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The strange metal phase of optimally and overdoped cuprates exhibits a number of anomalous transport
properties—unsaturating linear-T resistivity, distinct relaxation times for Hall angle and resistivity,
temperature-dependent anisotropic relaxation times, and a characteristic crossover from supposed Fermi liquid
to linear-T behavior. All receive natural explanations and quantitative fits in terms of the hidden Fermi liquid
theory.
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I. INTRODUCTION

From the very first observations of the properties of the
cuprate “high-Tc” superconductors it was seen that the prop-
erties of the “normal” metal above Tc were unusual. There
are actually two unusual regimes: at lower doping, there de-
velops a “pseudogap” regime which is most plausibly
described1,2 as a state with BCS pairing but without super-
conducting order. �At still lower dopings various complex
phases with inhomogeneities and/or alternative orderings
show up also, but we will consider only homogeneous trans-
lationally symmetric phases.� Near optimal and above �and
also for T above the pseudogap regime� there is no evidence
of pairing in the normal state but instead a characteristic
“strange” metallic behavior extending to very high tempera-
tures and energies. Most obvious is the notorious “linear-T”
resistivity, sometimes extrapolating at T=0 to zero or less
and persisting in its linearity often to well above the Mott
limit. A cleaner characterization, if available, is the “Drude-
like” tail of the midinfrared conductivity. This falls off as a
noninteger power of frequency considerably less than the
�−2 of the Drude theory.3,4

Very early a heuristic for the strange behavior was devel-
oped as the “marginal Fermi liquid” theory5 and that is often
used as a descriptive term, but this heuristic does not de-
scribe the infrared result correctly nor any of the further ir-
regularities. Another heuristic which has been proposed to
describe some of the anomalies is the idea of “hot spots” and
“cold spots” on the Fermi surface at which different tempera-
ture dependences are observed.6–8 Aside from difficulties in
fitting the transport phenomena this makes no reference to
the anomalous power laws in the infrared which we use as
the defining characteristic of the strange metal and has no
microscopic explanation which we find convincing of the
non-Fermi liquid behavior.

Often a third regime is postulated, which the state returns
to the simple Fermi liquid when overdoped beyond the su-
perconducting dome, and for lower T, a crossover line being
drawn up and to the right, starting at the edge of the dome.
We will see that this is merely a crossover in the transport
properties and those fundamental properties such as the one-
particle Green’s function remain anomalous according to our
theory. No transition to a true Fermi liquid has been observed
in our opinion.

A striking anomaly of the strange phase is the
T-dependent Hall effect. It is best described as there existing

a relaxation rate for the Larmor precession 1 /�H distinct
from that for the resistivity and more resembling that for a
Fermi liquid.9,10

The purpose of the rest of this paper is to show how all of
these anomalies follow from the theory of the simplest pos-
sible model, the Hubbard model with a strong interaction U
and nothing else.

II. HIDDEN FERMI LIQUID

The hidden Fermi liquid �HFL, hereafter� theory11 de-
pends on the assumption that the Hubbard on-site interaction
U is sufficiently strong that it must be renormalized to infin-
ity by the Gros-Rice canonical transformation, leaving be-
hind a superexchange interaction and the kinetic energy pro-
jected on the lower Hubbard band. That is, the effective
Hamiltonian is

H = �
i,j

JijSi · Sj + P��
i,j,�

tijci,�
� cj,��P ,

P = �
i

�1 − ni↑ni↓� . �1�

This “t-J Hamiltonian” is not simply a convenient alternative
to the Hubbard model; it reflects the physical fact that the
low-energy states live within a subspace which is overcom-
pletely described by a single full band of electron states be-
cause antibound states �doublons� have been ejected out of
the top of the band. No convergent perturbative route exists
to connect the low states to the original band of the Hubbard
model since they exist within Hilbert spaces of different di-
mensionalities.

It is assumed that in the strange metal region J is too weak
because of competition with kinetic energy12 or thermal fluc-
tuations to cause pair condensation and an anomalous self-
energy, and therefore its major effect can be lumped in with
that of phonons as a renormalization of the kinetic energy. It
will also contribute electron-electron scattering but we do
not expect it to be as large as that due to the projection.
Therefore the problem reduces to the effect of Gutzwiller
projection on the renormalized kinetic energy, represented by
a simple Fermi gas, that is, to the second term in H, so we
consider the Hamiltonian
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Hp = P�
i,j,�

tijci�
� cj�P = �

i,j,�
tijĉi,�

� ĉj,�,

ĉi� = ci��1 − ni,−�� , �2�

where we introduce the projective quasiparticle operators ĉ
and ĉ�, which automatically enforce the projection.

The HFL ansatz is that projected Hamiltonian �2� operat-
ing in the unprojected Hilbert space of many-electron wave
functions gives one the low-energy spectrum of a Fermi liq-
uid essentially, which it has a sharp Fermi surface with the
usual analyticity properties of the self-energies of the quasi-
particles c and c�. The ansatz can be thought of as the result
of a Shankar-style13 renormalization but can really be justi-
fied only by demonstrating its self-consistency and by testing
to what extent it agrees with experiment; in both respects it
seems so far to have passed muster. But the quasiparticles in
this Hilbert space are not the true quasiparticles of the physi-
cal system: these are the projected quasiparticles which we
designate with “hats.” We shall hereafter invent the name
“pseudoparticle” to describe the objects c and c� which obey
Fermi liquid rules because they operate in the full Hilbert
space. The pseudoparticles have renormalized Fermi veloci-
ties which can be estimated with the Gutzwiller approxima-
tion,

vF,ren = vF,0gt,

gt = 2x/�1 + x� , �3�

with x being the doping percentage. They can be expected to
have rather large electron-electron scattering, �ee, propor-
tional to �k−kF�2. In the one case in which we have accurate
information, optimally doped Bi2Sr2CaCu2O8+� �BiSCCO�,14

the coefficient is

�ee = CvF,ren
2 �k − kF�2,

C = 3.6 � 10−3/meV. �4�

Straightforward phase space considerations would, as ob-
served by Zheleznyak et al.,15 suggest that the coefficient
should be of the order 1 /W, with W being the bandwidth, but
in the Hall effect case of interest to him he observed that it
was considerably larger, and we also find this: W is of order
a few hundred kelvins rather than a few thousand. A little
thought persuades us that this should be the case. The
Gutzwiller projection slows the coherent Fermi velocity for
an electron with spin near the Fermi surface, but it does not
much affect the incoherent motions of bare holes, which are
just as rapid as in the unprojected state—for instance, the
second moment of the overall spectrum is unaffected.16 The
quasiparticles are broadened by these incoherent motions
proportionately to this second moment, roughly, so one
might expect that the broadening would be proportional to
g−2 or about one order of magnitude larger than the naive
estimate. Thus our hidden Fermi liquid will tend not to be a
very good one in the sense that the coherence of its
pseudoparticles lasts only out to about 50 meV from the

Fermi surface. We should also note that there is no reason to
expect this scattering mechanism to be anisotropic.

Let us now consider the transport properties of such a
system: first the resistivity. As Anderson discussed in his
book and in related papers,17,18 this is complicated by being a
two-step process. The momentum is delivered to the system
via accelerating the true quasiparticles, i.e., by displacing
their Fermi surface. But the scattering which transfers mo-
mentum to the lattice is the T2 umklapp scattering of the
pseudoparticles which we have just been discussing.
Gutzwiller projection is perfectly translation invariant, so
that the process of decay of true quasiparticles into
pseudoparticles is momentum conserving and cannot lead to
resisivity by itself. It acts, instead, as a bottleneck, a neces-
sary step which must take place before the true scattering
events can operate. �As Anderson noted in Ref. 12, this is
actually the same physics which is involved in phonon drag,
but we think the “bottleneck” description is clearer.� It is the
slower of the two processes which will control the rate: they
do not add according to Matthiessen’s rule but according to
its inverse.

In previous work12 Anderson calculated the dissipation
due to the quasiparticle decay process by approximating the
two-particle Green’s function which appears in the response
function by the simple product of two one-particle functions
since it should be a good approximation for the quasiparti-
cles to decay independently. In Ref. 11 and related papers14

we have shown that the form of the single-particle Green’s
function at absolute zero is the simple expression,

G�r,t� = G0�r,t�G��t��1

g
� ,

G��t� = t−p, where p = �1 − x�2/4. �5�

Here the 1 applies on the hole side and the g on the electron.
�For finite T, presumably, the jump singularity of the coeffi-
cient becomes a Fermi function.� G0 is the pseudoparticle
Green’s function. In Ref. 11 we showed how to generalize
Eq. �5� to finite temperature. G0 follows the conventional
rules, while as we pointed out there, the power law in G� was
shown by Yuval and Anderson19 to follow the general rule of
being antiperiodic in imaginary time by becoming

G��r,t� = 	 �T

sinh��Tt�

p

� e−�pTt for Tt 	 1. �6�

This is the source of the ubiquitous linear-T decay. Note that
the relaxation rate is isotropic, but the mean free path and
therefore the conductivity will have the anisotropy of the
Fermi velocity since the Fermi momentum is fairly isotropic.

At high frequencies and high temperatures the T2, �2 de-
cay implied by Eq. �4� may be assumed to be more rapid
than Eq. �6� and dissipative processes will be dominated by
the power law decay of quasiparticles into pseudoparticles.
The most straightforward situation is the infrared conductiv-
ity which has long been known to obey a frequency power
law,20
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�ir��� 
 �i��−1+2p, �7�

which can easily be derived from Eq. �5�.
Hwang et al.21 has experimentally estimated the depen-

dence of the power 2p on doping, which we show in Fig. 1;
the agreement as to magnitude is good and the dependence
on doping is a bit slow. But our prediction is within the
scatter of the data.

As far as dc resistivity is concerned, Eq. �6� accounts for
the observed linear dependence on T near-optimal doping.
The trend with doping is in agreement with the expected
�1−x�2 dependence of p, though in order to be quantitative
one would need an estimate of the carrier density which is
hard to come by.

In the same regime we see the striking phenomenon first
observed by Chien et al. �see Ref. 9� of a qualitative differ-
ence between the relaxation times � as estimated from the dc
conductivity using �=ne2� /m, as opposed to using the Hall
angle formula �H=�c�H. The latter shows a conventional
Fermi liquid temperature dependence 
T2, while the resistiv-
ity is linear in T as we have just been describing. In the HFL
theory this difference is very natural: the Hall angle observed
is that of the underlying pseudoparticles of the HFL. The
Larmor precession which is caused by the magnetic field
does not change relative occupancies and therefore does not
disturb the equilibrium between quasiparticles and
pseudoparticles: effectively, the magnetic field commutes
with Gutzwiller projection. Thus the Hall effect and other
magnetic responses—such as the de Haas–van Alfven
effect—will be identically those of the HFL, with no bottle-
neck caused by the decay of the quasiparticles.

The only effect of the strong interaction will be quantita-
tive. As we remarked above, the T2 relaxation rate will be
unexpectedly large. We have compared the temperature de-
pendence of the pseudoparticle lifetime from angle-resolved
photoemission spectroscopy �ARPES� in optimally doped
BiSCCO and from the dc Hall effect of optimally doped
Bi2Sr2−xLaxCuO6 �BiSLCO� in Ref. 22. Starting from the
ARPES result of Eq. �4� for the pseudoparticle scattering
rate, we found �HFL

−1 =T2 /W with W�500 K. A precise nu-
merical fit would involve a very complete study of the Fermi

surface curvature, anisotropy of the Fermi velocity, and cy-
clotron frequency, but the Hall angle data lead to a band-
width quite consistent with 500 K.

The final topic to take up is the resistivity in the region
completely beyond the “dome” which is normally designated
as “the Fermi liquid.”23 Indeed, the resistivity at low tem-
peratures seems to obey the T2 law; but we see no reason to
suppose that the effects of the strong interaction die out so
suddenly. Actually, the resistivity in this region seems to be
nicely explained in terms of the bottleneck effect along with
the anisotropy of the HFL conductivity due to the anisotropy
of vF.

The temperature dependence of the resistivity, then, is ob-
tained by combining the two conductivities,

�HFL = ne2�/m =
e2

�

�2kF
2

m

�

�
=

e2

�

EFW

T2 . �8�

Here we have ignored numerical factors of order 1, realizing
that they may be subsumed in the parameter W, the effective
bandwidth discussed under Eq. �4�. Conductivities are two
dimensions, per single plane, and T is in energy units. The
effective conductivity corresponding to the decay process
Eq. �6�� is

�decay =
ne2vF�

mvF
=

e2��kFvF�
�T

=
e2

�

EF

T
�vF/vF0� . �9�

Here vF0 is the maximum Fermi velocity, which gives us an
estimate of the overall bandwidth EF; then we make explicit
the dependence on Fermi velocity which will indeed vary
quite strongly from the diagonal direction to the zone corners
�and in the right direction to account for the anisotropy ob-
served by Hussey24�.

First we would like to compare the general temperature
dependence of the resistivity implied by Eqs. �8� and �9� with
relatively early measurements on overdoped cuprates, where
there was no attempt to disentangle the anisotropy.23,25,26 In
this case, leaving out the anisotropic Fermi velocity, the re-
sistivity is the universal expression,

 =
�

e2EF

T2

T + W
�+ res� ,

dln� − res��/d�ln T� = 1 + W/�T + W� �10�

�some samples show a small residual resistance which we
would expect to be simply additive as la Matthiessen’s rule,
playing no role in the bottleneck.� The fit of the form Eq.
�10�� to the data is quite satisfactory. For instance, in Ref. 26
there is a plot of the effective exponent vs T, which for low
T, where the data are most accurate, follows the second
equation of Eq. �10� accurately. Manako et al.26 fitted the
data over the entire range with a T3/2 power law, which ac-
cording to Eq. �10� should only be approximate; indeed, we
get as accurate a fit, except at high T, where the measurement

FIG. 1. Infrared spectrum exponents for Bi2Sr2CaCu2O8+�. Data
points from Ref. 21 with linear best fit in Ref. 21 �dashed line� and
predicted value from Ref. 30 �solid line�. The predicted exponent
stems from ����= �i��−2+� with �=1+2p and p is given in Eq. �5�.
Figure reproduced from Ref. 14.
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is questionable because of thermal expansion. Figure 2
shows our fit to the data in Ref. 23 and Fig. 3 shows the
values of the parameters in Eqs. �8� and �9� obtained from
the fit as a function of doping.

The x dependence of the parameter W is experimentally
even stronger than x2. We find the near vanishing of the
parameter W for near-optimal doping rather puzzling, espe-
cially since it conflicts with our putative conclusion from the
Hall effect anomaly, which the T2 resistance, while high, is
finite. Resistivity under a 60 T magnetic field in BiSLCO
�Ref. 27� does indicate that W is on the order of 250 K
near-optimal doping. This is notably larger than the LSCO
results shown in Fig. 3�a� and more consistent with the band-
width from the BiSLCO Hall and BiSCCO ARPES analysis.
But there are a number of assumptions we have made, any of
which may affect the prediction for these superconducting
samples: we are ignoring the possibility of fluctuation con-
ductivity, and we do not really know precisely how to in-
clude residual resistivity.

Abdel-Jawad et al.28 provided an even more explicit con-
firmation of our theory. Hussey’s equation Eq. �3� in Ref.
24� shows that he is empirically driven to the necessity of
adding conductivities Eqs. �8� and �9��, rather than resistiv-
ities, but unfortunately not in quite the correct form Eq.
�10��. His work using angle-dependent magnetoresistance
measurements28 has shown experimentally that in the
optimal-to-overdoped regime, there are two scattering
mechanisms for every momentum on the Fermi surface �not
“hot” and “cold” spots� with distinct temperature and angle
dependences, and as we pointed out above the theory pro-
vides precisely those temperature dependences and the cor-

FIG. 2. �Color online� Comparison of the polycrystalline La2−xSrxCuO4 resistivity �data points� extracted from Ref. 23 with the bottle-
neck resistivity form of Eq. �10�. Inset slows the low temperature region in detail.

FIG. 3. �Color online� Parameters of the bottleneck resistivity
form of Eq. �10�, =AT2 / �T+W�+res, for comparisons in Fig. 2
�blue squares� and Fig. 4 �red circles�. The three parameters are �a�
the bandwidth, �b� a prefactor for the first term in Eq. �10�, and �c�
the residual resistivity.
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rect sign and magnitude for the anisotropy of the linear-T
term.

In a very recent paper,29 the same group have revisited the
doping range in Ref. 23, focusing on temperatures below 200
K. They have used a large magnetic field to destroy super-
conductivity when present so have a lower minimum tem-
perature. Their fitting function is purely empirical and has
more parameters to adjust than Eq. �10�, and in fact we can
achieve an equal level of agreement over their low tempera-
ture range �see Fig. 4 and parameters in Fig. 3�. The mag-
netic field adds to the uncertainties as to the value of the
parameter W in the superconducting range.

III. CONCLUSION

The hidden Fermi liquid method seems well on the way to
providing a complete resolution of the anomalous properties

of the “strange metal” phase of the cuprate superconductors.
Complex seeming as they are, these seem to follow from the
slightest possible generalization of the conventional Fermi
liquid theory of metals, namely, the inclusion of the projec-
tive constraint made necessary by the existence of strong
on-site electron-electron interactions. This simple case, far
from being an impenetrable mystery as it is so often pictured
to be, should provide the canonical model for more complex
examples of strongly interacting electronic systems.
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