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We study the dynamics of one- and two-dimensional diatomic lattices with the interatomic Morse potentials
for the initial conditions selected at the edge of the Brillouin zone of the dispersion spectrum, when only light
atoms are excited with the staggered mode while all heavy atoms remain at rest �the so-called anti-Fermi-
Pasta-Ulam problem�. We demonstrate that modulational instability of such a nonlinear state may result in
almost periodic temporal dynamics of the lattice with spatial localization and delocalization of energies. Such
a recursion occurs many times with a very slow decay, especially for the initial states with low energy. The
energy recursion results in the formation of highly localized, large-amplitude gap discrete breathers. For
one-dimensional diatomic lattices, we describe the periodic energy recursion analytically for a simple model
with the nearest-neighbor interaction and cubic anharmonicity.
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I. INTRODUCTION

At the early age of computers, Fermi, Pasta, and Ulam
�FPU� tried to understand the mechanism of energy exchange
between different modes of a nonlinear system after excita-
tion of the lowest mode, the longest possible wave in a finite
anharmonic chain.1 They observed an interesting effect when
the energy of the excited lowest mode was shared initially
between other several modes, but after some time a major
part of the energy returned back to the lowest mode. Since
that time, the FPU problem is attracting attention of many
researchers in connection with the energy localization, soli-
ton formation, chaos, and thermalization.2 Several decades
later, a similar numerical experiment was repeated for the
shortest possible wave, for the so-called anti-FPU problem.3

The kinetics of thermalization of the chain in this case was
found to be qualitatively different. At the beginning, spatial
localization of energy in the form of discrete breathers �DBs�
�Refs. 4–6� was observed. Then a slow degradation of the
breathers by means of energy radiation eventually resulted in
the thermal equilibrium of the chain. Localization of energy
is initiated in the chain via modulational instability, which is
a generic phenomenon observed in various physical
settings.7–10 For instance, modulational instability can result
in the appearance of the so-called rogue waves.11 Rigorous
results for the modulational instability in diatomic chains
were obtained very recently by Doi et al.12

The analysis of the model equations in the continuum
limit derived for the envelope of the modulationally unstable
mode at the edge of the Brillouin zone revealed several
stages of the energy localization in the chain with hard quar-
tic anharmonicity.13 According to that study, the first stage of
the system evolution is characterized by the emergence of
envelope solitons. At the end of the first stage, the DBs with
the frequency above the upper edge of the phonon band are
formed and they define the subsequent evolution of the sys-
tem.

In this paper, we study the anti-FPU problem for the case
of one- and two-dimensional diatomic anharmonic lattices,

when the initial state is selected as a mode at the edge of the
Brillouin zone. Such diatomic lattices support DBs with fre-
quencies above or in the gap of the phonon spectrum.14–16

Gap DBs can also be found, e.g., in the nonlinear dynamics
of condensates placed into an optical lattice.8

Recent experiments provide evidence of DBs in the lattice
dynamics of conventional three-dimensional �3D�
materials.17 Very recently, the gap DBs have been detected
experimentally in NaI crystal.18 In inelastic neutron measure-
ments of the high-temperature lattice excitations in NaI, it
was found that in thermal equilibrium at 555 K, an intrinsic
mode, localized in three dimensions, occurs at a single fre-
quency near the center of the spectral phonon gap, polarized
along �111�. Potential application of DBs in designing a
solid-state thermal rectifier has been discussed based on the
experimental evidence that DBs can be supported by
�-uranium lattice at sufficiently high temperatures.19

We demonstrate that modulational instability may result
in almost periodic spatial localization and delocalization of
energy. The energy recursion stage ends with the formation
of highly localized, large-amplitude gap DBs. For one-
dimensional diatomic lattices, we describe this periodic en-
ergy localization/delocalization analytically for a simple
model with the nearest-neighbor interactions and cubic
anharmonicity.

In order to demonstrate that this is a generic effect, we
also study numerically the energy localization in two-
dimensional diatomic lattices under the conditions similar to
those analyzed for one-dimensional ones. For sufficiently
small amplitude of the excited staggered nonlinear state at
the edge of the Brillouin zone, we observe the development
of periodic in time energy localization/delocalization, similar
to the case of one-dimensional lattices. At the later stage, we
observe the formation of a few highly localized, large-
amplitude DBs. Slow radiation of energy by the DBs at the
final stage of the evolution resulted in the subsequent thermal
equilibrium of the system.

In our study of the two-dimensional diatomic lattice, we
use the Morse potentials taking into account the long-range
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interactions. The Morse pair potentials are widely used in
molecular-dynamics simulations of solids �see, e.g., Ref. 20
and some recent works21�, even for metals, for solving the
problems where the exact anisotropy of the elastic constants
is not important.22 The Morse potential is rather simple, but,
in many cases, it provides much more realistic description of
the interatomic interactions than the nearest-neighbor inter-
actions with the simplest types of anharmonicity, typically
used in the studies done in the spirit of the nonlinear
physics.12,14–16

The paper is organized as follows. In Sec. II, we study
numerically the dynamics of an unstable staggered mode in
one-dimensional diatomic lattices with the Morse inter-
atomic potentials and then develop simplified theory to de-
scribe this effect analytically. In Sec. III, we extend our nu-
merical analysis to the case of two-dimensional diatomic
lattices and reveal the dynamics qualitatively similar to the
one-dimensional lattice. Section IV concludes the paper.

II. ENERGY RECURSION IN A ONE-DIMENSIONAL
DIATOMIC CHAIN

A. Model

We consider a diatomic chain with alternating particles of
masses m and M �for definiteness we take m�M�. Each
particle interacts with its nearest neighbors via the Morse
potential taken here in the form

U�r� = D exp�− 2�
r − r0

r0
� − 2D exp�− �

r − r0

r0
� , �1�

where D, �, and r0 are the parameters and r is the distance
between interacting particles. Note that the minimum of the
potential U�r� is at r=r0. Let xn�t� and Xn�t� be, respectively,
the coordinates of the light and the heavy particles in the nth
periodic cell. Hamiltonian of the system is

H = �
n
�m

2
ẋn

2 +
M

2
Ẋn

2 + U�	xn − Xn−1	� + U�	Xn − xn	�
 .

�2�

Substituting Eq. �1� into Eq. �2� and introducing

xn = 2nh + ṽn,

Xn = �2n + 1�h + Ṽn, �3�

where h is the distance between the nearest lattice sites and

ṽn and Ṽn are, respectively, the displacements of the light and
heavy particles from the corresponding equilibrium posi-
tions, we rewrite the Hamiltonian as

H̃ = �
n
�m

2
v̇̃n

2 +
M

2
V̇̃n

2 + P̃1 + P̃2
 , �4�

where

P̃1 = D exp�2R̃n−1� − 2D exp�R̃n−1� ,

P̃2 = D exp�2S̃n� − 2D exp�S̃n� , �5�

R̃n−1 = −
�

r0
�ṽn − Ṽn−1 + h − r0� ,

S̃n = −
�

r0
�Ṽn − ṽn + h − r0� . �6�

Introducing the dimensionless displacements

vn =
�

r0
ṽn, Vn =

�

r0
Ṽn, �7�

dimensionless time, and dimensionless energy

� =�2D

m

�

r0
t, H =

H̃

2D
, �8�

and the following shorthand notations

� = �
h − r0

r0
, � =

m

M
, �9�

we transform the Hamiltonian to the form

H = �
n
�1

2
v̇n

2 +
1

2�
V̇n

2 + P1 + P2
 , �10�

where

P1 =
1

2
exp�2Rn−1� − exp�Rn−1� ,

P2 =
1

2
exp�2Sn� − exp�Sn� , �11�

Rn−1 = − � − vn + Vn−1,

Sn = − � − Vn + vn. �12�

One can see that the model essentially has two parameters:
the ratio of masses � and the parameter � that defines the
strain of the lattice. Particularly, for �=0, one has h=r0, i.e.,
the lattice spacing coincides with the location of the mini-
mum of the Morse potential which corresponds to the mini-
mum of the potential energy of the chain. The case of �
�0 ��0� corresponds to tension �compression� of the chain
and the potential energy of the chain is higher in these cases
than in the case of �=0.

From the Hamiltonian given by Eq. �10�, one can derive
the following equations of motion:

v̈n = e2Rn−1 − eRn−1 − e2Sn + eSn,

V̈n = ��e2Sn − eSn − e2Rn + eRn� . �13�

For sufficiently small displacements vn and Vn, one can
take into account only quadratic anharmonic terms and re-
duce Eq. �13� to

v̈n = ��Vn−1 + Vn − 2vn� + 	��Vn−1 − vn�2 − �vn − Vn�2� ,

�14�
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V̈n = ���vn + vn+1 − 2Vn� + �	��vn − Vn�2 − �Vn − vn+1�2� ,

�15�

where

� = 2e−2� − e−�, 	 = 2e−2� −
1

2
e−�. �16�

B. Numerical results

We consider the diatomic chain of N light and N heavy
particles �with even N� subjected to the periodic boundary
conditions. Initial conditions in Sec. II B are always set as-
suming that the motion of particles is as follows:

vn�t� = �− 1�nA sin�
t� ,

Vn�t� � 0, �17�

where A is the amplitude and


 = �2�, T = 2�/
 �18�

are the frequency and the period, respectively. It is readily
checked that Eq. �17� satisfies Eq. �14�. According to Eq.
�17�, the light particles oscillate being out of phase with the
neighboring light particles and the heavy particles are at rest.
It will be demonstrated numerically that the solution Eq. �17�
is unstable and this instability results in nontrivial dynamics
of the system.

Small perturbation was introduced in the system by shift-
ing the coordinates of heavy atoms at t=0, so that instead of
the second line in Eq. �17�, we actually had Vn�0�=�n,

V̇n�0�=0, where �n is a random number homogeneously dis-
tributed in the range �−510−8 , 510−8�.

In our study, we take in Eq. �17� the amplitudes A
10−2. For such small amplitudes, we found that the results
obtained from Eqs. �13� and �14� are similar, at least quali-
tatively, and in the following we report on the results of
numerical integration of Eq. �14�. The integration was car-
ried out with the use of the Störmer method of order 6.

We calculate the averaged over period T kinetic energies

kn= �v̇n
2 /2� and Kn= �V̇n

2 / �2��� of the light and heavy par-
ticles, respectively. We do monitoring of the time evolution
of the following quantities:

k =
1

N
�
n=1

N

kn, K =
1

N
�
n=1

N

Kn,

Lk =

�
n=1

N

kn
2

� �
n=1

N

kn�2 , LK =

�
n=1

N

Kn
2

� �
n=1

N

Kn�2 . �19�

The first two quantities are thus the averaged kinetic energies
of the light and heavy particles, respectively, while the last
two are the localization parameters for the kinetic energies of
the light and heavy sublattices.

In this work, we consider the case of undeformed chain
by setting �=0 and study the dynamics of the chains with
different ratios of masses �, different amplitudes of the ex-
cited mode A, and different numbers of light and heavy
particles N.

The first example is presented in Fig. 1 for the case of
equal masses, �=1, and for three different amplitudes: �a�
A=0.005, �b� A=0.01, �c� A=0.02. Shown are the averaged
kinetic energies of even and odd particles, k and K, respec-
tively, as the functions of time measured in the units of T. In
this case, the dynamics is not sensitive to the number of
particles and the same picture was observed for N=2 and for
N=32. We do not plot the time evolution of Lk and LK be-
cause no spatial energy localization was observed in the case
of �=1 and the localization parameters were always close to
their minimum possible values of 1 /N. As it can be seen
from Fig. 1, the total averaged kinetic energy of even and
odd particles is practically conserved and it increases with
increase in A as A2. Interestingly, the sublattices of even and
odd particles periodically exchange by their kinetic energies
with the period of 104T−105T. The period of energy ex-
change S is proportional to A−2.

Even more interesting dynamics was observed for di-
atomic chain. In Fig. 2, we present the time evolution of Lk
for the case of �=1 /10, A=0.02, �=0, and different N: �a�
N=24, �b� N=26, �c� N=28, and �d� N=52. We found that
for N�24, the modulational instability does not manifest
itself �see panel �a�� while it does for N�26 �see panels
�b�–�d��. This fact suggests that only sufficiently long waves
are modulationally unstable. Let us denote as N� the longest
chain showing stable dynamics �e.g., for the case presented
in Fig. 1, N�=26�. We have done similar simulations for

FIG. 1. Time evolutions of k and K for the case of equal masses,
�=1, and for different amplitudes of the excited mode: �a� A
=0.005, �b� A=0.01, �c� A=0.02. The result does not depend on N.
One can see that for the period of energy exchange between sublat-
tices, one has SA−2. Here �=0.
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various A and found that N� is proportional to 1 /A. If the
length of the chain lies in the range of N�−1.5N�, then Lk is
a nearly periodic function of time �see panels �b� and �c��,
while for longer chains Lk, varies with time aperiodically
�see panel �d� where the length of the chain is nearly equal to
2N��. This is understandable because for long chains, the
unstable dynamics is governed by a superposition of a num-
ber of unstable waves. We do not present the time evolution
of k and K for the graphs of Fig. 2 because they are practi-
cally constant within the studied time domain being equal to
k=210−4 and K=0. Thus, the kinetic energy of the light
atoms is not given to the heavy atoms and the latter ones
remain practically motionless even in the regime of modula-
tionally unstable dynamics. This behavior contrasts to the
case of the monatomic chain, shown in Fig. 1, where odd and
even sublattices periodically exchange by their kinetic ener-
gies but Lk and LK remain practically constant.

Careful look at the panels �b�–�d� of Fig. 2 reveals that Lk
starts to oscillate after a time delay which increases with
decrease in the initial perturbation �n. On the other hand, we
found that for small �n, the period of Lk is not sensitive to
the magnitude of �n.

In Fig. 3, we give another presentation of the data ob-
tained in the numerical run presented in Fig. 2�c�. Here we
show �a� particles on the �n , t /T� plane with kn�310−4

and �b� values of kn for the particles of the chain at the three
values of time indicated in �a� as 1, 2, and 3. One can see
that, in this case �and, more generally, in the case when the
length of the chain lies in the range of N�−1.5N�, as it was
already mentioned�, the kinetic energy of light particles lo-
calizes and delocalizes almost periodically in time and space.

C. Analytical treatment for ε=1

For �=1, the equations of motion Eq. �14� under the sym-
metry constrains vn=−vn+1=v, Vn=−Vn+1=V reduce to

v̈ = − 
2v + 4	vV ,

V̈ = − 
2V − 4	vV , �20�

where we have used Eq. �18�. Initial conditions for Eq. �20�
will be set assuming that the particles move as follows:

v�t� = A sin�
t� ,

V�t� = B sin�
t� , �21�

i.e., we set v�0�=V�0�=0, v̇�0�=A
, and V̇�0�=B
. Note
that for B=0, Eq. �21� is a solution to Eq. �20�. We will
always take B�A when Eq. �21� can be viewed as an ap-
proximate solution to Eq. �20�.

In terms of new variables

� = v + V, � = v − V , �22�

Eq. �20� can be written as

�̈ = − 
2� ,

�̈ = − 
2� + 2	��2 − �2� . �23�

Due to the possibility of the time shift, solution to the first
equation in Eq. �23� can be taken as follows:

� = C sin�
t� , �24�

where C is the integration constant and then the second equa-
tion assumes the form

�̈ = − 
2� + 2	�C2 sin2�
t� − �2� . �25�

Let us look for the solution to Eq. �25� of the form

� = a0 + a1s sin�
t� + a1c cos�
t� + a2s sin�2
t�

+ a2c cos�2
t� , �26�

where it is assumed that the amplitudes vary slowly with

FIG. 2. Time evolution of Lk in the diatomic chain with �
=1 /10 for different N as indicated in each panel. Here A=0.02 and
�=0.

FIG. 3. �a� Plot showing particles with kn�310−4 on the
�n , t /T� plane. �b� Values of kn for the particles of the chain at the
three values of time indicated in �a� as 1, 2, and 3. This is a different
presentation of the data obtained in the numerical run presented in
Fig. 2�c�. Parameters: A=0.02, �=1 /10, N=28, and �=0.
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time and a0�t� ,a2s�t� ,a2c�t��a1s�t� ,a1c�t�. Substituting Eq.
�26� into Eq. �25� and equalizing the coefficients in front of
similar terms, one finds a0= �	 /
2��C2−a1s

2 −a1c
2 �, a2s

= �2	 /3
2�a1sa1c, a2c= �	 /3
2��C2−a1s
2 +a1c

2 �, and obtains
the following set of equations for the slowly varying main
amplitudes:

ȧ1s = −
5	2

3
3�7

5
C2 − a1s

2 − a1c
2 �a1c,

ȧ1c =
5	2

3
3 �C2 − a1s
2 − a1c

2 �a1s. �27�

First of all, let us compare the results of numerical inte-
gration of Eqs. �20� and �27�. To do so, we need to set the
initial conditions for Eq. �27� equivalent to the initial condi-
tions Eq. �21� for Eq. �20� and also we need to express the
amplitude C in terms of the amplitudes A and B. Inserting
Eqs. �21� and �24�, and the main part of Eq. �26� �i.e., at
a0=a2s=a2c=0� into Eq. �22�, we find the necessary relations
C=A+B, a1s�0�=A−B, and a1c�0�=0.

The result of comparison is presented in Fig. 4 for A
=0.02, B=10−4, and hence for C=A+B=0.0201, a1s�0�=A
−B=0.0199, and a1c�0�=0. For the initial value problem ex-
pressed by Eqs. �20� and �21�, we plot the time variation of
the amplitudes A�t� and B�t� of the rapidly oscillating vari-
ables v�t� and V�t� �solid lines�, while for Eq. �27�, we plot
�by the dashed lines� the amplitudes of the two particles that
can be approximately expressed through the main amplitudes
as follows: A�t�=�As

2+Ac
2, B�t�=�Bs

2+Bc
2, where As�t�

= �C+a1s�t�� /2, Ac�t�=a1c�t� /2, Bs�t�= �C−a1s�t�� /2, and
Bc�t�=−a1c�t� /2.

One can see from Fig. 4 that the result of integration of
Eq. �27� for slow amplitudes gives a very good fit of the
result obtained by integration of Eq. �20� for the rapidly
changing variables v�t� and V�t�.

In order to investigate Eq. �27�, we introduce the follow-
ing dimensionless variables:

� =
5	2C2

3
3 t, a1s�t� = Cx���, a1c�t� = Cy��� , �28�

and get

ẋ = − �7

5
− x2 − y2�y ,

ẏ = �1 − x2 − y2�x . �29�

Equation for the integral curves,

dy

dx
= −

�1 − x2 − y2�x
�7/5 − x2 − y2�y

, �30�

can be solved to give

�x2 + y2 −
7

5
�2

+
4

5
x2 = c2, �31�

with c being the integration constant, and using this relation,
one can express the solution in the following parametric
form:

x =
�5

2
c cos � ,

y1,2 = ��7

5
+ c sin � −

5

4
c2 cos2 � . �32�

Substituting Eq. �32� into Eq. �29�, one obtains equation for
���� which, for the case of small amplitudes �a�1�, has the
following solution:

���� �
2�7

5
� +

5c

7
sin2

�7�

5
. �33�

Zero-order approximation with respect to the amplitude c
gives the period of x�t� equal to 5� /�7 in terms of time �,
which, in terms of time t, becomes

S �
3�

�7


3

	2C2 . �34�

Thus, we have SC−2 and this explains the results presented
in Fig. 1, where one can see that the period of energy ex-
change between sublattices of even and odd particles, S, is
proportional to A−2, where A is the amplitude of the mode
Eq. �17� excited at t=0 �the role of A is played by C in this
section�.

III. BREATHERS AND ENERGY LOCALIZATION IN
TWO-DIMENSIONAL DIATOMIC LATTICES

A. Numerical approach

As a more general discrete nonlinear system of higher
dimension, we consider a hypothetic two-dimensional �2D�
crystal of E3F stoichiometry. We assume that the atoms oc-

FIG. 4. Comparison of the results of numerical integration of
Eq. �20� for rapidly changing variable �solid lines� and Eq. �27� for
slow amplitudes �dashed lines�. Amplitudes A and B of the two
particles are shown as the functions of dimensionless time t /T,
where T is the period of fast oscillations. Model parameters: 
2

=2, 	=3 /2. Initial condition parameters: A=0.02, B=10−4, C=A
+B=0.0201, a1s�0�=A−B=0.0199, and a1c�0�=0.
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cupy the points of the 2D hexagonal lattice ��111� plane of a
fcc crystal� generated by the vectors �a ,0�, �a /2,�3a /2�,
where a is the lattice parameter. The atoms inside the com-
putational cell, subjected to periodic boundary conditions,
are numbered by the three indices m ,n , i, where 1�m, n
�32 specifies the number of primitive cell, and 1� i�4
specifies the number of atom inside a primitive cell. The
primitive cell of the superstructure is generated by the vec-
tors �2a ,0�, �a ,�3a�. It contains three atoms of sort E with
the sublattice shift vectors �0,0�, �a ,0�, �a /2,�3a /2�, and
one atom of sort F with the sublattice shift vector
�3a /2,�3a /2�.

The atoms interact by means of the Morse interatomic
potentials

UKL�r� = DKL	KLe−�KLr�	KLe−�KLr − 2� , �35�

where r is the distance between considered pair of atoms,
K ,L= �E ,F�, and we took the following parameters: �EE
=1.36605 Å−1, 	EE=41.0494, DEE=0.470513 eV, �FF
=1.02658 Å−1, 	FF=27.4979, DFF=0.318004 eV, �EF
=1.16809 Å−1, 	EF=27.1260, and DEF=0.4995026 eV.
These parameters correspond to Ni3Al alloy. For the cutoff
radius of 16 Å, the equilibrium lattice parameter was found
to be a=2.6 Å. For the mass of atom of sort E, we took the
mass of Ni atom which is equal to ME=58.71 g /mol. For
the mass of atom of sort F, we took four different values:
MF=ME /2.18, MF=ME /3.91, MF=ME /5.87, and MF
=ME /9.79. Note that the first value corresponds to the actual
mass of Al atom �26.981 g/mol�, while in the other cases MF
is smaller than Al atom mass.

Equations of motion for the atoms were solved numeri-
cally by the Störmer method of order 6. Size and shape of the
computational cell did not change with time.

B. Discrete breathers

In Figs. 5�a�–5�d�, we present the phonon spectra of the

considered 2D diatomic crystal for the four different mass
ratios ME /MF=2.18, 3.91, 5.87, and 9.79, respectively. Pho-
non frequencies were calculated for the points of the first
Brillouin zone �qx ,qy�= �k� /10, l� /10� with 0�k, l�10
and projected on the �qx ,
� plane. One can see that the width
of the gap in the phonon spectrum increases together with
the mass ratio ME /MF.

We were unable to excite DBs with frequencies above the
phonon spectrum for any of the considered mass ratios
ME /MF. For the mass ratio ME /MF=2.18, the gap is too
narrow to support a gap DB. On the other hand, for the mass
ratios ME /MF�3.5, the gap DBs can be easily excited by
setting for one light atom a large initial deviation �of order of
lattice parameter a� with all other atoms being at their lattice
positions and with all atoms having zero initial velocities.
DB is formed after a transient period when a portion of en-
ergy of the initial excitation spreads over the crystal in the
form of small-amplitude vibrations. Then one can obtain the
results presented in Fig. 6�b� by measuring the amplitude and
the frequency of DB.

In Fig. 6�a�, the stroboscopic picture presents dynamics of
atoms in the vicinity of DB in the crystal with the mass ratio
ME /MF=9.79. Heavy �light� atoms are shown by dots �open
circles�. Displacements of the atoms are multiplied by factor
4. It is clear that the DB is highly localized and only one
light atom oscillates with a very large amplitude �we note
that the degree of localization decreases with decrease in
ME /MF�.

In Fig. 6�b�, we show the frequency of DB as the function
of its amplitude for ME /MF=3.91, 5.87, and 9.79, connect-
ing the numerical points by the dotted, dashed, and solid
lines, respectively. The horizontal lines of similar type show
for each case the upper edge of the phonon gap �cf. Fig. 5�.
It can be seen that frequencies of the DBs lay in the gap of
the phonon band and, for this reason, they practically do not

FIG. 5. Phonon spectra for the 2D diatomic crystal with the
mass ratios ME /MF equal to �a� 2.18, �b� 3.91, �c� 5.87, and �d�
9.79. Width of the gap in the phonon spectrum increases with in-
crease in ME /MF.

FIG. 6. �a� Stroboscopic picture presenting dynamics of atoms
in the vicinity of DB in the 2D crystal with the mass ratio
ME /MF=9.79. Heavy �light� atoms are shown by dots �open
circles�. Displacements of the atoms are multiplied by factor 4. �b�
DB frequency as the function of DB amplitude for ME /MF=3.91,
5.87, and 9.79 with numerical points connected by the dotted,
dashed, and solid lines, respectively. The horizontal lines of similar
type show for each case the upper edge of the phonon gap �cf. Fig.
5�.
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excite phonon modes and oscillate for a very long time radi-
ating no energy. DB frequency decreases with increase in its
amplitude meaning that crystals with the Morse interatomic
potentials effectively exhibit soft anharmonicity and this ex-
plains why we could not obtain DBs with frequencies above
the phonon spectrum.

C. Anti-FPU energy localization

The Brillouin-zone-edge mode in the 2D crystal was ex-
cited as follows. Light atoms �of sort F� in the primitive cells
with odd m+n were shifted away from their equilibrium po-
sitions in x direction by A, while the ones with even m+n by
−A. Heavy atoms �of sort E� were not shifted from their
lattice positions and initial velocities of all atoms were zero.
For the mode amplitude, A, we set rather small values A
= �0.077a ,0.058a ,0.038a�. The excited mode was found to
be unstable.

We calculated the localization parameter

L =

�
m,n=1

32

�Em,n�2

� �
m,n=1

32

�Em,n��2 , �36�

where �Em,n� is the averaged over period of DB total energy
of the light atom in the �m ,n�th primitive cell �heavy atoms
were not taken into account in the calculation of L�.

In Fig. 7, for the case of ME /MF=9.79 and A=0.038a, we
give L as the function of dimensionless time t /�, where � is
the period of DB. Panel �b� shows in a different scale the
portion of panel �a� for small t /�. In the time evolution of L,
one can see several stages. During the first stage �shown also
in panel �b��, L remains small oscillating with the period
approximately equal to 20�. Analysis of the atomic displace-
ments revealed that the oscillation of L at this stage is related
to the modulational instability of the initially excited wave

with respect to relatively long wave. The instability results in
the periodic in time and space energy localizations/
delocalizations similar to that described in Sec. II in frame of
the one-dimensional �1D� diatomic crystal. The first stage
ends by a significant growth of L �by 1 order of magnitude�
and during the second stage L remains large and nearly con-
stant for a long time �of order of 104��. Analysis of the
atomic displacements showed that at the second stage, a few
DBs with very large amplitudes �similar to those shown in
Fig. 6�a�� are formed and they accumulate a good portion of
the energy of the initially excited wave. At the third stage, L
decreases and the fourth stage corresponds to thermal equi-
librium with constant L being nearly as small as at the first
stage. For the case of ME /MF=9.79, we have analyzed the
effect of the amplitude of the initially excited mode, A, and
found that for smaller A, the duration of the second stage
with large L is longer and the maximum value of L is larger.

In Fig. 8, we present the total energies of the light atoms
averaged over �, �En�, sorted by decrease of �En� for the
case of ME /MF=9.79 and �a� A=0.077a, �b� A=0.058a, and
�c� A=0.038a. These results were obtained at the time when

FIG. 7. Localization parameter L as the function of dimension-
less time t /�, where � is the period of DB. Panel �b� shows in a
different scale the portion of panel �a� for small t /�. Results for the
mass ratio ME /MF=9.79 and the amplitude of the initially excited
plane mode A=0.038a.

FIG. 8. Total energies of the light atoms averaged over �, �En�,
sorted by decrease of �En� for the case of ME /MF=9.79 and �a�
A=0.077a, �b� A=0.058a, and �c� A=0.038a. These results were
obtained at the time when L reaches its maximum. Horizontal
dashed lines at the bottom of each panel show the energies of light
atoms in the initially excited plane wave. Atoms having large ener-
gies �En� correspond to DBs. �d� A part of the periodic computa-
tional cell showing multiple excitation of BDs for the case pre-
sented in �a�. Heavy �light� atoms are shown by dots �open circles�.
Displacements of the atoms are multiplied by factor 2.
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L reaches its maximum. Horizontal dashed lines at the bot-
tom of each panel show the energies of light atoms in the
initially excited plane wave. Atoms having large energies
�En� correspond to DBs. Maximum energy of DB is equal to
about 2 eV and this energy does not depend on A. The num-
ber of DBs formed in the computational cell increases with
A. Thus, in �a� there are about 20 DBs, in �b� 14 DBs, and in
�c� only 3 DBs. In �d�, we show a part of the periodic com-
putational cell where multiple excitation of BDs can be seen
for the case presented in �a�. Heavy �light� atoms are shown
by dots �open circles�. Displacements of the atoms are mul-
tiplied by factor 2.

IV. SUMMARY AND CONCLUSIONS

We have analyzed the dynamics of one- and two-
dimensional diatomic lattices with the atoms interacting via
Morse potentials. First, we have studied numerically modu-
lational instability in one-dimensional diatomic lattices start-
ing from the staggered state at the edge of the Brillouin zone
�the so-called anti-FPU problem�. Our numerical results
demonstrate that the wavelength of the shortest unstable
wave, ��, is scaled as ��A−1, where A is the amplitude of
the initially excited edge mode. We have found that in this
anti-FPU case, the speed of thermalization of the chain is
sensitive to the length of the chain and the wavelength ��. If
the length of the chain �subjected to the periodic boundary
conditions� is smaller than �� /2, a stable dynamics is ob-
served with no energy exchange between the modes. For the
chains with the length ranging from �� /2 to �3 /4���, we
have observed periodic in time spatial energy localization
that happens for extremely long time without noticeable ther-
malization of the chain. The period of the periodic energy
localization/delocalization is proportional to A−2. For the
chains with the length larger than �3 /4���, the energy local-
ization becomes aperiodic both in time and space and ther-
malization of the chain goes faster.

We have studied the effect of the mass ratio �=m /M, m
�M, on the unstable dynamics of the system. We have found
that �� grows with � and for the limiting case of equal
masses ��=1�, one has ��→�. In this case, no spatial energy
localization has been noticed but instead, we have observed
the periodic energy exchange between sublattices of odd and

even particles. Period of the energy exchange S has been
found to be proportional to A−2 and this has been confirmed
by the analytical solution obtained for the case of �=1.

In the case of two-dimensional diatomic lattices, we have
used the Morse potentials taking into account the long-range
interactions. A gap in the phonon spectrum appears for suf-
ficiently large mass ratio ME /MF. For ME /MF�3.5, the gap
discrete breathers can be easily excited. Note that experimen-
tally gap DBs were observed in NaI with the mass ratio
MI /MNa=5.52.18 We have also found that the DB frequency
decreases with increase in its amplitude so that the Morse
potentials, with the long-range interactions taken into ac-
count, result in soft anharmonicity. This fact suggests that in
the lattices with the Morse interactions �1D or 2D�, it is
unlikely to find DBs with the frequencies above the phonon
spectrum. Thus, the discrete breathers can be expected only
in the lattices with a gap in the phonon spectrum and this
may happen for the crystals with a complex structure.

Finally, we have studied numerically the energy localiza-
tion phenomenon in the two-dimensional diatomic lattices
via the evolution of modulationally unstable Brillouin-zone-
edge mode excited in such a way that only light atoms are
displaced initially whereas heavy atoms remain at rest. We
have observed that, for sufficiently small amplitude of the
staggered plane wave, a periodic in time spatial energy
localization/delocalization at the earlier stage of the evolu-
tion of the unstable mode, similar to the case of one-
dimensional lattices. At the later stage, we have observed the
formation of a few highly localized, large-amplitude local-
ized modes in the form of discrete breathers. Slow radiation
of energy by the DBs at the final stage of the evolution
results in the subsequent thermal equilibrium of the system.
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