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We have measured the elastic constants of amorphous Pd40Cu40P20 �isotropic, two independent elastic
constants�, single crystal Pd40Cu40P20 �tetragonal, six elastic constants�, and single crystal Pd50Cu50 �fcc, three
elastic constants� over the range 3.9�T�300 K. The temperature dependences of the shear moduli of crys-
talline Pd40Cu40P20 and Pd50Cu50 are well described by C�T�=C�0�−BT2+�CLat�T�, where BT2 gives the
electronic contribution and �CLat�T� is the contribution due to the anharmonicity of the lattice vibrations. The
temperature dependence of the shear modulus of amorphous Pd40Cu40P20 includes an additional contribution,
�CE�T�, which becomes dominant for T�20 K: C�T�=C�0�−BT2+�CLat�T�+�CE�T�. The �CE�T� contri-
bution can be explained by the presence of a small number of low-frequency, highly anharmonic vibrational
modes, which we characterize as Einstein oscillators with temperature �E�12 K and Grüneisen parameter

�E
C��2. Theory and computer modeling suggest that these modes involve the collective vibration of stringlike

arrays of atoms.
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I. INTRODUCTION

The elastic constants of metallic glasses have several
low-temperature anomalies that are not present in crystal-
line metals.1–6 Examples of these anomalies are shown in
Fig. 1, which plots the temperature dependence of the ultra-
sonically measured shear modulus, �C44 /C44= �C44�T�
−C44�T0�� /C44�T0� for two metallic glasses1,4 and two metal
single crystals.7,8 �C44�T0� is the value of the shear modulus
for T→0� In well-annealed crystals such as Cu and V the
low-temperature elastic constants can usually be described
by �C44 /C44=−bT2−dT4.8,10 The smooth curves through the
Cu and V data in Fig. 1 are best fits using this equation. The
two contributions to the temperature dependence arise from
thermal excitations of the electrons �the T2 term� and excita-
tions of the anharmonic lattice vibrations �the T4 term�.8

In metallic glasses, the temperature dependence of the
elastic constants is markedly different. For 0.1�T�2 K,
the shear modulus increases with temperature. Near �2 K
the modulus reaches a maximum value and above �2 K it
decreases monotonically. The peculiar increase in the elastic
constants at very low temperatures has also been observed in
oxide glasses.11 Jäckle12 explained this increase in terms of
low-energy excitations that can be modeled as an ensemble
of two-level quantum tunneling systems �TLS� having a dis-
tribution of energy gaps, �, extending down to zero
energy.13,14 Granato15 later proposed a simple thermody-
namic explanation for the elastic softening of a defective
crystal as it is cooled to very low temperatures. Here the
defects �interstitials in dumbbell configurations� are also as-
sumed to behave as quantum two-level systems. Both models
predict that the effects of the two-level systems vanish at
higher temperatures. In metallic glasses, this seems to occur
at �2–3 K.

In the range 4�T�20 K, the elastic constants of metal-
lic glasses decrease approximately linearly with temperature.
A linear T dependence has been observed for both C44 and
for C11 not only in metallic glasses, but also in oxide9 and
polymer16,17 glasses, suggesting that it arises from an intrin-
sic feature of the amorphous state.

Although the two-level tunneling model has gained ac-
ceptance as the plausible explanation for the increase in the
elastic constants in the range 0.1�T�2 K, this model does
not seem to explain the linear T dependence observed for
T�4 K. Several models have been proposed to explain this
linear decrease. These models are based on �1� coupling of
sound waves to incoherent two-level tunneling systems �e.g.,
incoherent wave functions for the two energy minima as-
sumed in the TLS model�;18 �2� thermally activated relax-
ations between the minima �as opposed to tunneling
relaxations�;19 �3� resonant coupling of ultrasonic waves to
soft �low-frequency� phonon modes;20,21 �4� relaxation of the
soft modes;20 and �5� scattering of sound waves by fracton
modes.22

FIG. 1. Relative change in the shear modulus, �C44 /C44

= �C44�T�−C44�T0�� /C44�T0�, as a function of temperature for single
crystal Cu7 and V,8 and for amorphous Ni81P19 �Ref. 1� and amor-
phous Pd77.5Si16.5Cu6.4 The relative change in the longitudinal
modulus, �C11 /C11, of amorphous SiO2 �Ref. 9� is also shown. The
smooth curves through the Cu and V data are the best fits of
�C44 /C44=−bT2−dT4 to the data. The curves through the Ni81P19,
Pd77.5Si16.5Cu6, and SiO2 data are lines to guide the eye.
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We stated previously that at low temperatures the elastic
constants of crystals, such as Cu and V, follow the depen-
dence −bT2−dT4 without a linear term. We should add here
that this is only true for perfect crystals having no lattice
defects, or for crystals whose lattice defects are pinned by
solutes or other defects. Alers and Zimmerman7 compared
the elastic constants of copper single crystals of two slightly
different purities: 99.87% pure and 99.98% pure. Whereas
the elastic constants of the lower purity crystal followed the
anticipated �C /C=−bT2−dT4 temperature dependence, the
elastic constants of the higher purity crystal decreased lin-
early with temperature in the range 1.5�T�10 K. This be-
havior was attributed7 to the presence of dislocations, which
were assumed to be unpinned in the higher purity copper
crystal and thus were able to move in response to the applied
ultrasonic stress. In the lower purity copper crystal, the dis-
locations were assumed to be pinned by solutes. Although
the dislocation density in these copper crystals was not
given, these observations suggest that a density of compliant
defects �glissile dislocations in the present case� can modify
the T dependence of the elastic constants at low temperatures
compared to what is measured in either defect-free crystals
or in crystals where the defects are immobilized, for ex-
ample, via pinning by impurities. A linear T dependence of
the elastic constants has also been observed in disordered
crystals,20 quasicrystals,23 and in irradiated Cu crystals con-
taining a density of isolated interstitial defects in dumbbell
configurations.24 It is somewhat surprising that each of these
different types of defects evidently results in a linear T de-
pendence of the elastic constants at low temperatures. This
suggests that all these different defects have some common
characteristic.

If the defect concentration is relatively low then the con-
tribution of each defect to the temperature dependence of the
elastic constants can be considered additive. Thus the moduli
of a defective crystal should have three contributions to their
temperature dependence: �1� the thermal excitation of the
electrons, �2� the excitation of the anharmonic lattice vibra-
tions, and �3� a contribution from the defects. Contributions
�1� and �2� together lead to the often observed �C /C=
−bT2−dT4 temperature dependence. Contribution �3� evi-
dently leads to the additional linear T dependence. Because
the elastic compliance of each defect can be much larger than
that of an equal number of normal-lattice atoms, the defect
contributions to the compliance can be dominant within a
certain temperature range.

Pd40Cu40P20 is the only alloy we know of that can be
synthesized both as a bulk metallic glass and as a single
crystal. This enables us to compare the elastic properties of a
bulk metallic glass and a metallic crystal having exactly the
same composition. Based on these unique measurements, we
propose that the glass contains low-frequency, highly anhar-
monic vibrational modes not present in the crystal, and it is
these modes that are responsible for the linear T dependence
of the elastic constants.

Previously25 we reported the values of the elastic con-
stants of bulk amorphous Pd40Cu40P20, single crystal
Pd40Cu40P20, and single crystal Pd50Cu50 over the range 3.9
�T�300 K. In this paper we analyze the temperature de-
pendence of these data in terms of anharmonic lattice vibra-

tions, using a simplified version of the quasiharmonic model
that we develop here. The paper is organized as follows. In
Sec. II A, we summarize the quasiharmonic model of Garber
and Granato,26 which gives the phonon contribution to the
temperature dependence of the elastic constants of a defect-
free single crystal �or of a crystal whose dislocations are
effectively pinned by solutes�. In Sec. II B, we modify Gar-
ber and Granato’s model to make it useful for the analysis of
elastic constant data. We briefly discuss the preparation of
the Pd40Cu40P20 and Pd50Cu50 samples and the measurement
of the elastic constants in Sec. III. In Sec. IV we analyze the
temperature dependence of our data for single crystal
Pd50Cu50, single crystal Pd40Cu40P20, and amorphous
Pd40Cu40P20 using our modified version of the quasiharmonic
model. To fit the glass data, we are forced to assume that,
besides the usual electron and anharmonic phonon contribu-
tions to the T dependence, there is an additional contribution
from low-frequency and highly anharmonic vibrational
modes. We discuss the physical implications of our analysis
in Sec. V.

II. TEMPERATURE DEPENDENCE OF THE ELASTIC
CONSTANTS: CONTRIBUTION FROM NORMAL

ANHARMONIC PHONONS

A. Quasiharmonic model (Garber and Granato, 1975)

If the normal-mode lattice vibrations of a solid were
strictly harmonic, there would be no phonon contribution to
the thermal expansion, and the phonon contribution to the
elastic constants would be independent of temperature. To
rigorously account for the anharmonicity of the interatomic
potentials is not easy, and approximations are usually made.
In the quasiharmonic approximation,26,27 lattice vibrations
are treated as harmonic, but the phonon frequencies 	a are
assumed to depend explicitly on the externally applied strain

, and implicitly on the thermal strain �. Also, the potential
energy of the solid is assumed to depend implicitly on the
thermal strain.

Starting from the definition for the isothermal second-
order elastic constants, Cijkl

T = 1
V � �2F

�
ij�
kl
�T, and the Helmholtz

free energy F, Garber and Granato26 derived the following
expression for the phonon contribution to the temperature
dependence of Cijkl

T :

Cijkl
T �T� = C̃ijkl

0 +
1

Ṽ0
�
�=1

3N �	��
ij��

kl − 
 ���
ij

�
kl
�

T
�0

U�
0�T�

− ���
ij��

kl�0TCv,�
0 �T� + �C̃ijkl

0 + C̃ijklmn
0 ���T� .

�1�

The first term on the right, C̃ijkl
0 , is the value of the elastic

constant at atmospheric pressure and 0 K, without any lattice
vibrations (not even zero point). �Here we use a superscript
zero to denote atmospheric pressure and 0 K, and the tilde to
denote the absence of any lattice vibrations.�

The second term on the right �inside the summation� ac-
counts for the explicit dependence of the phonon frequencies

D. J. SAFARIK AND R. B. SCHWARZ PHYSICAL REVIEW B 80, 094109 �2009�

094109-2



	� on the externally applied strain 
.26 The anharmonicity of
each vibrational mode is described by the isothermal
generalized-mode Grüneisen parameter

��
ij = −

1

	�

 �	�

�
ij
�

T

�2�

and its strain derivative �
���

ij

�
kl
�T, where T is temperature, � is

the vibrational mode index, and ij and kl are the indices of
the second-rank strain tensor. The summation is over all 3N

normal vibrational modes of the solid. Ṽ0 is the volume at
atmospheric pressure and 0 K, without lattice vibrations, and

U��T� = � 1

exp		�

kBT
� − 1

+
1

2�	� �3�

and

Cv,��T� = kB
	�

kBT
�2 exp		�

kBT
�


exp		�

kBT
� − 1�2 �4�

are the average internal energy and specific heat, respec-
tively. In Eq. �1�, the internal energy and heat capacity both
have zero superscripts, indicating that they are evaluated for
the vibrational frequencies at atmospheric pressure and 0 K.

The third term in Eq. �1� accounts for the implicit depen-
dence of the phonon frequencies and the lattice potential en-
ergy on thermal expansion, expressed to first order in �.26

Here,

Cijklmn
T = 
 �Cijkl

�
mn
�

T

�5�

is an isothermal third-order elastic constant,

��T� =
1

3B̃0Ṽ0
�
�=1

3N

��
0U�

0�T� �6�

is the phonon contribution to the linear thermal strain �mea-
sured relative to the nonvibrating lattice at 0 K�, B is the bulk
modulus, and

�� = −
V

	�

 �	�

�V
�

T

�7�

is the scalar-mode Grüneisen parameter. In their derivation,
Garber and Granato26 assumed isotropic thermal expansion
and thus the third term in Eq. �1� applies strictly to elastically
isotropic or cubic-symmetry materials. As noted by Alers,8

however, the contribution from expansion is expected to be
proportional to thermal strain irrespective of the crystal sym-
metry.

The elastic constants derived from ultrasonic measure-
ments are adiabatic, whereas Eq. �1� gives the isothermal
elastic constants. For moduli associated with purely devia-
toric �volume-conserving� strains, e.g., shear moduli, the
adiabatic and isothermal elastic constants have the same
value, Cijkl

S �T�=Cijkl
T �T�.26 For any modulus having a nonde-

viatoric component, such as C11 or the bulk modulus, the
adiabatic and isothermal elastic constants are related by26

Cijkl
S �T� − Cijkl

T �T� =
T

Ṽ0

	 �
�=1

3N

��
0Cv,�

0 �T��2

�
�=1

3N

Cv,�
0 �T�

. �8�

B. Adaptation of the quasiharmonic model to analyze elastic
constant data

Equation �1� gives a rigorous description of the phonon
contribution to the temperature dependence of the elastic
constants within the quasiharmonic approximation. However,
its evaluation requires one to know the frequency and the
anharmonicity of all 3N normal phonon modes in the solid.
Because the frequency spectrum is usually not known �un-
less one measures the phonon spectrum by, for example, in-
elastic neutron scattering�, and because the anharmonicity of
every mode is impossible to obtain, Eq. �1� is not useful for
the analysis and interpretation of elastic constant data, at
least not in it present form. In this section we derive a sim-
plified version of the quasiharmonic model that is useful for
the analysis of data.

The contributions to Cijkl
T �T� arising from zero-point mo-

tion can be removed from the sums in Eq. �1� and included in
Cijkl

T �0�, which is the value of the elastic constant that one
would measure at T=0 K. The expression for Cijkl

T �0� is

Cijkl
T �0� = C̃ijkl

0 +
1

Ṽ0
�
�=1

3N �	��
ij��

kl − 
 ���
ij

�
kl
�

T
�0	�

0

2
 + �C̃ijkl

0

+ C̃ijklmn
0 �

1

3B̃0Ṽ0
�
�=1

3N

��
0 	�

0

2
. �9�

Using Eq. �9�, we can now rewrite Eq. �1� as

Cijkl
T �T� = Cijkl

T �0� +
1

Ṽ0
�
�=1

3N �	��
ij��

kl − 
 ���
ij

�
kl
�

T
�0

�U�
0�T�

− U�
0�0�� − ���

ij��
kl�0TCv,�

0 �T� + �C̃ijkl
0

+ C̃ijklmn
0 �

1

3B̃0Ṽ0
�
�=1

3N

��
0�U�

0�T� − U�
0�0�� , �10�

where Cijkl
T �0� is the value at 0 K, including the contribution

from zero-point energy, and U��T�−U��0� is the average en-
ergy of mode �, not including the zero-point energy:

U��T� − U��0� =
	�

exp		�

kBT
� − 1

. �11�

Defining mode-averaged Grüneisen parameters as
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��� =

�
�=1
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��Cv,�

�
�=1

3N

Cv,�

, �12�

��ij�kl� =

�
�=1

3N

��
ij��

klCv,�

�
�=1

3N

Cv,�

, �13�

and

� ��ij

�
kl
�

T

=

�
�=1

3N 
 ���
ij

�
kl
�

T

Cv,�

�
�=1

3N

Cv,�

�14�

and assuming that, to a first approximation, these mode-
averaged quantities are independent of temperature, we can
rewrite Eq. �10� as

Cijkl
T �T� = Cijkl

T �0� +
1

V

��ij�kl� − � ��ij

�
kl
�

T

+ �Cijkl

+ Cijklmm�
���
3B

��
�=1

3N

�U��T� − U��0��

−
T

V
��ij�kl��

�=1

3N

Cv,��T� . �15�

Notice that in Eq. �15�, and for the remainder of this paper,
we drop the superscript 0 and the tilde. In doing so we as-
sume that, as a first approximation, the volume, mode-
averaged Grüneisen parameters, second- and third-order
elastic constants, and vibrational frequencies are independent
of temperature, and are not changed by the presence of lat-
tice vibrations.

The sums in Eq. �15� give the lattice contributions to the
internal energy �not including zero-point energy�,

ULat = �
�=1

3N

�U��T� − U��0�� , �16�

and the heat capacity,

Cv,Lat = �
�=1

3N

Cv,��T� . �17�

Therefore, within the approximations stated, the T depen-
dence of the elastic constant is given by the relatively simple
expression

Cijkl
T �T� = Cijkl

T �0� +
1

V

��ij�kl� − � ��ij

�
kl
�

T

+ �C̃ijkl + C̃ijklmm�
���
3B

�ULat�T�

−
1

V
��ij�kl�TCv,Lat�T� . �18�

The most direct way to determine Cv,Lat�T� is to measure the
specific heat. ULat�T� then follows from an integration of
Cv,Lat�T�. Alternatively, one can compute Cv,Lat�T� from the
phonon density of states of the solid, g�	�. The two ap-
proaches are equivalent provided the phonon density-of-
states data is accurate. For low temperatures, one could also
simply use the Debye heat-capacity model. In a Debye solid,
g�	��	2 up to a cutoff frequency 	D and thus Cv,Lat is pro-
portional to T3 up to T��D /10 ��D is the Debye tempera-
ture�. Therefore, for an electrically insulating Debye solid the
elastic constants should vary as Cijkl

T �T�=Cijkl
T �0��1−dT4� for

T��D /10, where d is a constant.
Equation �18� gives the T dependence of the elastic con-

stants for an insulating solid, which has contributions only
from the excitation of the phonons. To compare with mea-
surements in metallic solids, we must also include the con-
tribution from the thermal excitation of electrons. For tem-
peratures much less than the Fermi temperature, the
electronic contribution to the free energy, and hence to the
elastic constants, is proportional to T2,28

Cijkl
T �T� = Cijkl

T �0� − AT2 +
1

V

��ij�kl� − � ��ij

�
kl
�

T

+ �C̃ijkl + C̃ijklmm�
���
3B

�ULat�T�

−
1

V
��ij�kl�TCv,Lat�T� , �19�

where A is a constant. Thus for a metallic Debye solid, the
low-temperature elastic constants should vary as Cijkl

T �T�
=Cijkl

T �0��1−aT2−dT4�. In metals with a low density of
states at the Fermi level and depending on the shape of the
Fermi surface28 the T2 term may be negligible at all but the
very lowest temperatures, as is the case for copper �Fig. 1�.
In metals with a high density of states at the Fermi level,
however, the T2 term may dominate up to temperatures of 20
K or more, as is the case for vanadium �Fig. 1�.

III. EXPERIMENT

Pd40Cu40P20 stock alloy was prepared by melting a mix-
ture of Pd powder, Cu shot, and P chunks in a sealed silica
tube. Amorphous Pd40Cu40P20 was produced by melting this
stock alloy, together with B2O3 flux, in another silica tube
and then quenching the tube in water. The as-quenched
glassy rods, 3 mm in diameter, were cut into 4-mm-long
segments by electrodischarge machining �EDM�. These cy-
lindrical specimens were used in the elastic constants mea-
surements. Single crystals of Pd40Cu40P20 �tetragonal struc-
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ture� were grown in silica tubes using the Bridgman
technique, starting from the same batch of stock alloy that
was used to make the amorphous samples. Parallelepiped-
shaped specimens, for use in the elastic constants measure-
ments, were cut from the single-crystal rods using EDM.
These specimens had six �100� crystallographic faces and
measured 2.2�1.8�1.6 mm3.

Pd50Cu50 stock alloy was prepared by arc melting a mix-
ture of Pd powder �pressed into pellets� and Cu shot in an
argon atmosphere. A rod of single crystal Pd50Cu50 �disor-
dered fcc solid solution� was grown from this stock alloy
using the Bridgman method. Parallelepiped-shaped speci-
mens were cut from the single-crystal rod using EDM. These
specimens had six �100� crystallographic faces and measured
approximately 5�4�3 mm3. Further details about the
preparation and characterization of the Pd50Cu50 and
Pd40Cu40P20 specimens are presented in Ref. 25.

The elastic constants were measured using resonant ultra-
sound spectroscopy �RUS�. In the RUS technique, the spec-
trum of mechanical resonances of a sample of well-defined
geometry �usually a parallelepiped or cylinder� is measured
using piezoelectric transducers. Detailed descriptions of the
RUS method have been published.29–31 In the present mea-
surements, the specimen and the transducers were located
inside a liquid He cryostat. The spectrum of resonant fre-
quencies was repeatedly scanned as the sample slowly
warmed from 3.9 to �300 K over a period of several days.
The first 30 resonant frequencies of the spectrum were used
to determine the two independent elastic constants of the
elastically isotropic Pd40Cu40P20 glass and the three indepen-
dent elastic constants of the fcc Pd50Cu50 crystal. The first 40
resonant frequencies were used to determine the six indepen-
dent elastic constants of the tetragonal Pd40Cu40P20 crystal.
For all three materials, the values of the elastic constants
were corrected for thermal expansion. This was done by as-
suming that the volume thermal-expansion coefficient, �, of
each material is isotropic and proportional to the Debye heat
capacity, with �D=300 K and � ��D�=43�10−6 K−1.32

IV. RESULTS

A. Shear modulus C� of single crystal Pd50Cu50

We first deduce the expression for the temperature depen-
dence of the shear modulus C�. We begin by evaluating Eq.
�19� for C11 and C12. From the definition C�= �C11−C12� /2,
we then obtain

C��T� = C��0� − AT2 +
1

V
����C��2� − K1�ULat

−
1

V
���C��2�TCv,Lat, �20�

where

���C��2� =
1

2
����1�2� − ��1�2�� �21�

and

K1 =
1

2
	� ��1

�
1
�

T

− � ��1

�
2
�

T
� +

1

2
�C11 − C12 + C111

− C123�
���
3B

�22�

�notice that we now use Voigt notation, where 11→1, 22
→2, 13→4, etc.�. Wallace33 deduced the combination of
second- and third-order elastic constants describing the
volume-strain dependence of C11 and C12 for cubic and iso-
tropic solids. Here we have incorporated his results into the
expression for K1. Recall that because C� is a pure shear
modulus, the adiabatic and isothermal moduli are equal.

For pure shear deformations, such as those associated
with C� and with C44, the mode-averaged Grüneisen param-
eters ��C�� and ��4� are equal to zero. This was demonstrated
nicely by Mason34 and Mason and Bateman,35 who averaged

the generalized-mode Grüneisen parameters ��
C� and ��

4 for
39 purely longitudinal and purely transverse phonon modes
in cubic crystals. However, Eqs. �20� and �21� do not contain
the mode averaged of the Grüneisen parameter, but rather the
mode average of the Grüneisen parameter squared, ���C��2�.
Before fitting Eq. �20� to our data, we need to know whether
���C��2� always equals zero. As we demonstrate in the Ap-
pendix, this is not true and ���C��2� must always be greater
than zero.

Figure 2�a� shows the temperature dependence of C� for
single crystal Pd50Cu50. The solid curve is the best fit of Eq.
�20� to these data in the range 3.9�T�300 K.

To fit Eq. �20� to the data, one needs to know Cv,Lat and
ULat. We have measured the heat capacity at constant pres-
sure for single crystal Pd50Cu50 in the range 2�T�300 K.
By integrating the Cp,Lat data we derived the enthalpy HLat.
Because the difference between Cp and Cv is negligible for
T�100 K �and is usually less than 3% at 300 K�, in this
range we approximated Cv,Lat�T��Cp,Lat�T� and ULat�T�
�HLat�T�. Using these measured values, Eq. �20� has four
adjustable parameters: C��0�, A, ���C��2�, and K1. By fitting
the data in the range 3.9�T�300 K we obtained C��0�
=26.43 GPa, A=1.11�10−5 GPa K−2, ���C��2�=2.40, and
K1=1.38. From this value of ���C��2� we estimate the mode-

averaged Grüneisen parameter to be ����C��2�=1.55.
Figure 2�b� shows the same data and fit as Fig. 2�a� but

plotted as �C��0�−C��T�� /C��0� versus temperature and in
log-log scale, which emphasizes the behavior at low tem-
peratures. This figure also shows the temperature dependence
due to the electrons alone and the phonons alone for T
�40 K, as deduced from our fit of Eq. �20�.

B. Shear modulus C� of single crystal Pd40Cu40P20

Figure 3�a� shows C� as a function of temperature for
single crystal Pd40Cu40P20 and for amorphous Pd40Cu40P20.
The solid curve through the crystal data is the best fit of Eq.
�20� for 3.9�T�300 K, using measured values of Cp,Lat
�Ref. 36� and HLat. From this fit we obtained the values
C��0�=41.52 GPa, A=1.33�10−5 GPa K−2, ���C��2�=6.20,
and K1=3.25. Using this value of ���C��2� we estimate the
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mode-averaged Grüneisen parameter to be ����C��2�=2.49.
Figure 3�b� shows the crystal data plotted as �C��0�
−C��T�� /C��0� vs T and in log-log scale. The dashed curves
show the temperature dependence due to the electrons alone
and the phonons alone for T�40 K, as determined from our
fit of Eq. �20�.

We have also investigated whether our data for single
crystal Pd40Cu40P20 can be fitted using approximate values
for Cv,Lat and ULat, given by the Debye model. Figure 4
shows the best fit of Eq. �20� to the C� data, obtained using
heat capacities and internal energies calculated from the De-
bye model ��D=322 K, as determined calorimetrically�.
Clearly, using the Debye model, we were unable to fit the
data, regardless of the values of C��0�, A, ���C��2�, and K1. In
contrast, using the measured values of Cp,Lat and HLat, we
were able to fit the data nicely over the entire range 3.9
�T�300 K.

We should note that the factor �C11−C12+C111−C123� in
Eq. �22� applies rigorously to cubic crystals and elastically
isotropic solids,33 which have isotropic thermal expansion.
The crystal structure of Pd40Cu40P20 has a slight ��6%� te-
tragonal distortion.25,37 Because this distortion is small, we
treated the Pd40Cu40P20 crystal as cubic.

C. Shear modulus of amorphous Pd40Cu40P20

We attempted to fit Eq. �20� to the C� vs temperature data
for amorphous Pd40Cu40P20, using measured values of

Cp,Lat�T� and HLat�T�. Although we were able to fit the data
in the range 100�T�300 K, we were unable to fit Eq. �20�
to the data below 100 K, irrespective of the values chosen for
C��0�, A, ���C��2�, and K1. This is shown in Fig. 5, where we
plot C� vs temperature for amorphous Pd40Cu40P20 together
with the best fit of Eq. �20� to the data.

All of the glass data between 3.9�T�300 K could be
fitted, however, by assuming that in addition to the usual

FIG. 2. �Color online� �a� Temperature dependence of the shear
modulus C� for single crystal Pd50Cu50. The solid curve is the best
fit of Eq. �20� over the range 3.9�T�300 K. �b� Same data as in
�a� but plotted as �C��0�−C��T�� /C��0� versus temperature and in
log-log scale. The temperature dependence due to the electrons
alone and the phonons alone, as determined from fitting Eq. �20�,
are shown for T�40 K.

FIG. 3. �Color online� �a� Temperature dependence of the shear
modulus C� for single crystal Pd40Cu40P20 and amorphous
Pd40Cu40P20. The solid curve through the crystal data is the best fit
of Eq. �20�, and the solid curve through the glass data is the best fit
of Eq. �23�, both using measured values of the heat capacity and
internal energy. �b� Same data as in �a� but plotted as �C��0�
−C��T�� /C��0� vs T and in log-log scale. The temperature depen-
dence due to the Einstein modes alone, the electrons alone, and the
phonons alone, as determined from these fits, are shown for T
�40 K.
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contributions to the T dependence from the electrons and the

“normal” anharmonic phonons �with ����C��2��2�, there is
also a contribution from a small number of low-energy vi-

brational modes with ����C��2��2. The justification for this
assumption will become clearer in Sec. V D, where we dis-
cuss low-energy excitations in glasses. For simplicity, we
represent these low-energy, highly anharmonic modes as NE
Einstein oscillators �NE�3N�, all with the same frequency
	E. �As discussed in Sec. V B, our analysis suggests that the
number of highly anharmonic modes is indeed small.� Within
the quasiharmonic approximation, the vibrational modes of a
solid are assumed to be noninteracting and thus their contri-
butions to the free energy, and hence to the elastic constants,
are additive. Therefore the temperature dependence of C� for
a metal containing a small number38 of highly anharmonic
Einstein modes �NE�3N� is

C��T� = C��0� − AT2 +
1

V
����C��2� − K1�ULat

−
1

V
���C��2�TCv,Lat +

NE

V
����E

C��2� − K1,E��UE�T�

− UE�0�� −
NE

V
���E

C��2�TCv,E, �23�

where the first four terms on the right are identical to Eq.
�20�, and the last two terms are the contribution of the Ein-
stein modes. The anharmonicity of the Einstein modes is

characterized by ���E
C��2� and K1,E, which are defined analo-

gously to ���C��2� and K1 �see Eqs. �21� and �22��. The heat
capacity and internal energy, Cv,E and UE�T�−UE�0�, are

given by Eqs. �4� and �11�, respectively, with 	�=	E. We
should note that if these anharmonic modes are associated
with specific defects in a solid, then the defects will also
lower the value of C��0� in addition to changing the tempera-
ture dependence of C��T�.

The solid curve through the glass data in Fig. 3�a� is the
best fit of Eq. �23� for 3.9�T�300 K, using measured val-
ues of Cp,Lat�T� �Ref. 36� and HLat�T�. From this fit we de-
duce C��0�=36.12 GPa, A=7.80�10−6 GPa K−2, ���C��2�
=2.57 �����C��2�=1.60�, and K1=2.56 for the normal
phonons, and �E=12.2 K,

NE

3N ���E
C��2�=0.25, and

NE

3NK1,E
=0.54 for the Einstein modes. The goodness of this fit does
not change appreciably for �E in the range 3��E�15 K.
Figure 3�b� shows the same glass data as Fig. 3�a� but plotted
as �C��0�−C��T�� /C��0� versus temperature and in log-log
scale. This figure shows the T dependence due to the elec-
trons alone, the phonons alone, and the Einstein modes alone
for T�40 K, as deduced from our fit of Eq. �23�. For tem-
peratures below approximately 20 K, the change in C��T� is
dominated by the Einstein modes.

The fit of Eq. �23� to the glass data does not allow us to

decouple ���E
C��2� or K1,E from NE /3N. However, as dis-

cussed in Sec. V B, NE /3N�1. This means that ����E
C��2�

�2 and K1,E�1. Therefore, the forgoing analysis suggests
that the spectrum of low-energy vibrational excitations in
amorphous Pd40Cu40P20 alloy consists mostly of normal an-

harmonic vibrations, with ����C��2��2, plus a very small
density of low-frequency and highly anharmonic vibrations

with ����E
C��2��2. The goodness of the fit of Eq. �23�

strongly suggests that these latter modes can be modeled as
Einstein oscillators.

FIG. 5. Temperature dependence of the shear modulus C� for
amorphous Pd40Cu40P20 in the range 3.9�T�100 K. Inset: tem-
perature dependence of C� for 3.9�T�300 K. The solid curve is
the best fit of Eq. �20� to the data using measured values of heat
capacity and internal energy. Equation �20� includes contributions
from the electrons and the normal anharmonic phonons but not
from the highly anharmonic Einstein modes. We were unable to fit
the data in the range 3.9�T�100 K, regardless of the values cho-
sen for the fitting parameters.

FIG. 4. Temperature dependence of the shear modulus C� for
single crystal Pd40Cu40P20 in the range 3.9�T�100 K. Inset: tem-
perature dependence of C� for 3.9�T�300 K. For both the main
figure and the inset, the solid curve is the best fit of Eq. �20� to the
data, using values of the heat capacity and internal energy com-
puted from the Debye model ��D=322 K�. We were unable to fit the
data in the range 3.9�T�90 K, regardless of the values chosen
for the fitting parameters.
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D. Bulk modulus of amorphous Pd40Cu40P20

We begin by deriving the expression for the temperature
dependence of the adiabatic bulk modulus B�T�. To do so we
evaluate Eq. �19� for the isothermal moduli C11 and C12,
convert these isothermal moduli to adiabatic ones and then
apply the definition B= �C11+2C12� /3. The resulting tem-
perature dependence of the bulk modulus, considering only
the contributions from the electrons and the normal anhar-
monic phonons, is

BS�T� = B�0� − AT2 +
1

V
����B�2� − K2�ULat −

1

V
����B�2�

− ���2�TCv,Lat, �24�

where

���B�2� =
1

3
����1�2� + 2��1�2�� �25�

and

K2 =
1

3
	� ��1

�
1
�

T

+ 2� ��1

�
2
�

T
� −

1

3
�C11 + 2C12 + C111

+ 2C123 + 6C112�
���
3B

. �26�

The ���2 term in Eq. �24� arises from the conversion of C11
and C12 from isothermal to adiabatic, which we accom-
plished using Eq. �8�, plus Eqs. �12� and �17�. Equation �26�
incorporates the results of Wallace,33 who deduced the com-
bination of second- and third-order elastic constants describ-
ing the volume-strain dependence of C11 and C12 for cubic
and isotropic solids.

Figure 6 shows the temperature dependence of the adia-
batic bulk modulus for amorphous Pd40Cu40P20. The large
scatter in these data �compared to C�� results from the inher-
ently lower precision of the RUS method in determining the
values of stiffer elastic moduli, particularly when the range
of elastic stiffnesses of a solid is large,25 as is the case for
glassy Pd40Cu40P20 with C��35 GPa and B�150 GPa.

The solid curve in Fig. 6 is the best fit of Eq. �24� to the
bulk modulus data in the range 3.9�T�300 K. From this
fit we deduced B�0�=153.49 GPa, A=5.51�10−5 GPa K−2,
���B�2�−K2=5.38, and ���B�2�− ���2=5.98 �we are not able
to determine the values of these parameters separately�. Also
shown is the T dependence due to the electrons alone and the
phonons alone for T�60 K, as determined from the fit of
Eq. �24�. Notice that we fitted all of the bulk modulus data in
the range 3.9�T�300 K assuming that only the electrons
and the normal phonons contribute to the T dependence. In
contrast, to fit the shear modulus data it was necessary to
assume an additional contribution from a small number of
low-energy and highly anharmonic vibrational modes, which
we modeled as Einstein oscillators.

V. DISCUSSION

A. Contribution of the Boson peak to the temperature
dependence of the moduli

As shown in Figs. 2, 3, and 6, our elastic constant data are
well fitted using measured values of Cp,Lat and HLat to com-
pute the phonon contribution to the temperature dependence.
In contrast, in Fig. 4 we showed that the C� data for single
crystal Pd40Cu40P20 cannot be fitted using values of Cv,Lat
and ULat computed from the Debye model. This suggests that
the temperature dependence of the elastic constants depends
sensitively on the T dependence of the lattice heat capacity
and internal energy, and therefore on the particular shape of
the phonon density of states.

Previous research has suggested that amorphous solids
have low-energy excitations that give characteristic signa-
tures in their low-temperature thermodynamic,39,40

transport,40 and acoustic properties.11 One type of excitation,
with energy-level spacings in the range of �0.1 meV, gives
rise to a linear contribution to the heat capacity40 and a loga-
rithmic contribution to the sound velocity,11 which are ob-
served at temperatures below �2 K. These very-low-energy
excitations have been modeled as a collection of two-level
quantum tunneling systems with a distribution of energy
gaps.13,14 A theory describing the interaction of these two-
level systems with ultrasonic waves has been discussed in
detail.12,41 Our elastic constant measurements extended down
only to 3.9 K and thus we cannot address these two-level
system excitations in amorphous Pd40Cu40P20.

A second type of excitation in glasses, with characteristic
energy in the �5 meV range, gives rise to an anomalously
large density of vibrational states compared to that predicted
by the Debye model, and compared to that measured in crys-
talline solids of the same composition.42,43 In oxide glasses,

FIG. 6. �Color online� �a� Temperature dependence of the adia-
batic bulk modulus B for amorphous Pd40Cu40P20 in the range 3.9
�T�100 K. Inset: temperature dependence of B for 3.9�T
�300 K. The solid curve is the best fit of Eq. �24� to the data using
measured values of heat capacity and internal energy. The T depen-
dence due to the electrons alone and the phonons alone, as deter-
mined from this fit, is shown for T�60 K.
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these vibrational excitations also appear as a broad peak in
the low-frequency Raman spectrum.44 Because the intensity
of this Raman peak varies with temperature according to
Bose-Einstein statistics, it is often referred to as the “Boson
peak.”

The presence of the Boson-peak vibrational modes causes
the lattice specific heat of glasses to increase more rapidly
with temperature than predicted by the Debye model, leading
to a pronounced hump in a plot of Cp /T3 versus T in the
range 3�T�20 K. This hump, however, is not unique to
amorphous solids. Indeed, all metallic elements �fcc, bcc,
and hcp� show a similar hump in their Cp /T3 versus T plots,
arising from the dispersion of acoustic phonons as the
Brillouin-zone boundary is approached, and, in hcp ele-
ments, from the excitation of optical phonon branches.36

Usually, though, the hump is considerably larger for glasses
than for crystals, reflecting a larger number of low-frequency
vibrational states in the glass than in the crystal.

These additional low-energy vibrational states in glasses
should also contribute to the temperature dependence of the
elastic constants. This raises the possibility that the linear T
dependence of the elastic constants in amorphous
Pd40Cu40P20, and in other glasses, might be explained natu-
rally in terms of the Boson-peak vibrations. To our knowl-
edge, the connection between the Boson peak modes and the
linear T dependence of the moduli in glasses, if any, has not
been explored in the literature. We investigated the role of
the Boson peak modes in Sec. IV C by using measured val-
ues of Cp,Lat and HLat, which already contain the full contri-
bution from the Boson-peak modes, to compute the phonon
component of the temperature dependence. Even using these
measured values, however, the linear T dependence of the C�
data cannot be explained by the phonon and electron contri-
butions alone, without the addition of the Einstein modes.
We demonstrate this point in Fig. 5. This strongly suggests
that the anomalous T dependence of the elastic constants in
the glass observed above �4 K cannot be explained in terms
of the Boson-peak vibrations.

Additional support for this conclusion comes from an
analysis of the characteristic energy of the Boson-peak
modes. In a previous work36 we found that the Boson-peak
modes in amorphous Pd40Cu40P20 give rise to a large hump
in Cp /T3 vs T that is centered at 12 K. By modeling this
excess heat capacity �relative to the Debye model� using an
array of Einstein oscillators, all with the same frequency, we
deduce a characteristic temperature of �E�60 K. However,
from the analysis in Sec. IV C we deduced a much lower
temperature, �E�12.2 K. Consequently, the Boson-peak
modes, with �E�60 K, are simply too high in energy to
explain the anomalous temperature dependence that we mea-
sure down to 3.9 K in amorphous Pd40Cu40P20. All this sug-
gests that for amorphous Pd40Cu40P20, the anharmonic
modes that explain the anomalous temperature dependence
of C� have no connection to the vibrational modes that give
rise to the Boson peak in its Cp /T3 vs T plot.

B. Number and anharmonicity of low-energy modes in
amorphous Pd40Cu40P20

If amorphous Pd40Cu40P20 contains low-frequency, highly
anharmonic vibrational modes, as suggested by the analysis

of our shear modulus data, then these modes should also
contribute to the heat capacity at low temperatures. However,
we observe no unusual signatures in the heat capacity down
to 2 K �the lower limit of our Cp measurements�, which is
well below the temperature where the anharmonic modes,
with �E=12.2 K, become fully excited. One possible expla-
nation is that the number of anharmonic modes is very small
and therefore difficult to detect in heat-capacity measure-
ments. An alternative explanation is that the few highly an-
harmonic modes do not all have the same frequency, as we
assumed in fitting the elastic constant data, but rather a dis-
tribution of frequencies that make them difficult to distin-
guish from the background phonon density of states.

If we assume the latter case to be true, then we can esti-
mate the number of highly anharmonic modes. To do so we
approximate the density of states for amorphous Pd40Cu40P20
using the Debye model, g�����2, where � is the character-
istic temperature. Assuming that all of the vibrational modes
with �E�12.2 K are highly anharmonic, then by integrating
the Debye density of states up to �E we estimate the number
of these modes as

NE

3N = �
�E

�D
�3=8.7�10−5. ��D=275 K, as de-

termined from our low-temperature heat-capacity data.� It is
interesting to note that this number is far lower than the
density of interstitial-like defects assumed in Granato’s inter-
stitialcy model of amorphous solids, which is several
percent.45,46

Knowing that the number of Einstein modes is small leads
us to the conclusion that their anharmonicity is very large,
����E

C��2��54. This result is not unreasonable. Comparably
large values of the Grüneisen parameter have been measured
for low-energy excitations associated with specific atomic
configurations. We can cite three examples: �1� low-
frequency, localized “rattler” modes in Al10V ��E�22 K�
and Al10V+0.8% Ga ��E�8 K� crystals have Grüneisen
parameters of ��90;47 �2� low-frequency ��E�40 K� reso-
nant modes associated with �100� split-dumbbell interstitial
defects in neutron-irradiated copper have �C��40–100;24

and �3� tunneling states associated with impurities in alkali
halide crystals can have � values as large as 300.48

It is interesting that the highly anharmonic modes do not
make an anomalous contribution to the temperature depen-
dence of the bulk modulus, at least not within the precision
of our data. Thus although the modes have large anharmo-

nicity in the presence of an applied shear stress, ����E
C��2�

�54, they apparently have normal anharmonicity in the
presence of an applied hydrostatic stress. An important con-
sequence of this is that the thermal expansion should also
show no anomalous temperature dependence, similar to our
finding for the bulk modulus.

C. Anelastic relaxations and incoherent tunneling

Thus far we have explained the linear T dependence of C�
for amorphous Pd40Cu40P20 in terms of a small number of

soft ��E�12 K� and highly anharmonic ����E
C��2��2� vi-

brational modes. Our C� data can also be explained, how-
ever, in terms of thermally activated anelastic relaxations that
occur in the presence of an applied ultrasonic stress. Tiel-

EVIDENCE FOR HIGHLY ANHARMONIC LOW-FREQUENCY… PHYSICAL REVIEW B 80, 094109 �2009�

094109-9



bürger et al.19 developed a model describing the effect of
activated relaxations on the acoustic properties of oxide
glasses. Their model begins from the standard two-level
quantum tunneling model, but assumes that transitions be-
tween the two wells can also occur via thermally activated
hopping over the energy barrier. The model predicts �1� a
linear decrease in the modulus with increasing temperature,
�2� a logarithmic decrease in the slope d�modulus� /dT with
increasing sound wave frequency, and �3� a peak in the in-
ternal friction that coincides with the linear T dependence of
the modulus.19 We should point out that to obtain these pre-
dictions, Tielbürger et al. was forced to assume specific dis-
tributions for the model parameters, most notably the number
of double wells having a specific asymmetry energy and spe-
cific barrier height.

The predictions of Tielbürger’s model are consistent with
his own data, as well as data available in the literature for the
oxide glass SiO2 �Ref. 19 and references therein�. Specifi-
cally, the SiO2 data show that the slope d�modulus� /dT var-
ies logarithmically over 7 orders of magnitude of frequency
and the internal friction has a peak at �50 K.

We have compared the predictions of Tielbürger’s model
to our data for amorphous Pd40Cu40P20. The mechanical
resonant frequencies of our specimens spanned the range
250–750 kHz and thus the values of C� obtained using the
RUS method represent averages over this frequency range.
Consequently, we cannot use these data to analyze the fre-
quency dependence of the slope dC� /dT. We have, however,
investigated the frequency dependence by determining the
slope df /dT for 11 different resonant modes that depend al-
most entirely ��98%� on C�. From this analysis we detect
no frequency dependence of df /dT and hence none for
dC� /dT in the range 250–750 kHz.

The only other measurements we know of for the fre-
quency dependence of a metallic glass are those of Bellessa
for Pd-Si.9 These data for Pd-Si indicate a frequency-
independent slope dC� /dT in the range of 20–400 MHz,
which is consistent with our result for Pd40Cu40P20. For both
Pd40Cu40P20 and Pd-Si metallic glasses, the lack of frequency
dependence is inconsistent with the prediction of Tielbürg-
er’s model. However, it is consistent with the anharmonic
vibration model that we propose here. The reason is that the
relaxation time � for the anharmonic modes should be small,
certainly less than 10−9 seconds, and hence 	��1 for all the
sound wave frequencies 	 used in our measurements. Since
	��1, no relaxation will be observed, and hence df /dT is
independent of frequency.

Rau et al.18 suggested a different explanation for the un-
usual T dependence of the moduli in glasses. They proposed
that incoherent tunneling �e.g., incoherent wave functions�
between the double wells assumed in the TLS model is re-
sponsible for the anomaly. The predictions of their incoher-
ent tunneling model18 are similar to those of the relaxation
model, namely, �1� a linear T dependence of the modulus, �2�
a slope d�modulus� /dT that varies as the logarithm of the
sound wave frequency, and �3� a peak in the T dependence of
the internal friction. Thus, just as for the relaxation model,
the incoherent tunneling model can explain the data for oxide
glasses such SiO2, B2O3, and GeO2, but it cannot explain the
available data for metallic glasses.

D. Atomistic interpretation of low-energy, highly anharmonic
vibrations

The large anharmonicity �����E
C��2��54� of the low-

energy vibrations suggests that they are associated with spe-
cific “defects” in the glass structure, rather than with normal
traveling phonons, for which we expect ��2. In addition,
from their low frequency ��1 meV� we can infer that the
vibrating entities have a large mass, a small restoring force,
or both. These conclusions lead us to ask the questions: what
atomic displacements are involved with these vibrations?
Why is the vibrational frequency so small and the anharmo-
nicity so large? Below we discuss these questions, first
briefly for oxide glasses and then for metallic glasses.

The oxide glass B2O3 contains a large density of vibra-
tional modes with energy �2.5 meV.44 The associated
atomic displacements consist of rigid librations of several
interconnected six-atom boroxyl rings, which are the basic
structural units of B2O3 formed by alternating boron and
oxygen atoms.44 Glassy SiO2 also contains a large density of
low-frequency ��5 meV� vibrational modes. These vibra-
tions are analogous to those in B2O3, involving the rigid
librations of interconnected SiO4 units.42 Thus for both B2O3
and SiO2, the excess low-energy vibrations are quasilocal-
ized and involve the collective motion of many atoms, and
hence are more akin to resonant vibrational modes than to
traveling acoustic phonons. However, these 2.5 meV vibra-
tions in B2O3 and 5 meV vibrations in SiO2 do not seem to
be responsible for the observed linear T dependence of the
elastic constants down to �4 K. The reason is that these
modes are simply too high in energy. Furthermore, it is in-
teresting to note that these modes have normal anharmonic-
ity, e.g., ��2, as measured by Raman and neutron
scattering.42,44

It is unlikely that rigid unit librations, such as in B2O3 and
SiO2, exist in metallic glasses such as Pd40Cu40P20 since
these close packed, nondirectionally bonded glasses lack
clearly identifiable structural units, except perhaps for the
presence of metallic “cages” surrounding each metalloid
atom. However, numerous molecular-dynamics simulations,
performed using a variety of different pair-wise interatomic
potentials, indicate that metallic glasses have a different type
of low-energy excitation, where atoms in stringlike arrays
vibrate collectively and at very low frequencies �for ex-
ample, Refs. 49–51�. These stringlike excitations usually oc-
cur adjacent to specific defects in the glass structure, namely,
regions of excess free volume.49 The simulations of Laird
and Schober49 suggest that these collective vibrations are
composed of up to 50 atoms and have a characteristic vibra-
tional energy of ��D /30. This agrees with the frequency of
the Einstein oscillators we used to explain the temperature
dependence of C� in amorphous Pd40Cu40P20.

Strings of atoms moving collectively are also found in
defective crystalline lattices. In neutron-irradiated Cu, for
example, each interstitial atom assumes a dumbbell configu-
ration, aligned along a �100� direction, with two Cu atoms
trying to occupy the same lattice site. The libration resonant
mode of the dummbell interstitial �Eg

1 symmetry� pushes at-
oms along �110� directions, creating, in effect, four
strings.46,52 The dumbbells and their strings couple readily to
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TABLE I. Isothermal generalized-mode Grüneisen parameters associated with C11-, C22-, C�-, and
C44-type deformations for sodium chloride. The Grüneisen parameters are computed for 39 purely longitu-
dinal and purely transverse phonon modes using the method of Brugger �Ref. 54� and Mason and Bateman
�Ref. 35�. The values of the second- and third-order elastic constants for NaCl are �in units of GPa�: C11

=49.3, C12=12.9, C44=12.78, C111=−880, C112=−57, C123=28.4, C144=25.7, C166=−61.1, and C456=27.1
�Ref. 35�.

Mode no. Propagation direction Polarization direction ��
1 ��

2 ���
2 −��

1� /2 �=��
C�� ��

4 ��
1��

2

1 �100� �100� 7.42 0.45 −3.49 0 3.32

2 �100� �010� 0.46 0.89 0.21 0 0.41

3 �100� �001� 0.46 −1.51 −0.99 0 −0.70

4 �010� �010� 0.45 7.42 3.49 0 3.32

5 �001� �001� 0.45 0.45 0 0 0.20

6 �010� �100� 0.89 0.46 −0.21 0 0.41

7 �001� �100� 0.89 −1.51 −1.20 0 −1.34

8 �010� �001� −1.51 0.46 0.99 0 −0.70

9 �001� �010� −1.51 0.89 1.20 0 −1.34

10 �011� �011� −0.28 2.84 1.56 0 −0.79

11 �0-11� �0-11� −0.28 2.84 1.56 0 −0.79

12 �011� �0-11� 0.82 4.30 1.74 0 3.52

13 �0-11� �011� 0.82 4.30 1.74 0 3.52

14 �011� �100� 0.89 −0.52 −0.71 0 −0.46

15 �0-11� �100� 0.89 −0.52 −0.71 0 −0.46

16 �110� �110� 2.84 2.84 0 0 8.04

17 �1-10� �1-10� 2.84 2.84 0 0 8.04

18 �101� �101� 2.84 −0.28 −1.56 0.75 −0.79

19 �10-1� �10-1� 2.84 −0.28 −1.56 −0.75 −0.79

20 �110� �1-10� 4.30 4.30 0 0 18.47

21 �1-10� �110� 4.30 4.30 0 0 18.47

22 �101� �10-1� 4.30 0.82 −1.74 0.15 3.52

23 �10-1� �101� 4.30 0.82 −1.74 −0.15 3.52

24 �110� �001� −0.52 −0.52 0 0 0.27

25 �1-10� �001� −0.52 −0.52 0 0 0.27

26 �101� �010� −0.52 0.89 0.71 −1.56 −0.46

27 �10-1� �010� −0.52 0.89 0.71 1.56 −0.46

28 �111� �111� 1.42 1.42 0 −0.21 2.01

29 �1-11� �1-11� 1.42 1.42 0 −0.21 2.01

30 �11-1� �11-1� 1.42 1.42 0 0.21 2.01

31 �1-1-1� �1-1-1� 1.42 1.42 0 0.21 2.01

32 �111� �−1-12� 1.52 1.52 0 0.55 2.30

33 �1-11� �−112� 1.52 1.52 0 0.55 2.30

34 �11-1� �−1-1-2� 1.52 1.52 0 −0.55 2.30

35 �1-1-1� �−11-2� 1.52 1.52 0 −0.55 2.30

36 �111� �−110� 3.10 3.10 0 0.62 9.61

37 �1-11� �110� 3.10 3.10 0 0.62 9.61

38 �11-1� �−110� 3.10 3.10 0 −0.62 9.61

39 �1-1-1� �110� 3.10 3.10 0 −0.62 9.61

Mode Average, ����=��� /39 1.58 1.58 0 0 3.13

Mode Average of Square, �����2�=�����2 /39 5.85 5.85 1.36 0.23

����
C��2�= 1

2 ����1�2�− ��1���2��=1.36
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an applied deviatoric strain, thus affecting the values of both
C� and C44. The elastic and thermal properties of the dumb-
bell interstitials have been studied in fcc metals such as Cu
by both experiment24 and computer modeling.53 Two impor-
tant conclusions are reached from these studies. First, a dis-
tinct feature of the dumbbell interstitial defects is that they
have large entropy and large shear compliance. Second, reso-
nant vibrational modes associated with the �100� split-
dumbbell interstitial defects in Cu have a low frequency
��E�40 K� and huge anharmonicity for both C�-type and
C44-type deformations ��E

C��40–100, and comparably large
for �E

44�.24 The low frequency can be explained by the string-
like chains of atoms displaced by the vibration of the dumb-
bell interstitial, which leads to a large effective mass. It is not
clear, however, why the resonance vibrational modes associ-
ated with the dumbbells are so anharmonic, with �E

C�

�40–100. Furthermore, it is not known whether the anhar-
monicity can be ascribed to the motion of the two atoms
forming the dumbbell or to the displacements of the strings,
since in fcc Cu their motion is intimately coupled.

In contrast to the dumbbells’ response to a deviatoric
strain, there is no reason to expect the dumbbells in irradi-
ated Cu to couple to a nondeviatoric strain, although we
cannot confirm this because bulk modulus data for irradiated
Cu is not available.24

If chainlike vibrational excitations are present in metallic
glasses, as suggested by computer simulations, then based on
the above discussion it is likely that these vibrations are
highly anharmonic and are thus responsible for the linear T
dependence of the shear moduli we measure in amorphous
Pd40Cu40P20. Thus, the analogy between our results and those
for neutron-irradiated Cu cannot be ignored.

Granato45,46 was the first to see the connection between
the strings associated with the dumbbell interstitials in irra-
diated Cu and the strings now ubiquitous to computer simu-
lation of metallic glasses.49–51 In his interstitialcy model,
Granato proposes that the dynamics of a metallic glass are
akin to that of an fcc crystal containing a few percent inter-
stitial defects in dumbbell configurations. As discussed
above, a main characteristic of these interstitials is their as-
sociation with strings of displaced atoms. Our present work
supports Granato’s interstitialcy model for the glassy state in
that we attribute the linear T dependence of C� and C44 to the
presence of “strings” of atoms in the glass. We differ with
this theory, however, in that the number of strings needed to
explain the linear T dependence is much smaller than the
number of strings assumed in the interstitialcy theory �a few
percent�. We also differ in the characteristic vibrational en-
ergy for these excitations. Whereas our elastic constant mea-
surements suggest the characteristic energy is in the 1 meV
range ���D /30�, the interstitialcy model assumes the char-
acteristic energy is in the 4 meV range ���D /7�, and as-
sumes further that the string excitations are responsible for
the Boson peak in the glass. In contrast, our elastic constant
data suggests that the Boson peak has nothing to do with the
excitation of the strings.

VI. SUMMARY AND CONCLUSIONS

The temperature dependence of the elastic constants for
single crystal Pd50Cu50 and Pd40Cu40P20 can be well ex-

plained using our simplified version of the quasiharmonic
model. By fitting this model to our C� data, we estimate the

mode-averaged Grüneisen parameter, ����C��2�, to be 1.55
for Pd50Cu50 and 2.49 for Pd40Cu40P20.

The temperature dependence of C� for amorphous
Pd40Cu40P20 can be well explained by an extension of the
quasiharmonic model, in which we assume that the vibra-
tional density of states consists mainly of normal vibrations,

with ����C��2�=1.60, plus a small number of low-frequency

��E�12 K� and highly anharmonic �����E
C��2��54� vibra-

tional modes, which we model as Einstein oscillators.
The present analysis for amorphous Pd40Cu40P20 suggests

that the anomalous T dependence observed in our C� data,
and the Boson peak observed in both the phonon density of
states and the heat capacity, arise from different excitations.
The Boson peak modes alone cannot account for the linear
contribution to the T dependence, even if we assume that
these modes are highly anharmonic. These Boson-peak
modes, with characteristic temperature of ��60 K, are sim-
ply too high in energy to explain the linear temperature de-
pendence we measure down to 3.9 K.

Amorphous Pd40Cu40P20 appears to have at least three
types of low-energy excitations. In order of increasing en-
ergy these are: �a� very-low-energy excitations, at a fraction
of a meV, which are usually described by tunneling phenom-
ena �these excitations were not addressed in the present
work�; �b� very-low-frequency and highly anharmonic
����E

C��2��54� vibrations that can be well represented by
Einstein oscillators with 	E�1 meV; and �c� normal lat-

tice vibrations �����C��2�=1.60�. A most notable difference
between excitations �b� and �c� is the large anharmonicity of
�b�.

The Boson peak, which sometimes has been considered a
signature of the glassy state, seems to be unremarkable, at
least in its effect on the elastic properties of a metallic glass.
Its ubiquitous presence merely reflects a deviation of the
phonon density of states from that predicted by the Debye
model. What seems to be a unique characteristic of the
glassy state, at least for metallic glasses, is the presence of a
small density of low-frequency and highly anharmonic
modes. These modes seem to express themselves most
strongly in the temperature dependence of the elastic con-
stants at low temperatures.
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APPENDIX

Brugger54 solved the equations of motion for the propa-
gation of long-wavelength plane waves in a homogenously
strained solid. From this he derived expressions for the iso-
thermal generalized-mode Grüneisen parameters ��

ij in terms
of the second- and third-order elastic constants. The resulting
equations are given in Ref. 54. Using Brugger’s results,
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Mason55 deduced expressions for the Grüneisen parameters
��

1 and ��
4 �corresponding to C11- and C44-type deformations,

respectively� for 39 phonon modes. In his analysis, Mason
considered one pure longitudinal wave and two pure shear
waves propagating along the three independent �100� direc-
tions, six �110� directions, and four �111� directions of a
cubic crystal, for a total of 39 modes.

Mason and Bateman35 evaluated these expressions for
several cubic crystals using elastic constant data available in
the literature. In Table I we reproduce their results for ��

1 and
��

4 for NaCl. In addition, the table now includes values of ��
2

that we calculated using Brugger’s equations, as well as the
difference 1

2 ���
2 −��

1� and product ��
1��

2 . The difference
1
2 ���

2 −��
1� is equivalent to ��

C�, the Grüneisen parameter as-
sociated with the shear modulus C�.34 The mode-averaged
values given in Table I are arithmetic means of ��

ij and ���
ij�2,

with equal weight given to each of the 39 modes. This aver-
aging method is equivalent to assuming in Eqs. �12� and �13�

that each phonon mode has the same heat capacity �e.g.,
Dulong and Petit limit�.

The average value of ��1�=1.58 calculated from these 39
modes agrees well with the measured value of ��1�=1.54.35

Similar agreement is found for other cubic crystals.35 As
shown in the Table, both 1

2 ��2−�1� and ��4� are indeed equal
to zero, but ���C��2�= 1

4 ���2−�1�2� and ���4�2� are greater
than zero. We have also found this to be true for five other
cubic crystals that we have investigated. We should point out
that the expression for ���C��2� in Table I is equivalent to Eq.
�21�, e.g., ���C��2�= 1

4 ���2−�1�2�= 1
2 ����1�2�− ��1�2��.

The question arises as to whether ��C��= ��4�=0 is an
artifact due to the small number of phonon modes used for
this calculation. Most likely the answer is no. The reason is
that the mode average for each family of directions �e.g.,
�100�, �110�, and �111�� equals zero, as can be seen from
Table I. This suggests that ��C��= ��4�=0 follows from the
fact that each atom in the crystal occupies a symmetry center.
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