionally, examin-
ing experimental data with the scaling formulas one can
search for the temperature at which the conductivity magni-
tude best fits to a power law and has a constant value of ��,
to determine Tc and the dynamic critical exponent z. In this
analysis process, the determination of Tc is crucial because it
directly affects the value of z. Hence we enhanced the tem-
perature stability and conductivity calibration techniques in
the experiment, enabling the measurement of high-quality
data at small temperature intervals �50 mK�.

Using this data, we revised the conventional data-analysis
method18 to determine Tc. One expects a power-law behavior
of �� fl� on frequency at Tc, with a change in curvature on
either side �a convex function below Tc and a concave func-
tion above Tc�, as sketched in Fig. 6�a�. One also expects a
plateau in the conductivity phase vs frequency at Tc with a
change in the sign of the slope on either side as sketched Fig.
6�b�.

Unlike the dc I-V curve where Strachan et al. used an
opposite concavity criterion to determine Tc in a dI /dV
plot,29 it is hard to take the frequency derivative of �� fl����
because of noise. An alternative approach is to do a quadratic
fit to the data on a log-log plot. Below Tc, the curve bends up
with a positive coefficient of �log����2 and above Tc, the
curve bends down with a negative coefficient of �log����2.
Hence we did a quadratic fit and found that the coefficient of
the �log����2 term changes sign between temperatures
89.192 and 89.245 K, bracketing Tc.

The scaling theory also predicts a constant phase angle
����� at Tc. ����� vs log � is known to be a decreasing
function below Tc and an increasing function above Tc. A
linear fit of ����� vs log f also has been done and the result
shows its has negative slope at 89.192 K and positive slope
at 89.245 K, which is consistent with the quadratic fit result
of log�� fl���� vs log �. The next step is to do a linear fit for
log�� fl���� verses log��� to get the slope of log�� fl���� and
take the average of the ����� at Tc to obtain the value of z.
From this method, we get the critical temperature Tc
=89.22�0.05 K and the critical exponent z=1.62�0.20.

In addition, we developed another method to determine Tc
from the data. Consider the Wickham and Dorsey scaling
function above Tc �Ref. 22�

S+�y� =

2z2�1 −
D − 2 − z

z
iy − �1 − iy��D−2+z�/z

y2�D − 2 − z��D − 2�
, �25�

where y=�����z. We find at small y, corresponding to tem-
peratures far above Tc, the function S+�y� is essentially inde-
pendent of dimensionality D and z because the fluctuation
contribution is small. According to Eq. �17�, one can write
� fl�T ,��=�0�T�S�� /�0� where �0�T� and �0�T� are charac-
teristic conductivity and frequency scales, respectively. Both
the phase ����tan−1��2

fl /�1
fl�� of � fl and the magnitude

�� fl� /�0 can be treated as scaled quantities with two
temperature-dependent scaling parameters �0�T� and �0�T�.
This is a data-collapse method, pioneered by Kitano et al.26

They pointed out that the advantage of this collapse method
is the independence of the two scaling parameters �0�T� and
�0�T�. In this data-analysis method, the parameters �0�T�
and �0�T� are chosen at each temperature to collapse ���T�
vs � /�0 and �� fl� /�0�T� vs � /�0 to smooth and continuous
curves, without a priori determination of Tc or critical expo-
nents.

First �0�T� is determined through a collapse plot of �� vs
� /�0�T� from high temperature to low temperature �see Fig.
10�a��. Using the feature that S+�y� is not sensitive to dimen-
sionality D and z far above Tc, the appropriate �0�T� for
isotherms far above Tc is chosen to make the measured

ac

ac

ac

ac

FIG. 9. �Color online� Summary of length scales and finite-size
effects in Corbino ac measurements of fluctuation conductivity of
YBCO films near Tc. The dotted line in the figure gives the bound-
ary LJ=L�. At low frequency and small current density, the probed
length scale Lac approaches the thickness of the sample.
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���� /�0�T�� overlap with the theoretical prediction from the
known scaling function ��S+�y��. Then at temperatures
closer to Tc where S+�y� starts to depend on D and z, �0�T�
for each temperature is chosen to connect smoothly to the
existing curve of ���� /�0�T�� and to make all the tempera-
ture curves collapse into one smooth and continuous curve.
This process continues to lower and lower temperature until
a temperature is reached where ���� /�0�T�� can not be con-
nected smoothly to the existing curve. In this way, �0�T� for
temperature points above Tc can be determined.

To scale the conductivity magnitude, we start with the
determined �0�T� for each temperature, then plot �� fl� /�0�T�
vs � /�0�T�, where �0�T�, similarly to �0�T�, is determined
for each temperature to make a smooth and continuous curve
of �� fl� /�0�T� vs � /�0�T� �see Fig. 10�b��.

Using the power-law assumption for �0�T� and �0�T�, Tc
can be determined. Figure 11 shows �0�T� vs t and �0�T� vs
t for different assumed values of Tc. The correct Tc can be
determined from the line showing a pure power law. Figure

11�a� shows that the blue line which corresponds to an as-
sumed Tc=89.25 K is straightest. Figure 11�b� also shows
that the blue line is straightest. From these two figures, Tc is
consistently determined to be Tc=89.25�0.05 K. This re-
sult is also consistent with the Tc determined by the revised
conventional method.

With the value of Tc determined here, we can do a linear
fit for log�� fl���� verses log��� to get the slope of log�� fl����
and take the average of the ����� at Tc to obtain the value of
z. Through this procedure, we obtained the critical exponent
z=1.55�0.20.

In the procedure outlined above, we take advantage of the
broad microwave frequency range of the experiment, which
includes frequencies of order 1 /�. High quality data at small
temperature intervals are essential for the implementation of
this method. Another advantage of this method is that many
isotherms near Tc contribute to defining the scaling curve,
not just the one closest to Tc. This method has the advantage
of more precisely determining Tc. So according to the two
methods the critical temperature and exponent for sample
xuh139 were determined to be Tc=89.25�0.05 K and z
=1.55�0.20.40

The dynamic critical exponent should be sample indepen-
dent. To check the results, we not only repeated measure-
ments on the same sample but also repeated the experiment
on different samples. Films of different thickness �d
=100–300 nm� were examined, and z was found to be in-
dependent of the thickness, keeping in mind the constraints
of Fig. 9. Experiments on six samples have been done giving

z = 1.55 � 0.15. �26�

C. ac and dc experiments on the same sample

We also performed dc current-voltage characteristic mea-
surements on the same samples.40 Typical results are shown
in Fig. 12 �with no background subtraction30�. According to
the negative curvature criterion,29 we determined the critical
temperature to be 91.220�0.04 K and the critical exponent
z=1.75�0.2 from the derivative plot in Fig. 12�b�. In Fig.
12, all the isotherms tend towards ohmic behavior at low-
current density, brought about by LJ�d finite-size effects, as
discussed for the data shown previously in Fig. 5.19 From
this data it is clear that when the current density is smaller
than 1	106 A /m2, the sample will have only ohmic re-
sponse around Tc. The −46 dBm applied power in the ac
measurement corresponds to a maximum current density of
2.2	105 A /m2��1	106 A /m2�. This means that for
−46 dBm incident power LJ�d, verifying a feature of Fig.
9, and suggesting that one-parameter scaling should work
when L��LJ ,d. Hence it is appropriate to determine Tc and
critical exponents with ac data at −46 dBm applied power.

The difference of Tc between dc and ac measurements is
due to the different thermometer positions and temperature-
control techniques of the two experimental systems. The re-
sistance vs temperature plots from the ac and dc experiment
have a temperature offset about 2.0 K, which is the differ-
ence of the determined Tc from these two methods.

In dc measurements, disorder and heating lead one to sys-
tematically choose a lower temperature isotherm as Tc, re-

FIG. 10. �Color online� Scaling of phase and magnitude of fluc-
tuation conductivity for sample xuh139 to determine �0�T� and
�0�T�. �a� �� vs � /�0�T�; �b� �� fl� /�0�T� vs � /�0�T�. Solid lines
are the theoretical calculation of ��S+�y��� and 2�S+�y� /� from Eq.
�25� for different values of z, assuming D=3. These lines can be
used to determine �0�T� and �0�T� far above Tc. In this figure, only
the �0�T� and �0�T� of the isotherm T=89.763 K are shown to
make the measured ���� /�0�T�� and �� fl� /�0�T� vs. � /�0�T� over-
lap with the theoretical prediction. For all the other isotherms,
�0�T� and �0�T� for each temperature are chosen to connect
smoothly to the existing curve of ���� /�0�T�� and �� fl� /�0�T�,
respectively, to make all the temperature curves collapse into one
smooth and continuous curve. The lowest temperature isotherm
�blue� appears on the right side of each plot, while the highest
temperature isotherm �black� appears on the left.

FIG. 11. �Color online� �0�T� vs �
T−Tc

Tc
� and �0�T� vs �

T−Tc

Tc
� for

different assumed Tc for sample xuh139 and temperature from
89.297 to 89.763K. The errors of �0�T� and �0�T� are about the size
of the points.
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sulting in an enhanced value of z.30,40 We find that films with
lower normal-state resistivity and smaller �Tc have smaller
values of z.30 The films used in ac conductivity measure-
ments were grown on NdGaO3 substrates and these films
have systematically higher resistivity and larger �Tc than
films on SrTiO3 substrates. In addition, performing dc mea-
surements on the same film after ac measurements involves
more processing steps than a dc measurement alone and may
result in additional disorder in the sample. This correspond-
ingly gives larger values of z �Fig. 12�. We carefully repeated
the dc measurements alone on different YBCO films grown
on different substrates �SrTiO3 and NdGaO3� and found that
the sample quality does affect the obtained value of z.40

However, for films with high Tc, sharp transition and small
resistivity, the obtained value of z�1.50, which is consistent
with the ac result z=1.55�0.15. In addition, dc measure-
ments carried out the same way on high-quality crystals
shown in the previous section also gave z�1.5.

IV. SUMMARY AND CONCLUSIONS

In this paper, we performed of a variety of complimentary
experiments to determine the critical exponents in optimally
doped YBa2Cu3O7−�. The dc transport measurements on both
thin films and thick single crystals show how finite-thickness
effects in the films can confuse interpretation of the data in
the limit of small currents. Only with the choice of the
proper range of current, can one avoid the finite-thickness

effects in films and obtain the correct exponent z, consistent
with the value obtained from thick single crystals measure-
ments �where finite-thickness effects are unimportant�. We
also show how application of a small magnetic field allows
the determination of � in both crystals and films. Using dc
transport measurements, we find that the dynamical critical
exponent z=1.54�0.14, and the static critical exponent, �
=0.66�0.10 for both films and single crystals.

Microwave measurements on thin films at different fre-
quencies and at different powers have also been performed,
which allow us to systematically probe different length
scales in the sample. After developing a comprehensive un-
derstanding of length scales in microwave measurements, we
choose to stay at low J but high � to find the true critical
behavior without getting into any finite-size or crossover ef-
fects. dc transport measurements were also performed on the
films used in the microwave experiments to provide a further
consistency check. These microwave and dc measurements
yielded a value of z consistent with the other results, z
=1.55�0.15.

To conclude, using two different measurement methods,
we studied the dynamic fluctuation effects of YBa2Cu3O7−�

single crystals and thin films around Tc. The results of both
ac and dc measurements agree with the XY value for �
�0.67 and with model-E dynamics value for z=1.55�0.15.3

The neglect of finite-thickness, finite-power, and finite-
frequency effects may account for the wide ranges of values
for � and z previously reported in the literature.
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APPENDIX: CURRENTS AND LENGTH SCALES IN
SUPERCONDUCTORS

In this Appendix we consider a number of length scales in
current-carrying superconductors to provide a clearer physi-
cal meaning for the length scale LJ of Eq. �12�. We first
consider a simple model for fluctuations in superconductors,
where we assume that the only fluctuations are circular vor-
tex loops �or vortex “smoke rings”� of radius r.34 The energy
of such a loop can be written as

Uloop = 2�r��r� , �27�

where ��r� is the energy per unit length of the vortex loop.
For a straight vortex

��r = �� =
1

4��0
	0

�

2

K0	�

�

 �

1

4��0
	0

�

2

ln	�

�

 ,

�28�

where K0 is a modified Bessel function of the second kind
and the approximate form holds in the limit of high �

FIG. 12. �Color online� dc current-voltage characteristics mea-
surement, performed after the ac experiment on xuh139 in zero
magnetic field. �a� E-J isotherms �50 mK apart�, �b�
d log10 E /d log10 J vs J derivative plot �40 mK apart�.
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�� /�.44 As a first approximation, we will assume the energy
per unit length is constant, given by Eq. �28�.

In an infinite superconductor with no applied current, vor-
tex loops of different sizes occur with different probabilities
as thermal fluctuations. The probability of finding a loop of
size r in a range dr is given by

P�r�dr =
e−�2���r�/kBT�rdr

�
�

�

e−�2���r�/kBT�rdr

, �29�

where interactions between the loops are neglected for sim-
plicity.

We wish to find the size of a typical vortex loop, rmed.
One way to do this is to find the fraction of loops f with a
radius greater than the median radius, or r�rmed. This frac-
tion will be f = 1

2 , given by

f =
�rmed

� e−�2��/kBT�rdr

�
�

�

e−�2��/kBT�rdr

�
1

2
. �30�

If the energy per unit length of the loop is given by Eq. �28�,
then Eq. �30� leads to

rmed = � +
kBT

2��
ln 2. �31�

If the second term on the right-hand side of Eq. �31� domi-
nates, this gives

rmed �
kBT

2��
ln 2 ⇒ � �

kBT

2�rmed
ln 2. �32�

Eq. �32� states that, within a factor of ln 2, the total energy of
a vortex loop of size rmed is equal to kBT, which is a plausible
result.

To check whether the second term on the right side of Eq.
�31� is the dominant one, we combine Eqs. �28� and �31�.
This leads to

rmed = ��1 +
�

	 o
2

4��0kBT



ln 2

2�

�2

ln �� = ��1 +
�

�T

ln 2

2�

�2

ln �
 ,

�33�

where �T is defined in Eq. �1.1� of Fisher et al.1 �in cgs units
with the Boltzmann constant kB defined to be 1�. The second
terms in Eqs. �31� and �33� dominate in the critical regime
because � diverges while �T is fixed.

For simplicity, we drop the ln 2 in Eq. �31� and use the
physically plausible result

rmed �
kBT

2��
. �34�

Next consider that a current per unit area J is applied in a
direction perpendicular to the plane of the loop. The total
Lorentz force acting outward on the loop is

Fext = 2�rJ0. �35�

The energy defined in Eq. �27� gives rise to an inward force
that the loop exerts on itself, −2��. Summing the forces and
finding the point where the net force is equal to zero leads to
a critical loop size

ro =
�

0J
, �36�

where, for simplicity, ��r� is again assumed to be indepen-
dent of r. Note that Eq. �36� is not the equation for the
current-dependent length scale LJ.

Physically, if a vortex loop has r�ro, the external current
blows out the loop to infinite size; this process leads to dis-
sipation. If r�ro, the vortex loop shrinks and annihilates.
One can interpret Eq. �36� in a different but equivalent way.
The presence of a current density J significantly alters the
population of vortex loops with r�ro, and has less effect on
the vortex loops with r�ro. In this sense, a current J probes
the physics on length scales of order ro and larger. This is the
type of language that is sometimes used to describe LJ.

We next discuss the physical significance of comparing
the lengths ro and rmed, Eqs. �34� and �36�. If rmed�ro, the
current is probing a length scale where there are very few
vortex loops. The current thus acts as a very small perturba-
tion on the system. If rmed�ro, the current is probing a very
short length scale, and a large portion of the intrinsic vortex
population is being disrupted by the current. The point where
rmed=ro thus marks a crossover in the behavior from current
acting as a small perturbation to current acting as a large
perturbation.

How does a noninfinite film of thickness d affect the
physics? It is plausible to say rmed�d is the three-
dimensional limit while rmed�d is the two-dimensional limit
since in the second case most of the vortex loops are inter-
rupted by the film thickness while in the first case they are
not. This is true as far as it goes but misses the key point that
an applied current probes physics at the scale of ro and
larger. Thus, even in the limit rmed�d, if ro is small enough,
current will probe physics on length scales smaller than d,
and thus the measurement will not be affected by the finite
thickness of the film.

In order for the thickness of the film to have a measurable
effect, the current should probe a significant fraction of the
loop population and should also probe lengths on the scale of
the film thickness. For this to be true, we require

r0 = rmed � LJ. �37�

Combining Eqs. �34�, �36�, and �37� gives

LJ = 	 kBT

2�0J

1/2

. �38�

This argument leading to Eq. �38� motivates a physical de-
scription for LJ: For any J there is a length scale LJ, given by
Eq. �38�, such that roughly half the equilibrium (zero cur-
rent) vortex loop population is strongly affected by J. This is

XU et al. PHYSICAL REVIEW B 80, 104518 �2009�

104518-10



the length that one should compare to the film thickness for
seeing whether or not measurements are in the two or three-
dimensional limit. The requirements are that there be a sig-

nificant fraction of the loops that would exceed the film thick-
ness, and, in addition, that the current is probing the same
length scale.
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