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3He confined in aerogel in the millikelvin temperature domain exemplifies a Fermi liquid in the presence of

disorder. In confined 3He systems, a solid layer of 3He atoms forms on the confining medium. This system can
then be viewed as a model system for the study of the �strongly interacting� Fermi liquid in contact with a
�ferromagnetic� “two-dimensional-like” adsorbed solid. This interaction, studied experimentally through NMR
T2 experiments, is described in the framework of the “fast-exchange” model. A complete analytical description
of the model is given, explaining our measurements as well as related normal-state confined 3He NMR
literature.
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I. INTRODUCTION

The nuclear magnetic properties of solid and liquid 3He
are studied extensively since the 70s and demonstrate an
amazingly rich panel of phenomena: from the ideal �neutral�
Fermi liquid,1 the BCS p-pairing superfluid,2 to the magnetic
orders up-up-down-down and canted Néel antiferromagnet
�Refs. 3–7� in the solid, associated to their peculiar excita-
tions �a non exhaustive list being particle hole, spin waves,
homogeneously precessing domain, etc�. See for instance
Ref. 8 for reviews.

Two-dimensional low-temperature physics of quantum
solids originates in adsorption at surfaces.9–11 The study of
the magnetic properties of confined 3He has followed very
rapidly the first results on the bulk liquid.12–16 It soon be-
came obvious that a few layers of 3He were adsorbed on the
immersed surfaces and formed a “two-dimensional �2D�-
like” solid. Especially, with graphite substrates �which
present very large surface areas to the adsorbate� ideal 2D
magnetic behavior has been reported: for instance in the
Heisenberg ferromagnetic 2D solid, in accordance with the
Mermin-Wagner theorem, no phase transition is detected at
finite temperature and finite field.17,18

With the advent of a new type of porous substrates,
namely, the silica aerogels, a renewal of the confined 3He
studies occurred in the middle of the 90s.19,20 An aerogel is a
net of strands formed of roughly 3-nm-diameter silica
spheres. The average distance between strands lies in the
range of 30–170 nm, which corresponds to samples having
porosities lying between 95% and 99%. Moreover, the struc-
ture of the net is fractal with both volume and surface signa-
tures, over typically 2 orders of magnitude �i.e., from 10 to
1000 nm� in lengths as can be seen using neutron- or x-ray
diffraction �see, e.g., Ref. 21 for a discussion and further
references�.

The very large effective surface available for adsorption
makes aerogel samples very useful for surface physics while
the typical 70 nm size of the aerogel pores makes these
samples particularly interesting for 3He physics. Indeed, this
length scale is of the same order as the superfluid coherence
length, which enables to strongly suppress the superfluid
transition.19 Thus, one can study the effect of a controlled

�fractal, with no lattice� disorder introduced in a perfect BCS
superfluid. On the other hand, the Fermi-liquid properties are
not affected22,23 since their relevant lengthscale is atomic,
kF

−1�1 Å. However, the transport properties are strongly
modified since the network of strands limits the mean-free
path of thermal excitations.24,25

In these confined experiments, the behavior of the liquid
and the adsorbed solid at the level of the boundary layer is an
intriguing and important question. Indeed, the features ob-
served in nuclear magnetic resonance �NMR, the line shape
in continuous wave, and the T1 and T2 relaxation times in
pulsed experiments� are directly linked to the fluid-solid
interaction.16,26,27 Even the state of the matter at the level of
the boundary has been questioned:28 first of all, is it a liquid
or a solid? If it is a liquid, is it a “ferromagnetic liquid?” Or
are the two spin baths unchanged with simply a weak liquid/
solid exchange due to the overlap of their wave functions?
Moreover, the boundary effects between ferromagnetic and
paramagnetic domains is of ubiquitous interests in physics:
they appear here in 3He NMR experiments but can be ex-
ploited with electron-spin resonance �Ref. 29� for metallic
micro/nanolayered structures. The model of “fast exchange”
was rapidly proposed to explain the results obtained on con-
fined 3He.26,27,30,31 Based on ideas developed by Béal-Monod
and co-workers,28 it explained the distortion of the superfluid
NMR line shapes,26 the linear in temperature relaxation time
T1,27 and the anomalous 1 /T dependence of the thermal re-
sistance between the fluid and the cold source �instead of the
1 /T3 Kapitza resistance�.30 In this model the atoms �carrying
a spin� can jump very quickly from one spin bath to the other
�i.e., the solidlike and the liquid ensemble�. This generates in
turn a spin current at the interface which carries information
from one ensemble to the other producing the signatures
described above.

In the present experimental work we visualize the fast-
exchange effect through the T2 �spin-spin relaxation time�
measured with continuous-wave NMR �cw-NMR� on 3He
confined in aerogel. These original results are corollary to the
T1, T2 measurements done on other substrates but their im-
portance lies in the quality of the data. We present in the first
part the experimental facts. In the second part, the 3He
normal-state fast-exchange model is given through a com-
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plete description of the formalism, which is missing in the
literature up to now.

The aim of the paper is to shed light on the magnetic
properties of confined 3He, in particular, by giving the exact
conditions of fast-exchange �what is effectively meant by
fast� and the related parameters. We point out in this paper
that the fast-exchange mechanism can then be used to probe
other magnetic properties of the combined liquid/solid
system.

II. EXPERIMENT

In the present paper we report on cw-NMR experiments
performed on 3He confined in aerogel for pressures ranging
from 0 to 30 bars. We have used a standard cylindrical
sample of 98% open aerogel.32 The aerogel was inserted in a
5-mm-diameter cylindrical cell. The gap between the wall of
the cell and the aerogel was made to be about 0.1 mm. The
pick-up NMR saddle coils were mounted slightly above the
closed bottom of the cell. The upper end of the aerogel
sample was about 10 mm above the coils sensitivity region.
An important issue in our experiments is the homogeneity of
the static magnetic field B0 applied vertically, parallel to the
aerogel sample �37 mT�. The field distribution gets convo-
luted to the actual NMR resonance line, giving rise to an
“inhomogeneous linewidth” �Binh and an “inhomogeneous
line shape.” We achieved a 4.5 �T �Binh �full width mea-
sured at half height of the absorption, equivalently 145 Hz in
the frequency domain, see Fig. 1 and discussion below�. Two
vibrating wire resonators especially calibrated, mounted
above the aerogel sample, were used to determine accurately
the 3He temperature between 1 and 120 mK.33

A. Magnetic properties
3He is adsorbed on the silica strands and forms a disor-

dered 2D-like solid. When necessary, it can be removed by
adding controlled amounts of 4He �nonmagnetic� to the sys-
tem: due to its larger mass, it adsorbs preferentially and re-
places the solid 3He.

The characteristics of the cw-NMR absorption resonance
line were studied as a function of pressure and temperature in
small radio-frequency drives: namely, its area �corresponding
to the magnetization�, its position �corresponding to the local
magnetic field� and its width. The width is a function of both
the field inhomogeneity �Binh and the intrinsic spin-spin re-
laxation rate of the system 1 /T2.

In Fig. 2 we plot the magnetization M extracted from the
NMR absorption line and its position �inset�. At low tem-
perature, the magnetization grows almost as 1 /T, which is
characteristic of the adsorbed solid. At high temperature, the
magnetization flattens out: the solid magnetization is negli-
gible and we recover the Fermi-liquid �Pauli� magnetization.
It can be fitted to a coexistence of a solid plus a liquid in
weak interaction

M = Ml + Ms,

Ml = C0
nliq�P�
TF

���P�
,

Ms = C0
nsol�P�

T − ��P�
,

where � is the Curie-Weiss temperature of the solid �related
to the exchange interactions J in the 2D solid and the liquid-
solid exchange coupling I�, TF

�� is the Fermi temperature of
the liquid �i.e., interactions in the liquid�, nsol and nliq are the
solid and liquid quantities, respectively. C0 is the Curie con-
stant per spin. The pressure dependence has been explicitly
mentioned. The resulting fitting parameters nsol�P� /nliq
�P=0� �in %� and � are presented in Fig. 3 as a function of
pressure.

The magnetization of the liquid is an important physical
parameter of the system. Its magnitude �and thus the strength
of the magnetic interactions� is directly given through the
effective Fermi temperature TF

��. In principle, it could be re-
inforced by exchange with the solid layer.28 We have made
detailed measurements of the liquid magnetization, both con-
fined in aerogel and in an open geometry. We find that the
TF

�� is neither sensitive to the presence of the 100-nm-sized
disorder nor to the solid layers �for details, see Ref. 23�. This
experimental result is given in Fig. 4.
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FIG. 1. �Color online� 3He cw-NMR �absorption� resonance
lines �open circles� measured at 12.3 bar at high �100 mK, top� and
low �4.1 mK, bottom� temperatures. The zero on the x axis is the B0

applied field �37 mT�. The dashed lines �blue� are Lorentzian fits
while the full lines �red� are Gaussian fits. Typically, the low-
temperature line is Lorentzian and broader than the high-
temperature one. The high-temperature line, which reflects the field
inhomogeneity, looks Gaussian with an inhomogeneous broadening
on the order of 4.5 �T. In the bottom graph the line shape of the
pure liquid, obtained when 4He is added, is displayed for compari-
son �full circles, 17 bars at same temperature, green online�.

COLLIN et al. PHYSICAL REVIEW B 80, 094422 �2009�

094422-2



The quantity of solid grows linearly with P while the
Curie-Weiss temperature decreases, which is characteristic of
the densification of a disordered solid.34 The inset of Fig. 2
shows that at the same time the resonance line position is
almost fixed with a slight drift at high temperatures. This
effect is pressure independent, is also present when the aero-
gel sample is coated with �nonmagnetic� 4He, removing the
adsorbed 3He. It is thus a spurious effect �note the scale in
Fig. 2� due to a slightly temperature-dependent magnetic en-
vironment. As far as our understanding of the system is con-
cerned, the resonance line position is a constant �the horizon-
tal line of the inset in Fig. 2�.

B. Fast exchange on cw-NMR lines

In Fig. 1 we show two typical NMR absorption lines. Due
to the fast exchange of 3He atoms, only one common NMR
line is seen for the solid plus the liquid components. At low
temperatures the solid dominates, the line looks Lorentzian
�a feature of 2D layers35,36�, and is broader than the high-
temperature one. At high temperatures, we see the inhomo-
geneous field distribution, which happens to be close to
Gaussian. In between, the line shape changes smoothly and
we can extract the full width at half height �B as a function
of temperature �Fig. 5�. The solid linewidth dominates at low
temperatures while its contribution disappears at high tem-
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FIG. 2. �Color online� Magnetization �area� of the NMR absorp-
tion line as a function of temperature at 12.3 bar and 37 mT. The flat
high-temperature end is characteristic of the Fermi liquid while the
low-temperature growth is characteristic of the adsorbed solid. The
line is a fit �see text�. Inset: peak position of the line as a function of
the temperature; the horizontal dashed lines represent the full width
at half height while the full line is the average resonance field
retained. Note the field resolution on the y scale. On both graphs the
vertical dashes represent the bulk 3He superfluid Tc.
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FIG. 3. �Color online� Amount of solid adsorbed �normalized to
the liquid quantity at 0 bar� and Curie-Weiss temperature �inset�.
The monotonic increase in the solid fraction and the decrease in the
interaction �seen through �� is characteristic of the growth and
densification of the disordered solid.
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FIG. 4. �Color online� Inset: magnetization measurement up to
high temperatures realized on liquid 3He confined in aerogel �at 17
bar, 25 mT� �Ref. 23�. The low-temperature growth is the solid
contribution already discussed while the high-temperature decrease
marks the liquid Fermi temperature TF

�� �the line is a guide�. The
main graph shows the values extracted as a function of pressure
�empty squares� in agreement with our results for bulk liquid �full
squares, the full line is a guide�.
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FIG. 5. �Color online� Full width at half height of the NMR
absorption line as a function of temperature at 12.3 bar and 37 mT
�crosses�. The horizontal dashed line represents the inhomogeneous
linewidth while the arrow at low temperatures represents the line-
width extracted for the solid. The vertical dashed line is the bulk
superfluid 3He Tc. The full line is the fit explained in the text, based
on expression �1�. The dashed line is the exact convolution
procedure.
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peratures. The field inhomogeneity is understood as a convo-
lution to the liquid-solid NMR line, visualized directly when
the aerogel is coated with �nonmagnetic� 4He �removing thus
the solid 3He, see Fig. 1�. This inhomogeneous linewidth
�Binh is much larger than the intrinsic liquid linewidth 1 /T2

l

�see the T2
l reported in the literature37� and is of the order of

the intrinsic solid linewidth 1 /T2
s . The fit on Fig. 5 is simply

a weighted average of the solid and liquid linewidths �Bsol
and �Bliq �including for each the inhomogeneous contribu-
tion�

�B =
Ml�Bliq + Ms�Bsol

Ml + Ms
. �1�

While this procedure neglects the shape difference between
Lorentzian and Gaussian lines, the fit is rather good; the
exact convolution calculation produces the dashed line. Note
that on the contrary it is impossible to fit the data by simply
adding up two �one for the solid and one for the liquid�
resonance lines.

C. Resolving the solid

From Eq. �1� it is possible to extract �Bsol and �Bliq for
various pressures. Both contain the inhomogeneous contribu-
tion. The resulting solid and liquid linewidths are produced
in Fig. 6.

The liquid contribution is directly the inhomogeneous
contribution �Bliq��Binh. However, the solid term contains
both the true intrinsic solid linewidth and the field inhomo-
geneity. The intrinsic solid contribution is of order �Bsol
�4 �T, which corresponds to a dense solid.35,36 When add-
ing 4He, one removes this solid. The pure liquid NMR line
reflects then the inhomogeneous field �open symbol, Fig. 6,
dots Fig. 1�. Moreover, when 20% of the solid only is left,
the line shape is already the inhomogeneous one, which
proves that most of the solid linewidth comes from the first

very dense layer.22 It explains why the measured solid width
seems to be pressure-independent: the first very dense layer
is not affected very much by pressurization.

In the following the fast-exchange model will be de-
scribed �within a simplified geometry� in order to explain
these linewidth �B �i.e., T2� measurements, together with
other NMR-confined normal-fluid 3He results. The point is
that our ability to resolve the solid contribution through the
fast-exchange formalism makes it a useful tool to study the
magnetic properties of the combined system.

III. FAST-EXCHANGE MODEL

NMR is the natural tool used to experimentally access the
magnetization of 3He systems. It is indeed the technique we
used here and our results have been presented in the previous
part. We will therefore expose the following theoretical as-
pects in the well-known NMR language.38,39 The local mag-
netization will be denoted m� �r� , t� while the total magnetic
moment �the parameter measured in NMR� is M� �t�
=���m� �r� , t�d3r.

The model system we consider is a spherical cavity of
radius R containing the liquid �in practice about 100 nm� in
contact at the periphery with a layer of solid of thickness �
�in practice, from one to three “atomic layers,” i.e., 1 nm�.
This is schematically represented in Fig. 7. The two spin
baths have well-defined magnetic relaxation parameters T1

s,l

�spin lattice�, T2
s,l �spin-spin� and magnetic transport proper-

ties, expressed through a spin diffusion coefficient D�
s,l gen-

erating a bulk current j��
s,l=−D�

s,l�� m�
s,l ��=x ,y ,z for each

magnetization component�. The magnetic susceptibility of
each spin bath is �0

s,l. A static homogeneous magnetic field
B0 is imposed along z�. The two spin baths acquire thus a
static �homogeneous� thermodynamical magnetization m0

s,l

=�0
s,lB0 along z�. The radio-frequency �magnetic� excitation at

angular frequency � is denoted 2B1 �and points along x��. The
total field is thus B� =B0z�+2B1 cos��t�x�. The properties of
both the solid and the liquid are homogeneous. Moreover, the
liquid and the solid are supposed to be perfectly isotropic.
The superscripts s , l evidently refer to the relevant spin bath.

In this idealized view, they are two main simplifications
which should not impact too much the description of the
effect we are analyzing. First, we wrote atomic layer in quo-
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FIG. 7. �Color online� Schematic of the two idealized coupled
spin baths �not to scale�. The global shape is taken to be isotropic
for simplicity. The relevant parameters are introduced on the figure
and explained in the text.
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tation marks because in practice it certainly is not a well-
defined crystalline solid. Moreover, in a 2D solid the “intra-
layer” and “interlayer” spin transports are usually quite
different. Nevertheless, we rely on the disordered nature of
the solid formed on the porous substrates to somehow
“smooth out” these difficulties by producing an average set
of parameters that are roughly homogeneous and isotropic.
The second restriction is that we limit the discussion to one
spherical cavity. Again, its properties can be viewed as aver-
age parameters obtained over the distribution of pores in the
material �aerogel, sinter, powder�. What this treatment ne-
glects is any coherent phenomenon coming from the cou-
pling between neighboring cavities �this is seen for instance
in one limiting model of a confined superfluid weakly linked
from one cavity to the other through a Josephson coupling�.
In our �normal state� discussion, coherent effects should be
negligible.

The two spin baths are linked by a boundary magnetic
current j��

S ��=x ,y ,z�. The following paragraphs will de-
scribe the modeling of the liquid spin bath, of the solid com-
ponent and then of this coupling term. In the last part we will
solve these equations in simple limiting cases in order to find
out the very simple laws the solid+ liquid total system fol-
lows in an NMR experiment, making the link with the first
experimental part of the paper.

A. Liquid component

In NMR theory, the line shape of the absorption resonance
line of a one family spin system in a homogeneous field is
due to the dipolar coupling between the spins. In the para-
magnetic solid this linewidth has a Gaussian-type shape and
can be quite broad. In the liquid phase however, due to the
fast motion of the neighboring particles, the dipolar fields
average out and the local field seen by one 3He atom reduces
almost to the static field B0: the NMR resonance line is very
sharp, and this effect is known as motional narrowing.38

Moreover, the line shape is almost Lorentzian, which means
that the simple Bloch equations will be a very good descrip-
tion of the NMR dynamics. Including the spin-diffusion term
�due to a bulk current j��

l appearing through D�
l �, they write

�m� l�r�,t�
�t

= 	m� l�r�,t� 
 B� −
mx

l �r�,t�x� + my
l �r�,t�y�

T2
l

−
mz

l�r�,t� − mz0
l z�

T1
l + D�

l �� 2m� l�r�,t� .

By definition, at the boundary between liquid and solid we
have

− D�
l �� m�

l ��r�� = R,t� = j��
S��r�� = R−�

with the notation R− meaning “on the internal side of the
boundary spherical surface.” This surface current will be dis-
cussed explicitly below.

One important result due to motional narrowing is that
�for low enough fields� one simply has T1

l =T2
l .38,40 In the

degenerate Fermi liquid, only one parameter governs both
the relaxation times and the spin-diffusion coefficient D�

l : the

quasiparticle scattering time �. This single-particle lifetime
scales as 1 /T2 typically below 50 mK.2,8 One has simply
T1

l �D�
l .

The relaxation time gets much longer than a 100 s at low
temperatures8,37 and the diffusion coefficient has values far
above 10−5 cm2 /s �Refs. 8 and 41� �this minimum occurring
for both around 0.5 K�. These values depend on pressure and
are the smallest at the melting curve. This means that on the
scale of the solid linewidth, the liquid resonance line is al-
most a delta function, and the high value of the spin-
diffusion coefficient will ensure that magnetization is easily
transported over the liquid sphere.

Due to the high symmetry of the problem, each �
=x ,y ,z component of the magnetization depends only on r
= �r��. Thus the derivation operators written above reduce to
simple expressions and j��

S � r̂ is constant over the boundary
surface.

The above equations describe a trivial precession at � of
the magnetization about the field axis z� plus the motion in-
duced by the excitation B1. It is convenient to transpose them
in a rotating frame, rotating at the precession velocity, in
order to deal only with the slow dynamics induced by the
NMR protocol,

�mx
l̃ �r,t�
�t

= −
mx

l̃ �r,t�
T2

l + ��my
l̃ �r,t� + D�

l �2mx
l̃ �r,t� ,

�my
l̃ �r,t�
�t

= −
my

l̃ �r,t�
T2

l − ��mx
l̃ �r,t� + D�

l �2my
l̃ �r,t�

− �1mz
l̃�r,t� ,

�mz
l̃�r,t�

�t
= −

mz
l̃�r,t�
T1

l + D�
l �2mz

l̃�r,t� + �1my
l̃ �r,t� ,

where the tilded parameters are rotating frame transformed
parameters. We have introduced ��=�−�0 with

�0

2� =−	B0

and
�1

2� =−	B1. The quantity mz
l�r , t�=mz

l�r , t�−mz0
l is the de-

viation of the z component from the thermodynamic equilib-
rium. Note that the z component is not affected by the rotat-
ing frame transformation and the tilde notation can be
equivalently used or omitted.

If the NMR drive B1 remains small, linear-response
theory can be applied. The signal measured by the NMR

pick-up coil is then M̃t
lei�t with M̃t

l=M̃x
l + iM̃y

l �written in
complex form, M being the total magnetic moment present

inside the coil�. The real part of M̃t
l is thus proportional to the

dispersion �� of the ac susceptibility while the imaginary
part is the absorption ��. Without spin diffusion �and in an
homogeneous field�, the width at half height of the Lorentz-
ian absorption resonance curve is given by �Bliq
=1 / ��T2

l 	� in magnetic field units �	 is the gyromagnetic
ratio, in Hz/T�.

To compute the actual NMR line shapes, one thus needs
to resolve the set of coupled equations
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�mt
l̃�r,t�
�t

= − � 1

T2
l + i���mt

l̃�r,t� + D�
l �2mt

l̃�r,t� − i�1mz
l̃�r,t� ,

�mz
l̃�r,t�

�t
= −

mz
l̃�r,t�
T1

l + D�
l �2mz

l̃�r,t� + �1my
l̃ �r,t� �2�

with boundary condition

− D�
l �� m�

l̃ �r = R,t� = j�
S�˜�r = R−� �3�

the spherical symmetry bringing �� =� /�rr̂ and �2

=1 /r�2 /�r2r. The detected liquid signal is obtained by inte-
grating on the cavity volume 4 /3�R3.

B. Solid component

For a paramagnetic solid, NMR theory predicts a reso-
nance line shape close to a Gaussian with a width due to the
dipolar coupling �Bpara��0�3He /d3 ��0=4�
10−7 S.I. and
�3He the 3He nuclear magnetic moment, d being the lattice
parameter of the solid�. Taking the tabulated values and d
�0.5 nm one gets �Bpara on the order of 100 �T. How-
ever, if some exchange is allowed in the solid, say a ferro-
magnetic coupling J between spins �given in Kelvin�, then
the line is narrowed down essentially for the same reasons as
those exposed above for the liquid motion. This is called
exchange narrowing. If this effect is large, the line shape
approaches a Lorentz resonance line with a linewidth given
by �Bsol��0

2�3He
3 / �d6JkB�. With an exchange J of 10 �K,

the linewidth narrows down to about 1 �T. The exact values
of �Bpara and �Bsol depend on the exact shape of the solid;
see the discussion of Ref. 38 and the original work by Van
Vleck.42 In the case of a 2D solid, these facts are clearly
confirmed experimentally in Ref. 36. For our purpose, it
means a set of Bloch equations will again be a good descrip-
tion of the magnetization dynamics in NMR experiments.

The dipolar field generated by the solid on itself shifts its
NMR resonance line.43 This shift depends on the orientation
of the adsorption surface with respect to the magnetic field
B0. As a result, due to the distribution of such orientations in
the sample, the NMR solid line shape broadens and becomes
asymmetric as the solid polarization increases. In our case,
the spherical symmetry minimizes this effect and the polar-
ization in our range of temperatures is always smaller than
5%. We can thus safely neglect any solid dipolar broadening
or resonance shift, and consider only the case of a perfectly
zero-polarized solid, with a unique �symmetric and Lorentz-
ian� resonance line.22

The same equations as those for the liquid, Eq. �2�, are
valid, replacing the superscript l→s. The boundary condition
replacing Eq. �3� writes

− D�
s �� m�

s̃ �r = R,t� = j�
S�˜�r = R+� �4�

with similar notations to the above ones.

In the solid, the quantum exchange J is the cause of the
spin relaxation T1

s , spin dephasing T2
s and spin diffusion D�

s .
The T1

s and T2
s are related to the spectral density of field

fluctuations44 �in the absence of disorder generated only by
the dipolar term, i.e., see the discussion above for the line-
width �Bsol giving the inverse of T2

s�. Contrary to the liquid
case, T1

s �T2
s . For a 2D solid, a careful look at the line shape

�or the free induction decay in pulsed NMR� reveals depar-
tures from the simple Lorentzian description.45 It arises from
the couplings involved �dipolar and exchange� and the re-
duced dimensionality. These refinements are outside of the
scope of this paper and average T1

s and T2
s will be sufficient

to describe the effect discussed here.
The spin diffusion coefficient D�

s can be written in a very
general way D�

s �Jd2.44 A true �pulsed NMR� spin-diffusion
experiment is difficult for adsorbed 3He because of the un-
derlying substrate. However, estimates can be obtained from
T1,2

s measurements.46 Typically, values ranging from
10−4 cm2 /s �low density� to 10−8 cm2 /s �high density� are
expected. From the literature46–48 one obtains values on the
order of 10 ms for the T1

s , T2
s of adsorbed solids in low

magnetic fields.

C. Magnetization current at interface

In the problem investigated here, there is no net creation
of magnetization at the interface, so the currents on each side
of it should be equal,

j��
S�r = R−� = j��

S�r = R+� = j�
Sr̂

with �=x ,y ,z for each magnetization component. Due to the
symmetry, j��

S has to be oriented along r̂ and uniform. More-
over, at r=0 and r=R+�, the magnetization currents should
vanish.

From a microscopic point of view, the current at the in-
terface can be written as

j�
S = j�

l→s + j�
s→l

with

j�
l→s =

1

S
�

i liquid�S

+ �l→s�3He	��
i 
 ,

j�
s→l =

1

S
�

i solid�S

− �s→l�3He	��
i 
 .

In the above equations, S represents an infinitesimal ele-
ment of the boundary surface. On both sides of this surface
element �in the liquid and the solid� we have a large number
of atoms i denoted by i�S. These atoms contribute to the
interface current through the exchange rates �l→s ,�s→l with
�3He	��

i 
 the thermodynamical average of their magnetiza-
tion ��� are Pauli operators�. Due to the isotropy of the prob-
lem, the rates are the same for all directions �=x ,y ,z. The
sign arises from the orientation along r̂.
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Introducing J�
S =��j�

SdS=4�R2j�
S, the total surface current

can be written as

J�
S = + CliqM�

l − CsolM�
s �5�

with Csol and Cliq two �positive� parameters which are pres-
sure and temperature dependent �i.e., Csol=�s→lnsol4�R2

with nsol the solid contact-layer surface density, in atm /m2�.
From the Fermi golden rule, the exchange rate between a
localized spin and the liquid can be written �s→l

=4� /��kBI�2N2�EF�kBT.30 N�EF� is the density of states at
the Fermi level in the 3He fluid and I is the solid-liquid
exchange energy �given in Kelvin�.

Using the same notations as for the magnetizations, we
define jt

S= jx
S+ ijy

S and a tilde denotes rotating-frame trans-
formed currents. The thermodynamical equilibrium of the
system imposes Jz

S=0 when no drive is present ��1=0� such
that

Cliq = Csol

Mz0
s

Mz0
l . �6�

Note that in this limit, the magnetizations m� should be ho-
mogeneous in each spin bath, and the transverse magnetic
current is also necessarily zero Jt

S=0.

By inspecting the above equations, one realizes that the
only interaction parameter which fixes the strength of the
exchange is I. It is believed that this term is on the order of
100 mK,30,49 which produces �s→l�1 MHz at millikelvin
temperatures. Since it will disappear from the final expres-
sions in the fast-exchange limit, its precise value is not rel-
evant to the present paper. Furthermore, the impact of even a
large I on the solid exchange J is weak because one needs to
involve at least three particles �one in the liquid, two in the
solid� to modify the solid intralayer interactions. Typically,
contributions to J on the order of 100 �K are expected.50,51

IV. SOLVING THE EQUATIONS

We present below the solution of the above equations in

the steady-state case ��ml,s
t̃ /�t=�ml,s

z̃ /�t=0�. In a first part we
will give the exact analytical spatial solution of the problem
for low radio-frequency drives �1�1 /T2

l,s ,1 /T1
l,s �the power

broadening effects are not discussed�. In the second part, we
will integrate the equations over the model volume and give
the macroscopic NMR properties of the total system.

Spatial distribution

For the magnetization of the fluid components we write

mt
l̃�r,t� = −

i�1T2
l

1 + i��T2
l mz0

l

−
�jt

S̃R/D�
l �

��t
lR�2

sinh��t
lR

r

R
�

cosh��t
lR�

�t
lR

−
sinh��t

lR�
��t

lR�2

R

r

and

mz
l̃�r,t� = mz0

l −
�jz

S̃R/D�
l �

��z
lR�2

sinh��z
lR

r

R
�

cosh��z
lR�

�z
lR

−
sinh��z

lR�
��z

lR�2

R

r
.

For the magnetization of the solid components we write

mt
s̃�r,t� = −

i�1T2
s

1 + i��T2
s
mz0

s −
�jt

S̃R/D�
s �

��t
sR + 1�exp�− �t

sR��1 + �t
s�/��t

sR + 1�

1 + �t
s�/��t

sR − 1�
exp�− 2�t

s�� − 1�

 exp�− 2�t

s�R + �����t
s�R + �� + 1

�t
s�R + �� − 1

�exp�+ �t
sr� + exp�− �t

sr�� 

R

r

and
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FIG. 8. �Color online� Illustration of the t component �imaginary
part� of the magnetizations along r̂. The left �red curve� stands for
the liquid and the right �blue curve� for the solid; the dashed vertical
is the boundary. The parameters chosen for the graph are: ��=0,
T2

l �1=0.1, T2
s�1=0.001, �=0.5R, Csol=1012 s−1, mz0

l =1 arb. units,
mz0

s =1 arb. units, �t
lR=0.1, and �t

sR=1.5.
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mz
s̃�r,t� = mz0

s −
�jz

S̃R/D�
s �

��z
sR + 1�exp�− �z

sR��1 + �z
s�/��z

sR + 1�

1 + �z
s�/��z

sR − 1�
exp�− 2�z

s�� − 1�

 exp�− 2�z

s�R + �����z
s�R + �� + 1

�z
s�R + �� − 1

�exp�+ �z
sr� + exp�− �z

sr�� 

R

r

all at first order in �1 and first order in jt
S̃ , jz

S̃. We introduced

the �complex lengths� quantities �t
l=�1+i��T2

l

D�
l T2

l , �z
l =� 1

D�
l T1

l and

�t
s=�1+i��T2

s

D�
s T2

s , �z
s=� 1

D�
s T1

s . The liquid and solid terms are

coupled through the �out-of-equilibrium� currents jt
S̃ and jz

S̃

which are functions of the drive �1. Of course, the above

equations reduce to the usual Bloch solutions when jt
S̃= jz

S̃

=0. They are illustrated in Fig. 8 with exaggerated param-
eters.

The magnetization currents should now be defined self-
consistently. Integrating the above expressions over the
sphere for the liquid and the shell for the solid gives the
simple result

Mt
l̃ = −

i�1T2
l

1 + i��T2
l Mz0

l −
Jt

S̃T2
l

1 + i��T2
l ,

Mz
l̃ = Mz0

l − Jz
S̃T1

l

and

Mt
s̃ = −

i�1T2
s

1 + i��T2
s Mz0

s +
Jt

S̃T2
s

1 + i��T2
s ,

Mz
s̃ = Mz0

s + Jz
S̃T1

s .

Replacing in Eq. �5� gives finally the expressions for Jt
S̃ ,Jz

S̃,

Jt
S̃ = − i

Cliq

�1T2
l

1 + i��T2
l Mz0

l − Csol

�1T2
s

1 + i��T2
s Mz0

s

1 + Cliq

T2
l

1 + i��T2
l + Csol

T2
s

1 + i��T2
s

,

Jz
S̃ = o��1� .

The transverse current Jt
S̃ is first order in �1 while Jz

S̃ is a
second order. Thus, rigorously speaking, there is no spatial
dependence of mz

l,s in the first-order approach presented in
this paragraph �and T1

l,s has dropped out�.
From the numerical values quoted in Secs. III A and III B

for the spin diffusion D�
l,s and the T2

l,s times, we realize that
��t

lR��1 and ��t
sR��1. A first-order expansion in �t

l,sR of the
above expressions is certainly enough to have a good under-
standing of the phenomena. After simplifications, the final
expressions are

mt
l̃ = −

i�1T2
l

1 + i��T2
l mz0

l − 3� jt
S̃

R
� T2

l

1 + i��T2
l + � jt

S̃R

D�
l �


� 3

10
−

1

2
� r

R
�2� ,

mz
l � mz0

l .

and

mt
s̃ = −

i�1T2
s

1 + i��T2
s mz0

s + � jt
S̃

�
� T2

s

1 + i��T2
s − � jt

S̃R

D�
s �


 1

2
−

2

3

R

r
+

1

6
� r

R
�2

+
R

�
�1

2
−

1

3

R

r
−

1

6
� r

R
�2�� ,

mz
s � mz0

s

with

jt
S̃ = − i

�4

3
�R3mz0

l ��1

4�R2 ,

jz
S̃ � 0,

where we also took into account ��R, T2
s �T2

l , and CsolT2
l

�1. This last condition is part of the fast-exchange limit
discussed below. Note that Cliq and Csol have disappeared in
these last expressions.

These results together with Fig. 8 represent our micro-
scopic understanding of the solid-liquid coupled system.
What is expressed by the model is that the magnetization
current carries the rf excitation from the liquid to the solid

were relaxation occurs �i.e., replace the current expression jt
S̃

in mt
l̃ ,mt

s̃ above�. Moreover, if the spin-diffusion coefficients
are large, the magnetization over each spin bath will be prac-
tically homogeneous, with a step at r=R. In the fast-
exchange limit, the magnetization current Jt

S is proportional
to the drive and to the liquid magnetization.

V. NMR PROPERTIES OF TOTAL SYSTEM

The above section gives an exact view of the magnetiza-
tion distribution and the magnetization currents at first order
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in the driving power �1. This explicit analytical description
is very useful in order to understand the magnetic response
of the sample.

However, the NMR coil integrates the signal over the cell
volume and in the following we shall deal only with a mac-
roscopic view of the problem. Taking Eq. �2� for the liquid
and the solid, integrating over the sphere and the shell vol-
umes, respectively, and using Stoke’s theorem for the mag-
netization current

dMz
l̃

dt
= −

1

T1
l Mz

l̃ − Jz
S̃ + �1My

l̃ ,

dMz
s̃

dt
= −

1

T1
s Mz

s̃ + Jz
S̃ + �1My

s̃ �7�

and

dMt
l̃

dt
= − � 1

T2
l + i���Mt

l̃ − Jt
S̃ − i�1Mz

l̃ ,

dMt
s̃

dt
= − � 1

T2
s + i���Mt

s̃ + Jt
S̃ − i�1Mz

s̃ �8�

the notations have already been introduced. The boundary
conditions �3� and �4� reduce to, Eq. �5�

J�
S = + CliqM�

l − CsolM�
s

with the equilibrium condition �6�

Cliq = Csol

Mz0
s

Mz0
l .

In the above equations, the spin-diffusion parameters have
been integrated out. These equations are fairly general, in
particular, they hold for any drive �1 and any diffusion con-
stants. The only parameter defining the magnetization current
is Csol. The other terms are thermodynamical parameters of
the system T1,2

l,s and Mz0
l,s. In the following we will solve the

above equations in two simple cases encountered in NMR
experiments, within the so-called fast-exchange limit, that is,
Cliq,sol T1,2

l,s �1.

A. T1 measurement

In a T1 experiment, the magnetization of the system under
study is deflected by an rf excitation, which is then switched
off. During the free induction decay ��1=0�, the longitudinal
component of the magnetization Mz

l,s relaxes toward the ther-
modynamical equilibrium value Mz0

l,s with an exponential de-
crease at T1

l,s.
Here we calculate the spin-lattice relaxation rate of the

common NMR resonance line 1 /T1
avg. Equations �7� can be

recast, written in a matrix form

d

dt� Mz
l̃

Mz0
l −

Mz
s̃

Mz0
s

Mz
l̃

Mz0
l +

Mz
s̃

Mz0
s
� = �− �1

2
� 1

T1
l +

1

T1
s � + �Cliq + Csol�� −

1

2
� 1

T1
l −

1

T1
s �

−
1

2
� 1

T1
l −

1

T1
s � − �1

2
� 1

T1
l +

1

T1
s � + �Cliq − Csol�� � 
� Mz

l̃

Mz0
l −

Mz
s̃

Mz0
s

Mz
l̃

Mz0
l +

Mz
s̃

Mz0
s
� .

Inspecting the above equations, one realizes that when the
conditions CliqT1

l �1, CsolT1
s �1 are fulfilled, the difference

of the normalized z-component magnetization deflections re-
laxes quickly to zero. On time scales on the order of T1

l,s one
thus has

Mz
l̃�t�

Mz0
l =

Mz
s̃�t�

Mz0
s =

�Mz
l̃�t� + Mz

s̃�t��
Mz0

l + Mz0
s .

Adding up Eqs. �7� and injecting this result, one obtains

d�Mz
l̃ + Mz

s̃�
dt

= −
1

T1
avg�Mz

l̃ + Mz
s̃� .

The average relaxation rate 1 /T1
avg is found to be

1

T1
avg =

Mz0
l

T1
l +

Mz0
s

T1
s

Mz0
l + Mz0

s .

The magnetization of the total system �Mz
l +Mz

s� relaxes thus
with an average rate which is simply the average of the re-
laxation rates, weighted by the magnetizations. We recover,
as we should, the results of Ref. 27.

One implication of the fast-exchange magnetic coupling,
linked to the T1

s , is that it enhances the thermal coupling
between the liquid and the thermalized solids above the stan-
dard Kapitza resistance �1 /T3 at low temperatures�.30 In this
paper, the authors obtain a very good agreement between the
theory52 and experiments on normal liquid 3He. However,
we wish to make here a minor comment on this paper, which
does not affect the results: the authors use the exchange rate
�s→l as a measure of the Lorentzian width of the spectral line
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of the localized spins. This width is in fact not given by �s→l

but rather by 1 /T2
s as shown in Sec. III B.

B. T2 measurement

A true T2 measurement can be performed with NMR spin-
echo techniques.38,39 However, within the field inhomoge-
neous contribution �Binh, an estimate can be obtained
through the pulsed NMR free induction decay of the trans-

verse component Mt
˜, or equivalently the full width at half

height of the continuous wave NMR absorption line.
Here we calculate the spin-spin relaxation rate, which is

inversely proportional to the intrinsic linewidth of the com-
mon NMR resonance line. The above Eqs. �8� can be treated
as Eq. �7� in the case of zero detuning ���=0� and zero rf
drive ��1=0�. One obtains symmetrically

Mt
l̃�t�

Mz0
l =

Mt
s̃�t�

Mz0
s =

�Mt
l̃�t� + Mt

s̃�t��
Mz0

l + Mz0
s

within the conditions CliqT2
l �1, CsolT2

s �1. Adding up Eq.
�8� and injecting this result brings

d�Mt
l̃ + Mt

s̃�
dt

= −
1

T2
avg �Mt

l̃ + Mt
s̃�

with an average relaxation rate for the transverse component

1

T2
avg =

Mz0
l

T2
l +

Mz0
s

T2
s

Mz0
l + Mz0

s .

This rate is again simply the average of the two baths relax-
ation rates, weighted by the magnetizations. This was ob-
served by Ref. 43 for 3He confined within Grafoil sheets.

The continuous-wave NMR experiments are corollary to
the above results. Take Eqs. �8� in the steady state with small
�1 drives. One obtains for the total transverse component

Mt
l̃+Mt

s̃,

Mt
l̃ + Mt

s̃ = i�1
�sMz0

l + �lMz0
s + �Cliq + Csol��Mz0

l + Mz0
s �

− ��l + Cliq���s + Csol� + CliqCsol
,

where we introduced �l=1 /T2
l + i�� and �s=1 /T2

s + i��.
When the conditions CliqT2

l �1, CsolT2
s �1 are fulfilled,

the above result can be simplified in

Mt
l̃ + Mt

s̃ = − i�1
Mz0

l + Mz0
s

�T2
avg�−1 + i��

with T2
avg already introduced. We recover the result that the

linewidth in a continuous-wave experiment is related to the
free induction decay time through 1 /�T2

avg �in the frequency
domain�. This result is presented in the first experimental
part for 3He confined in aerogel, Fig. 5 and Eq. �1�. Note also
that the area of the line is proportional to the total static
magnetization Mz0

l +Mz0
s as it should. In practice, the above

results should be convoluted to the field inhomogeneity to
quantitatively fit the data �dashed line in Fig. 5�.

VI. CONCLUSION

In the present paper we publish experimental NMR results
on normal liquid 3He in contact with a ferromagnetic 3He
solid at very low temperatures. These studies were conducted
by immersing a silica aerogel in the fluid. The Fermi-liquid
properties remain unchanged while the transport coefficients
are limited and a 2D-like solid forms on the aerogel strands.
The importance of our results lies in the quality of the data,
enabling a fine study of the liquid/solid coupling, known as
fast exchange. An analytical description of the fast-exchange
model is given, explaining our data and the related normal-
fluid literature.

The solid and the fluid are in common precession, giving
a single continuous-wave NMR resonance line, or equiva-
lently a single free induction decay signal. The linear-
response properties are those of Bloch equations �i.e.,
Lorentzian resonance� with average parameters T1,2

avg obtained
from a weighted average of the two spin baths rates weighted
by the static magnetizations Mz0

l,s. What is clearly stated in the
theoretical part is that the fast-exchange limit corresponds to
Cliq,solT1,2

l,s �1 with Cliq,sol the jumping rates from the liquid
to the solid, and vice versa. The authors want to point out
that a thorough understanding of the fast-exchange coupling
between the solid and the liquid enables to use the effect to
probe the magnetic properties of the combined system, espe-
cially below the bulk superfluid transition temperature Tc.

ACKNOWLEDGMENTS

We acknowledge valuable discussions with W. Halperin
and A. Andreev. The authors also thank T. Mizusaki and A.
Matsubara for their interest in these studies.

1 D. Pines and Ph. Nozières, The Theory of Quantum Liquids
�Addison-Wesley, Reading, 1989�.

2 D. Vollhardt and P. Wölfle, The Superfluid Phases of Helium 3
�Taylor & Francis, London, 1990�.

3 D. D. Osheroff, M. C. Cross, and D. S. Fisher, Phys. Rev. Lett.
44, 792 �1980�.

4 H. Godfrin, G. Frossati, A. S. Greenberg, B. Hébral, and D.
Thoulouze, Phys. Rev. Lett. 44, 1695 �1980�; E. D. Adams, E.
A. Schuberth, G. E. Haas, and D. M. Bakalyar, ibid. 44, 789

�1980�.
5 M. Roger, J. H. Hetherington, and J. M. Delrieu, Rev. Mod.

Phys. 55, 1 �1983�.
6 H. Godfrin and D. D. Osheroff, Phys. Rev. B 38, 4492 �1988�.
7 D. D. Osheroff, J. Low Temp. Phys. 87, 297 �1992�.
8 E. R. Dobbs, Helium Three �Oxford University Press, New York,

2000�.
9 J. G. Dash, Films on Solid Surfaces �Academic, New York,

1975�.

COLLIN et al. PHYSICAL REVIEW B 80, 094422 �2009�

094422-10



10 S. V. Hering and O. E. Vilches, in Monolayer and Submonolayer
Helium Films, edited by J. G. Daunt and E. Lerner �Plenum,
New York, 1973�.

11 M. G. Richards, in Phase Transitions in Surface Films, edited by
J. G. Dash and J. Ruvalds �Plenum, New York, 1980�.

12 D. F. Brewer and J. S. Rolt, Phys. Rev. Lett. 29, 1485 �1972�.
13 A. I. Ahonen, T. Kodama, M. Krusius, M. A. Paalanen, R. C.

Richardson, W. Schoepe, and Y. Takano, J. Phys. C 9, 1665
�1976�.

14 A. I. Ahonen, T. A. Alvesalo, T. Haavasoja, and M. C. Veuro,
Phys. Rev. Lett. 41, 494 �1978�.

15 H. Godfrin, G. Frossati, D. Thoulouze, M. Chapellier, and W. G.
Clark, J. Phys. �Paris�, Colloq. 39, C6-287 �1978�.

16 H. M. Bozler, T. Bartolac, K. Luey, and A. L. Thomson, Phys.
Rev. Lett. 41, 490 �1978�.

17 H. Godfrin, R. Ruel, and D. D. Osheroff, J. Phys. �Paris�, Colloq.
49, C8-2045 �1988�.

18 P. Schiffer, M. T. O’Keefe, D. D. Osheroff, and H. Fukuyama, J.
Low Temp. Phys. 94, 489 �1994�.

19 J. V. Porto and J. M. Parpia, Phys. Rev. Lett. 74, 4667 �1995�.
20 D. T. Sprague, T. M. Haard, J. B. Kycia, M. R. Rand, Y. Lee, P.

J. Hamot, and W. P. Halperin, Phys. Rev. Lett. 75, 661 �1995�.
21 J. V. Porto and J. M. Parpia, Phys. Rev. B, 59, 14583 �1999�.
22 E. Collin, Thèse de Doctorat, Université Joseph Fourier, 2002.
23 S. Triqueneaux, Thèse de Doctorat, Université Joseph Fourier,

2001.
24 S. N. Fisher, A. M. Guénault, A. J. Hale, and G. R. Pickett, J.

Low Temp. Phys. 126, 673 �2002�.
25 J. A. Sauls, Yu. M. Bunkov, E. Collin, H. Godfrin, and P.

Sharma, Phys. Rev. B 72, 024507 �2005�.
26 M. R. Freeman and R. C. Richardson, Phys. Rev. B, 41, 11011

�1990�; M. R. Freeman, R. S. Germain, E. V. Thuneberg, and R.
C. Richardson, Phys. Rev. Lett. 60, 596 �1988�.

27 P. C. Hammel and R. C. Richardson, Phys. Rev. Lett. 52, 1441
�1984�; 53, 1027�E� �1984�.

28 D. Spanjaard, D. L. Mills, and M. T. Béal-Monod, J. Low Temp.
Phys. 34, 307 �1979�.

29 L. D. Flesner, D. R. Fredkin, and S. Schultz, Solid State Com-

mun. 18, 207 �1976�.
30 T. Perry, K. DeConde, J. A. Sauls, and D. L. Stein, Phys. Rev.

Lett. 48, 1831 �1982�.
31 R. C. Richardson, Physica B & C 126B, 298 �1984�.
32 Our aerogel samples were kindly provided by N. Mulders, Uni-

versity of Delaware.
33 C. B. Winkelmann, E. Collin, Yu. M. Bunkov, and H. Godfrin, J.

Low Temp. Phys. 135, 3 �2004�.
34 A. Schul, S. Maegawa, M. W. Meisel, and M. Chapellier, Phys.

Rev. B 36, 6811 �1987�.
35 H. Godfrin and R. E. Rapp, Adv. Phys. 44, 113 �1995�.
36 R. E. Rapp and H. Godfrin, Phys. Rev. B 47, 12004 �1993�.
37 H. Godfrin, G. Frossati, B. Hébral, and D. Thoulouze, J. Phys.

�Paris�, Colloq. 41, C7-275 �1980�.
38 A. Abragam, The Principles of Nuclear Magnetism �Clarendon,

Oxford, 1994�.
39 C. P. Slichter, Principles of Magnetic Resonance, Third and Up

�Springer-Verlag, Berlin, 1992�.
40 N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. 73,

679 �1948�.
41 A. S. Sachrajda, D. F. Brewer, and W. S. Truscott, J. Low Temp.

Phys. 56, 617 �1984�.
42 J. H. Van Vleck, Phys. Rev. 74, 1168 �1948�.
43 H. M. Bozler, D. M. Bates, and A. L. Thomson, Phys. Rev. B

27, 6992 �1983�.
44 B. Cowan and M. Fardis, Phys. Rev. B 44, 4304 �1991�.
45 B. P. Cowan, J. Phys. C 13, 4575 �1980�.
46 B. P. Cowan, M. G. Richards, A. L. Thomson, and W. J. Mullin,

Phys. Rev. Lett. 38, 165 �1977�.
47 K. Satoh and T. Sugawara, J. Low Temp. Phys. 38, 37 �1980�.
48 B. Cowan, L. Abou El-Nasr, M. Fardis, and A. Hussain, Phys.

Rev. Lett. 58, 2308 �1987�.
49 J. B. Sokoloff and A. Widom, International Quantum Crystals

Conference �Colorado State University, Collins, 1977�.
50 H. Jichu and Y. Kuroda, Prog. Theor. Phys. 67, 715 �1982�.
51 R. A. Guyer, Phys. Rev. Lett. 64, 1919 �1990�.
52 A. J. Leggett and M. Vuorio, J. Low Temp. Phys. 3, 359 �1970�.

FAST-EXCHANGE MODEL VISUALIZED WITH 3He… PHYSICAL REVIEW B 80, 094422 �2009�

094422-11


