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By considering a linear in momentum but otherwise arbitrary spin-orbit coupling �SOC�, we derive a simple
analytical expression for the current-driven spin torque in a single ferromagnetic layer. Explicit forms of the
spin torque are given for structures with different SOC fields, in dependence of strain effects, growth direction,
and/or symmetry under spatial inversion. The Landau-Lifshitz-Gilbert equation including the effects of the
SOC mediated spin torque on the magnetization dynamics is briefly discussed.
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I. INTRODUCTION

Since its first theoretical description1,2 the phenomenon of
spin-transfer torque has attracted increasing attention due to
its potential applications in spintronic devices. This phenom-
enon occurs in spin-valve structures composed of two ferro-
magnetic layers separated by a nonmagnetic one. A trans-
verse �perpendicular to the layers� charge current through the
device produces a flow of spin-polarized conduction elec-
trons from the fixed layer into the free layer. This causes a
direct transfer of angular momentum from the spin-polarized
flowing electrons to the local magnetization of the free
layer,1–7 resulting in a torque that may produce magnetic
reversal or steady-state precessions with frequencies in the
microwave range.7–14 This spin-transfer mechanism allows
nanomagnets to be manipulated without magnetic fields, and
is the subject of extensive research for new applications in
nonvolatile memory technology and radio-frequency oscilla-
tors.

Up to now the majority of investigations on the spin trans-
fer driven excitations have been performed on planar spin-
valve nanopillar or nanocontact structures in which a noncol-
linear configuration of the magnetic structure is required.
However, spin torque phenomena may also be present in
collinear spin valves composed of two ferromagnetic con-
tacts separated by a two-dimensional electron gas with spin-
orbit coupling �SOC�.15 Recent theoretical investigations16,17

have shown that, even in a single, uniformly magnetized
ferromagnetic layer, when SOC is present, an in-plane cur-
rent can induce a spin torque on the magnetization of the
layer without the need for noncollinear ferromagnetic con-
figuration of the structure. In these previous studies16,17 the
authors considered a �001� ferromagnetic layer with magne-
tization lying on the plane of the layer and in the presence of
Bychkov-Rashba18 and Dresselhaus19 SOCs. Here we inves-
tigate the current-driven SOC mediated spin torque for the
case of an arbitrary magnetization orientation and a linear in
momentum but otherwise arbitrary form of the SOC.

The paper is organized as follows. In Sec. II we present
the basic assumptions and theoretical model. A general ex-
pression for the SOC mediated spin torque is derived in Sec.
III for the case of a single, uniformly magnetizated ferromag-
netic layer in the presence of a linear in momentum SOC

field. The modified Landau-Lifshitz-Gilbert �LLG� equation
accounting for the SOC mediated torque is briefly discussed
in Sec. IV. Specific expressions for the SOC mediated spin
torque are given in Sec. V for the cases of �001�, �110�, and
�111� ferromagnetic layers with structure inversion asymme-
try �SIA� and/or bulk inversion asymmetry �BIA�. The spin
torque mediated by strain-induced SOC is investigated in
Sec. VI. Finally, conclusions are given in Sec. VII.

II. THEORETICAL MODEL

We consider a two-dimensional uniformly magnetized fer-
romagnetic layer and assume a model in which the local
magnetization of the ferromagnet is determined by localized
d-like electrons rather than from itinerant electrons. Such a
model appears to be appropriate for electrodes composed of
3d ferromagnetic metals and alloys lying on the negative
slope side of the Slater-Pauling curve �e.g., Co, CoFe, Ni,
and NiFe�.6,20,21

The localized spins couple to the itinerant spins through
the exchange interaction

Hex = − Jex�
i,j

�Si · s j� , �1�

where Jex is the exchange coupling constant, Si denotes the
localized spin at the ith site and s j is the spin of the jth
itinerant electron.

Averaging Eq. �1� over the localized states, summing up
the contributions of all the localized spins, and considering

M = �0��Si��loc = �0�
i

�Si� , �2�

with M, �0, and �Si� as the macroscopic magnetization, gy-
romagnetic factor, and local spin density at site i, respec-
tively, one obtains the effective one-particle exchange
Hamiltonian for an itinerant electron,

Hex
it = −

Jex

�0
�M · s� , �3�

where M̂=M /Ms �with Ms as the saturation magnetization�
is a unit vector along the magnetization direction. Equation
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�3� can be rewritten in the more familiar form

Hex
it = − �ex�M̂ · �� �4�

by introducing the exchange splitting energy as

�ex =
Jex�Ms

2�0
. �5�

Thus, in the presence of SOC, the motion of the itinerant
electrons is described by the one-particle Hamiltonian

Hit =
�2k2

2m
− �exM̂ · � + w�k� · � , �6�

where k is the length of the in-plane wave vector k, m is the
carrier mass, and � is a vector whose components are the
Pauli matrices. The last term in Eq. �6� represents the SOC
which is determined by the SOC field �SOCF� w�k�. The
time-reversal symmetry implies that w�k�=−w�−k�. There-
fore, in the lowest approximation, the SOCF is always linear
in the wave vector. One can then express the ith component
of the SOCF as

wi = �
l=x,y

ci
lkl; �i = x,y,z� , �7�

where kl are the wave-vector components and the coeffi-
cients ci

l determine the explicit form of the SOCF. Correc-
tions of higher order in k may, in principle, play some role
when large currents are applied and states with high values
of k� become relevant. Furthermore, it has already been
shown that up to the first order in �ex /wi�kF� �with kF as the
length of the Fermi wave vector� the cubic terms in the
SOCF do not contribute to the torque.17 Here we consider the
case of a strong ferromagnet for which �ex�w�kF� and limit
our analysis to the case of moderate currents. In such a re-
gime, the linear approximation used in Eq. �7� suffices.

The effective exchange Hamiltonian for the localized
spins can be obtained from Eq. �1� by averaging over the
ensemble of itinerant electrons. The result is

Hex
loc = − Jex�S · ��s��� , �8�

where ��s�� is the spin density of itinerant electrons �explicit
calculations of this quantity are given in the following sec-
tion�.

III. SOC MEDIATED SPIN TORQUE

By definition, the spin torque T is the change of spin
angular momentum per unit time. The average spin torque
exerted by the itinerant electrons on the localized spins is
then

T =
d��S��loc

dt
=

i

�
���Hex

loc,S���loc, �9�

where �� . . . ��loc refers to the ensemble average over localized
spins. Working out the commutator �Hex

loc ,S� and taking into
account Eqs. �2�, �5�, and �8� we obtain

T =
2�ex

�2 �M̂ � ��s��� . �10�

We note that, since ��s��= �� /2������, Eq. �10� coincides �up
to a factor 1 /Ms� �Ref. 22� with Eq. �6� in Ref. 17.

When a current flows through the system, the spin density
of the itinerant electrons deviates from its equilibrium value
���s��0� by an amount ���s��, i.e., ��s��= ��s��0+ ���s��. In
equilibrium there is no preferential direction for the motion
of the itinerant electrons and, in average, the SOCF, which is
an odd function of the momentum, vanishes. Thus the equi-
librium spin density ��s��0 �M and does not contribute to the
spin torque. On the contrary, the presence of a current defines
a preferential direction for the electron motion and results in
a finite SOC mediated nonequilibrium spin density ���s��,
which is noncollinear with M and, in turn, induces a spin
torque on the localized spins. The spin torque in Eq. �10� can
then be rewritten as

T =
2�ex

�2 �M̂ � ���s��� . �11�

Considering Eq. �6� we find that the eigenenergies and
wave functions of itinerant electrons are given, respectively,
by

Ek
	 =

�2k2

2m
	 	w − �exM̂	 �12�

and


k
	 =

eik.r


S�1 + A	
2 �
�A	ei�k

1
� , �13�

where S is the area of the film,

A	 =
�wzMs − �exMz� 	 Ms	w − �exM̂	


�wxMs − �exMx�2 + �wyMs − �exMy�2
, �14�

and

tan �k = −
wyMs − �exMy

wxMs − �exMx
. �15�

In writing Eqs. �14� and �15� we took into account that 	M	
=Ms.

The nonequilibrium spin density of itinerant electrons is
determined by the relation

���s�� =
�

2 �
�=	

 d2k

�2�2 ��k
�	�	�k

���f��k� , �16�

where �f�= f�− f�
�0� represents the deviation of the distribu-

tion function f� corresponding to the � band from its equi-
librium value f�

�0�.
We consider the most relevant case �from the practical

point of view� of a strong ferromagnet in which the exchange
splitting dominates over the SOC effects and EF��ex

� 	w�kF�	, where kF=
2mEF /�2. In such a case the interband
transitions can be neglected and the scattering by impurities
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can be treated within a constant relaxation-time approxima-
tion of the Boltzmann equation �for details see Refs. 16, 17,
and 23�. One can then write24

�f� �
e�

�
E · �kf�

�0�, �17�

where � is the relaxation time, e is the electron charge �e
�0�, and E is the electric field.

The nonequilibrium spin density ���s�� can be calculated
by combining Eqs. �16� and �17�. An analytical expression
for ���s�� can be obtained in the limit of large exchange
coupling ��ex� 	w�kF�	� by expanding the spin expectation
values ��k

�	�	�k
�� in powers of wi /�ex�i=x ,y ,z� and keep-

ing up to the first order only. After integration over the in-
plane wave vector we obtain

���sx�� = q �
l=x,y

jl��My
2 + Mz

2�cx
l − MxMycy

l − MxMzcz
l� ,

�18�

���sy�� = q �
l=x,y

jl�− MxMycx
l + �Mx

2 + Mz
2�cy

l − MyMzcz
l� ,

�19�

and

���sz�� = q �
l=x,y

jl�− MxMzcx
l − MyMzcy

l + �Mx
2 + My

2�cz
l� .

�20�

In the equations above jl represents the lth component of the
charge current density25 j= �jx , jy ,0�T and q=mP /2e�exMs

2,
where P is the spin polarization of the current.

By substituting Eqs. �18�–�20� into Eq. �11� and consid-
ering that P��ex /EF we obtain the nonequilibrium spin
torque,

T = −
m�ex

e�2EFMs
�jx�M � dx� + jy�M � dy�� , �21�

where we have introduced the vectors

dl = cx
l x̂ + cy

l ŷ + cz
l ẑ; �l = x,y� , �22�

with x̂, ŷ, and ẑ as the unit vectors along the x, y, and z axes,
respectively. Equation �21� is valid for strong ferromagnets
and for linear in k but otherwise arbitrary SOCF and for any
orientation of the magnetization. It reveals in an elegant and
simple way how the nonequilibrium spin torque is deter-
mined by the SOCF whose properties are encoded in the
vectors dl.

We remark that the SOC mediated spin torque in Eq. �21�
is different from the conventional torque produced by inject-
ing a spin-polarized current into a ferromagnetic layer. The
conventional torque requires a source �usually an additional
ferromagnetic layer� of spin-polarized electrons with noncol-
linear magnetization compared to the magnetization of the
free layer �where the spin torque is exerted� and can be finite
even in the absence of SOC.1–7 In contrast, the SOC medi-
ated spin torque vanishes in the absence of SOC �see Eq.
�21�� but does not require the injection of spin-polarized cur-

rents and can, therefore, be present in structures containing a
single ferromagnetic layer.

IV. LANDAU-LIFSHITZ-GILBERT EQUATION

We now consider the presence of an external magnetic
field and include the effects of the SOC mediated spin torque
T �see Eq. �21�� in the standard LLG equation.26,27 The
modified LLG equation describing the magnetization dynam-
ics of a single ferromagnetic layer in the presence of SOC
and subjected to an in-plane current flow and an external
magnetic field reads

dM

dt
= − �0�M � Heff� +

�G

Ms
�M �

dM

dt
� + �0T , �23�

where �G is the Gilbert damping parameter and the effective
field reads as

Heff = Hext + Han + Hd + Aex�
2M . �24�

Here Hext is the applied external field, Han is the anisotropy
field, Hd is the demagnetizing field due to axial dipole cou-
pling, and Aex is an exchange constant.27 Taking into account
Eq. �21�, one can rewrite the modified LLG equation �Eq.
�23�� as

dM

dt
= − �0�M � �Heff + Hdrive�� +

�G

Ms
�M �

dM

dt
� ,

�25�

with the effective driving field

Hdrive =
m�ex

e�2EFMs
�jxdx + jydy� . �26�

The SOC mediated driving field Hdrive competes with Heff
�see Eq. �25�� and could be useful for current-driven magne-
tization switching in single, uniformly magnetized ferromag-
netic layers, as already discussed in Refs. 16 and 17. How-
ever, since Hdrive does not compete with the damping, the
SOC mediated excitation of steady magnetization preces-
sions in such systems is not possible.

V. SOC MEDIATED SPIN TORQUE IN SYSTEMS WITH
SIA AND/OR BIA

In noncentrosymmetric materials, the lack of bulk inver-
sion symmetry results in the BIA-induced SOC.28,29 This
kind of SOC is, in general, present if the magnetic layer
consists of a noncentrosymmetric ferromagnet and/or at in-
terfaces between ferromagnets and noncentrosymmetric ma-
terials such as zinc blende semiconductors.30 The SIA-
induced SOC does not need the presence of
noncentrosymmetric materials; it originates from the lack of
inversion symmetry of the structure itself �e.g., a ferromag-
netic layer sandwiched between two different materials� and
is determined by build-in and/or external electric fields.28,29

For systems with both BIA and SIA the two SOC mecha-
nisms coexist. That is the case, for example, of zinc-blende
semicondutor/cubic ferromagnet interfaces such as �001�
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GaAs/Fe, where the BIA-induced SOC of the noncentrosym-
metric semiconductor interferes with the SIA-like SOC re-
sulting from the strong build-in electric field at the interface.
Such an interference leads to a net twofold symmetric SOCF
which reflects the C2v symmetry of the �001� GaAs/Fe
interface.29,30

We focus now on the specific form of the nonequilibrium
spin torque mediated by BIA- and SIA-induced SOCs in
ferromagnetic layers grown in the directions �001�, �110�,
and �111�.

A. (001) layers with axes x̂ ¸ [100], ŷ ¸ [010], and ẑ ¸ [001]

The SOC containing both SIA-induced Bychkov-Rashba
and BIA-induced Dresselhaus terms is given by18,19,29,31

HSO = ��kx�y − ky�x� + ��kx�x − ky�y� , �27�

where � and � are the corresponding Bychkov-Rashba and
linearized-Dresselhaus parameters, respectively. The values
of the SOC parameters are material dependent. For zinc-
blende semiconductors the order of these parameters ranges
from 10−3 eV Å to 10−1 eV Å.29 For the case of ferromag-
netic materials the values of the SOC parameters are less
known. The SOCFs in an Fe/GaAs slab have recently been
extracted from ab initio calculations.32 For such a structure
the Bychkov-Rashba-type and Dresselhaus-type SOC param-
eters were found to vary from about 	10−2 to 10−1 eV Å.32

The components of the SOCF, w, corresponding to
Eq. �27� are wx=�kx−�ky, wy =�kx−�ky, and wz=0. From
Eqs. �7� and �22� one obtains

dx = �x̂ + �ŷ; dy = − �x̂ − �ŷ . �28�

The SOC mediated spin torque can be straightforwardly ob-
tained by placing the above relation into Eq. �21�. The result
is shown in Table I �see case A�. The angle �0 denotes the
direction of the in-plane charge current, i.e., jx= j cos �0 and
jy = j sin �0. By introducing polar coordinates for the magne-
tization, M=Ms�sin � cos � , sin � sin � , cos ��T, the compo-
nents of the spin torque T= �Tx ,Ty ,Tz�T can be rewritten as

Tx =
m�exj

e�2EF
�� cos �0 cos � − � sin �0 cos �� , �29�

Ty =
m�exj

e�2EF
�� sin �0 cos � − � cos �0 cos �� , �30�

and

Tz =
m�exj

e�2EF
sin ��� cos�� − �0� − � sin�� + �0�� . �31�

In the particular case of an in-plane magnetization �i.e., �
=90°� we obtain, Tx=Ty =0 and

T =
m�exj

e�2EF
�� cos�� − �0� − � sin�� + �0��ẑ . �32�

After the transformations �ex→Jsd, �→−�, �→�, �→�,
and �0→�0 so that the notations here and those used in Ref.
17 match each other, Eq. �32� reduces �up to a factor of 2�
�Ref. 33� to Eq. �50� of Ref. 17.

B. (110) layers with axes x̂ ¸ [11̄0], ŷ ¸ [001], and ẑ ¸ [110]

Here the SOC is determined by31,34,35

HSO = �kx�y − �ky�x + �kx�z, �33�

where � and � are parameters related to the SIA-induced
SOC and � is the strength of the BIA-induced SOC. Note
that, in general, ��� which is a manifestation of the re-
duced symmetry of �110� layers with respect to the �001�
structures.31,34

The SOC mediated spin torque can be obtained by follow-
ing the same procedure as before and the result is displayed
as case B in Table I. In comparison with the previous case
�case A� the spin torque posses now an extra component in
the direction ẑ�M.

C. (111) layers with axes x̂ ¸ [112̄], ŷ ¸ [1̄10], and ẑ ¸ [111]

In this case the SOC can be written as31,35

HSO = �� + ���kx�y − ky�x� , �34�

where � and � are the strengths of the SIA- and BIA-induced
SOCs, respectively. Equation �34� is equivalent to a
Bychkov-Rashba SOC with strength �+�. Therefore, the
spin torque can readily be obtained from the results in case A
by performing the transformations �→0 and �→ ��+��.
The resulting spin torque is shown as case C in Table I. In
the regime �=−� �this could in principle be achieved by
tuning � electrostatically� the SOC is zero �see Eq. �34�� and
the spin torque vanishes. This open the possibility of switch-
ing the SOC mediated spin torque by means of a bias volt-
age.

VI. SPIN TORQUE MEDIATED BY STRAIN-INDUCED
SOC

We now investigate the effects of strain-induced SOC on
the spin torque. We consider a �001� layer with axes x̂ � �100�,
ŷ � �010�, and ẑ � �001� with a strain-induced SOC of the
form36

TABLE I. SOC mediated spin torque in units of m�ex /e�2EFMs

for different growth directions.

Case
Growth
direction Spin torque

A �001� j��� sin �0−� cos �0��M� x̂�
− �� cos �0−� sin �0��M� ŷ��

B �110�
j�� sin �0�M� x̂�−cos �0���M� ŷ�

+��M� ẑ���

C �111� j��+���sin �0�M� x̂�−cos �0�M� ŷ��
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HSO = �n��uzxkz − uxyky��x + �uxykx − uyzkz��y

+ �uyzky − uzxkx��z� + �n�kx�uyy − uzz��x

+ ky�uzz − uxx��y + kz�uxx − uyy��z� , �35�

where uij are the components of the strain tensor and � and
� are material parameters. The spin torque deduced from Eq.
�35� is given by

T = −
m�exj

e�2EFMs
���uyz sin �0 − uzx cos �0��M � ẑ�

+ ��uxycos �0 + ��uzz − uxx�sin �0��M � ŷ�

+ ���uyy − uzz�cos �0 − �uxy sin �0��M � x̂�� . �36�

The parametrical dependence of the SOC mediated,
strain-induced spin torque is quite rich and suggests the pos-
sibility of engineering its form by appropriately designing
the strain properties. In the particular case of an in-plane
uniaxial strain such that the only nonvanishing components
of the strain tensor are uxx=uyy �uxy =uyx the spin torque

acquires a form similar to the one given in case A but with
strain-renormalized SIA and BIA parameters �→�uxy and
�→�uxx.

VII. SUMMARY

We have derived a general expression for the current-
induced spin torque in a single ferromagnetic layer in the
presence of a linear in momentum SOC field. We have per-
formed explicit calculations of the spin torque in �001�,
�110�, and �111� layers lacking bulk and/or structure inver-
sion symmetry. The spin torque mediated by strain-induced
SOC has also been investigated.
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