
Effective magnetic moment of magnetic multicore nanoparticles

Vincent Schaller,1,* Göran Wahnström,2 Anke Sanz-Velasco,1 Stefan Gustafsson,2 Eva Olsson,2

Peter Enoksson,1 and Christer Johansson3

1Department of Microtechnology and Nanoscience - MC2, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
2Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden

3Imego Institute, Arvid Hedvalls Backe 4, P.O. Box 53071, SE-400 14 Göteborg, Sweden
�Received 3 July 2009; published 22 September 2009�

We carry out Monte Carlo simulations to study the effective magnetic moment �eff in the low-field region of
magnetic multicore nanoparticles. Transmission electron microscopy and scanning electron microscopy images
show that these particles contain a number of magnetic nanocrystals �MNCs� randomly packed in a single
cluster of total volume Vtot. We illustrate how the initial magnetic susceptibility �0 of magnetic multicore
nanoparticles can be straightforward derived from �eff computed at zero magnetic field. We observe that
dipolar interactions between MNCs and polydispersity of the MNCs contribute to increase and to decrease
�eff /Vtot, respectively, while magnetic anisotropy of the MNCs does not show any effect. In all three cases,
�eff /Vtot can be described by a linear relation to ��B /kBT�2 that we analytically derived for low applied fields.
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I. INTRODUCTION

In recent years, there has been growing interest in using
magnetic multicore nanoparticles in biomedical applications
such as magnetic carriers in bioseparation1–3 and drug
delivery,4,5 mediators for hyperthermia in cancer
treatment,6–8 contrast agents for magnetic resonance
imaging,5,9 and magnetic probes for biosensing.10–14 These
particles have a hydrodynamic diameter of typically 50–200
nm and contain a cluster of magnetic nanocrystals �MNCs�
surrounded by a polymer or organic coating �e.g., dextran
and starch� that can be functionalized with target-specific
biomolecules such as antibodies, DNA, and peptides.

A large number of biosensing systems using magnetic
multicore nanoparticles as markers rely on the magnetic re-
sponse of these particles in the low-field region, i.e. in the
mT range12,14 or below.10,11,13 Consequently, it is essential to
understand how the magnetic properties and physical micro-
structure of the MNC cluster influence the magnetic response
of the particles to optimize the choice of particles and to
guarantee proper interpretation of the experimental data. Al-
though considerable work has been devoted to single-core
nanoparticles,15–20 little attention has been paid to multicore
nanoparticles yet.

In this paper, we investigate the effective magnetic mo-
ment of magnetic multicore nanoparticles at zero and low
applied magnetic fields using a Monte Carlo �MC� method.21

Our model takes into account �i� the specific microstructure
of the MNC cluster as observed from scanning and transmis-
sion electron microscopy �SEM and TEM� images of com-
mercially available multicore nanoparticles, �ii� the size dis-
tribution and �iii� magnetic anisotropy of the MNCs, �iv� the
magnetic dipole-dipole interactions between the MNCs, and
�v� the Brownian stochastic rotation of the particle sus-
pended in liquid.

II. MODEL AND METHOD

SEM and TEM images of typical magnetic multicore
nanoparticles are shown in Figs. 1�a� and 1�b�, respectively.

Specimens for SEM and TEM were prepared by placing a
drop of the ferrofluid on a standard Cu grid coated with a
holey carbon film. The particles were imaged using a Leo
Ultra 55 SEM and a Philips CM200 TEM operating at 10
and 200 kV, respectively. We observe that each multicore
nanoparticle contains a single cluster of randomly packed
MNCs that have a nearly spherical shape and a certain size
distribution well described by a log-normal distribution func-
tion.

The first step of the simulation is to generate a three-
dimensional �3D� cluster of N spheres representing the
MNCs within the multicore nanoparticle. The ith spherical
MNC has a diameter Di randomly chosen from a log-normal
function with mean diameter Dm and distribution parameter
�. After the first MNC is placed at the origin of the coordi-
nate system, the cluster is grown by successively adding a
new MNC with index i= �2:N� to the contact of a randomly
chosen MNC with index j� i. The center of the new MNC is
located at a distance Di+Dj from the center of the jth MNC
and with random direction in 3D, excluded positions that
would result in an overlap with other MNCs already present
in the cluster. It should be noted that the method proposed
here is obviously not intended to reproduce the complex and
often not fully understood mechanisms behind the aggrega-
tion and growth of real MNC clusters. Nevertheless, we ob-
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FIG. 1. �a� Scanning and �b� transmission electron microscopy
images of magnetic multicore nanoparticles fluidMAG-D150 from
Chemicell GmbH �average hydrodynamic diameters of about 150
nm�. The magnetic multicore consists of a cluster of many MNCs of
magnetite �Fe3O4� with mean diameters of about 12 nm embedded
in a starch coating. �c� Simulated 3D cluster of N=200 MNCs with
mean diameters Dm=12 nm and �=3 nm.
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serve that this rather simple approach produces clusters that
have all the essential microstructural features of real particle
systems �Fig. 1�c��.

The equilibrium magnetization of the MNCs is then simu-
lated using the same standard Metropolis algorithm as re-
ported in Ref. 22. In brief, we assume that each MNC is
homogeneously magnetized due to the coherent rotation of
the atomic moments within the MNC.23 The magnetic mo-
ment of the ith MNC is represented by a dipole �i located at
the center of the MNC with constant magnitude �=MSVi,
where Ms is the intrinsic saturation magnetization and Vi
= �� /6�Di

3 is the volume of the ith MNC, respectively.
The interaction energy between �i and the applied mag-

netic field B is given by

EB
�i� = − �i · B . �1�

The magnetic dipole-dipole interaction energy between �i
and its neighbors � j is expressed as

ED
�i� = −

�0

4�
�
j�i
�3��i · rij��� j · rij�

rij
5 −

��i · � j�
rij

3 � , �2�

where �0=4��10−7 N /A2 is the vacuum permeability and
rij =ri-r j is a distance vector joining the two dipoles �rij
= �rij��. Owing to the small and finite size of the system, all
neighbor pairs are considered in the summation of Eq. �2�.

The uniaxial magnetic anisotropy energy is represented by

EA
�i� = − KuVi	 �i


�i

· ei�2

, �3�

where Ku is the anisotropy constant and ei is a unit vector
along the randomly distributed easy axis of each MNC.

Adding Eqs. �1�–�3�, the total energy of the ith MNC
becomes

Etot
�i� = EB

�i� + ED
�i� + EA

�i�. �4�

At each Monte Carlo step, a new direction of �i is randomly
chosen with a uniform distribution in all directions. The
move is accepted or rejected according to the Metropolis
criterion21 with the probability determined by the Boltzmann
distribution factor, i.e., exp�−�Etot

�i� /kBT�, where kBT is the
thermal energy and �Etot

�i� is the energy difference between
the new and current magnetization orientations calculated
from Eq. �4�.

The total magnetic moment of the particle, �tot, is then
calculated as the Euclidian vector norm of the vector sum of
the N individual dipoles �i,

�tot = ��
i=1

N

�i� . �5�

Finally, we define the effective magnetic moment of the par-
ticle, �eff, as the root mean square of �tot,

�eff = �tot
2 �n

1/2, �6�

where the symbol  �n denotes the average value over n MC
steps after the system has reached thermal equilibrium.

The initial magnetic susceptibility �0 is often determined
from the initial slope of the magnetization curve, i.e., �0

=�M /�H�H→0�, thus requiring a number of magnetization
values calculated in the low-field region.24 Instead, �0 can be
straightforward derived in a single step from �eff computed
at zero applied field,

�0 = �0
1

Vtot

�eff
2

3kBT
, �7�

where Vtot is the total volume of all the MNCs contained in
the cluster. It is worth to note that this value of �0 directly
includes the effect of size distribution and magnetic aniso-
tropy of the MNCs, and dipole-dipole interactions between
the MNCs.

In order to compare the effect of these contributions in the
low-field region, we derived an analytical expression of �eff
for an ensemble of N noninteracting monodisperse MNCs
with magnetic moments �,

�eff = �N�2�1 +
�N − 1�

2
	 �B

3kBT
�2� . �8�

This equation was obtained under the condition �N
−1���B /3kBT�2	1, which is fulfilled in our case with N
=100. At zero magnetic field, Eq. �8� reduces to

�eff = �N� = �NMSV . �9�

All the simulations were performed at T=293 K and with
parameter values Ms=350 kA /m and Ku=50 kJ /m3, which
are typical values for MNCs of magnetite �Fe3O4�.25,26 All
the simulated clusters contain N=100 MNCs, which corre-
sponds to the typical number of MNCs contained in mag-
netic multicore nanoparticles with an intermediate size of
about 100 nm. The initial 5000 MC steps were performed to
let the system reach thermal equilibrium. Then the data were
collected during the following 15 000 MC steps. The simu-
lation is repeated 64 times at every field with a new cluster
created each time.

III. RESULTS AND DISCUSSION

The results hereafter are presented for particles including
one or several of the following factors: �I� particle rotation in
the liquid and interaction with the external field �if any�; �II�
uniaxial magnetic anisotropy of the MNCs; �III� log-normal
size distribution of the MNCs �with mean diameter Dm and
standard deviation ��; �IV� dipole-dipole interactions be-
tween the MNCs.

Figures 2 and 3 illustrates �eff /Vtot vs ��B /kBT�2 in the
low-field region where, according to Eq. �8�, �eff /Vtot can be
approximated by a linear relation to ��B /kBT�2,

�eff

Vtot
= A0 + A2	 �B

kBT
�2

, �10�

In the Langevin model, the parameters A0 and A2 are given
by

A0 =
MS

�N
,
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A2 =
�N − 1�

18
A0. �11�

It is noteworthy that parameters A0 and A2 are linearly pro-
portional and independent of both the MNC size and the
temperature. Parameter A0 gives the zero-field value of the
effective magnetic moment, which directly relates to the ini-
tial magnetic susceptibility �0 of the multicore particle as
described in Eq. �7�. Parameter A2 relates to the third har-
monic of the particle’s magnetic response and therefore this
parameter is of particular interest for applications taking ad-
vantage of the nonlinear magnetic response of magnetic
nanoparticles such as tomographic imaging27 and
biosensing.28,29

A linear interpolation was performed for each series of
data and the corresponding fitting parameters A0 and A2 are
summarized in Table I. The Langevin model predicts values
A0=35.0 kA /m and A2=192.5 kA /m for MS=350 kA /m
and N=100 �Eq. �11��.

Simulations with particles type I were carried out for sev-
eral MNC diameters. All data superimposed onto a universal
curve of �eff /Vtot vs ��B /kBT�2 with both parameters A0 and
A2 recovering the values predicted by the Langevin model
�only the data for D=12 nm are represented in Fig. 2 for the
sake of visibility�.

Similarly, simulated values for particles type I+II �open
squares in Fig. 2� show no significant deviation from the
analytical expression, indicating that magnetic anisotropy
with randomly distributed easy axes does not influence �eff
in the low-field region, which is in agreement with previous
work.19,30

On the other hand, dipolar interactions �particles type I
+IV� yield a decrease in �eff compared to the noninteracting
case. This result agrees with a previous study by Chantrell et
al.15,16 where a reduction in �0 for an ensemble of single-
core nanoparticles was attributed to the formation of flux-
closure configurations due to interparticle dipolar interac-
tions. Although the largest packing density �0.35� of the
single-domain particles in Ref. 16 is below the correspond-

ing value for typical multicore nanoparticles �about 0.5
which corresponds to a typical concentration of magnetic
material of 70 wt %�, it is reasonable to assume that the
same phenomenological explanation applies in the case mul-
ticore nanoparticles. Interestingly, the values �eff /Vtot for
particles type I+IV with D=8, 10, and 12 nm �open circles,
triangles, and diamonds in Fig. 2� can still be described by
Eq. �10�.

As can be seen in Table I, the parameter A0 decreases for
larger MNC size. In other words, larger MNCs inducing
stronger dipole-dipole interactions have a lower effective
magnetic moment per unit volume at zero magnetic field and
thus a lower initial magnetic susceptibility �0. Consequently,
for a given amount of magnetic material within the multicore
particle, �0 can be optimized by eventually synthesizing
MNCs with smaller dimensions. We also note that the pa-
rameter A2 decreases as D increases. This suggests that, as
the MNC size increases, the internal field induced by the
dipole-dipole interactions more strongly opposes the reorien-
tation of the magnetic moments �i caused by the externally
applied field.

The effect of the size distribution of the MNCs is depicted
in Fig. 3 for particles type I+III and I+III+IV. In both cases,

TABLE I. Parameters A0 and A2 for the different series of simu-
lation data illustrated in Figs. 2 and 3.

Particle type
A0

�kA/m�
A2

�kA/m�

I�D=12 nm� 35.0 192.5
I+II�D=12 nm� 35.0 183.6
I+III�Dm=12 nm,�=1 nm� 36.1 205.2
I+III�Dm=12 nm,�=3 nm� 45.8 367.2
I+IV�D=8 nm� 34.5 184.0
I+IV�D=10 nm� 33.8 156.3
I+IV�D=12 nm� 32.5 135.0
I+III+IV�Dm=12 nm,�=1 nm� 33.9 176.2
I+III+IV�Dm=12 nm,�=3 nm� 40.1 277.8
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FIG. 2. Simulated values of �eff /Vtot vs ��B /kBT�2 for particles
type I �filled diamonds�, type I+II �open squares�, and type I+IV
�open circles: D=8 nm, open triangles: D=10 nm, and open dia-
monds: D=12 nm�. The analytical expression derived for particles
type I, Eq. �8�, is plotted as a solid line. The dashed lines represent
Eq. �10� fitted to the simulation data for the three different MNC
diameters.
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FIG. 3. Simulated values of �eff /Vtot vs ��B /kBT�2 for particles
type I �filled diamonds�, type I+III �filled squares: Dm=12 nm and
�=1 nm, filled triangles: Dm=12 nm and �=3 nm�, type I+IV
�open diamonds�, and type I+III+IV �open squares: Dm=12 nm
and �=1 nm, open triangles: Dm=12 nm and �=3 nm�. The ana-
lytical expression derived for particles type I, Eq. �8�, is plotted as
a solid line. The dashed lines represent Eq. �10� fitted to the differ-
ent series of simulated data.
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the simulated values of �eff /Vtot obey Eq. �10�. For polydis-
perse MNCs, we use �=MSV�. The average volume of the
MNC ensemble, V�, is calculated as

V� =
�

6
�

Dmin

Dmax

D3f�D�dD , �12�

where Dmin and Dmax are the minimum and maximum diam-
eters of the MNC ensemble, respectively, and f�D� is a log-
normal function with parameters Dm and �.

As expected from Eqs. �9� and �12�, the size distribution
of the MNCs �particles type I+III with �=1 �filled squares�
and �=3 nm �filled triangles�� yields an increase in �eff /Vtot
compared to monodisperse MNCs �filled diamonds�.

While the size distribution of the MNCs contribute to in-
crease �eff /Vtot, dipolar interactions between MNCs yield a
decrease in this parameter value. Consequently, the values of
�eff /Vtot for particles type I+III+IV are the result of the
interplay between these two contributions. This may result in
either lower or higher values of �eff /Vtot �open squares and
triangles, respectively� compared to the reference curve for

particles type I �solid line�, depending on the size-
distribution parameter �.

IV. CONCLUSIONS

Monte Carlo simulations of magnetic multicore nanopar-
ticles in thermal equilibrium have shown that in the low-field
region �eff /Vtot is reduced owing to the dipole-dipole inter-
actions between MNCs whereas the size distribution of the
MNCs yield a higher value of �eff /Vtot. Uniaxial magnetic
anisotropy of the MNCs with randomly distributed easy axes
does not influence �eff at zero field. We have shown how the
true value of �0 can be straightforward derived from the
effective �eff computed at zero field. We also derived a linear
relation of �eff to ��B /kBT�2. The fitting parameters relate
directly to �0 and to the nonlinearity of the particle’s mag-
netic response. These findings are expected to be of particu-
lar interest for biomedical applications relying on either the
linear or the nonlinear magnetic response of magnetic mul-
ticore nanoparticles.

The authors thank Chemicell for supplying the
fluidMAG-D nanoparticles.
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