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We investigate the ballistic thermal conductance of electrons in gated graphene ribbons with width above 20
nm and clarify both the temperature and the Fermi-level dependences. In the intrinsic graphene ribbons, the
normalized thermal conductance by the quantum conductance, �0, increases monotonically with temperature.
In the gated graphene ribbons, the normalized thermal conductance increases steplikely as the Fermi level
increases but it has nonmonotonic temperature dependence when the Fermi level is a little larger than the
bottom of the subband. The value of the step height changes from 4�0 to 2�0 with increasing temperature. The
ballistic electron thermal conductance per unit width of graphene ribbons is smaller than those of correspond-
ing single-walled nanotubes and a graphene sheet and it approaches at 100 K that of a graphene sheet above the
ribbon width of about 80 and 50 nm for zigzag ribbons and armchair ribbons, respectively.
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I. INTRODUCTION

The exceptional electronic transport properties of low-
dimensional graphitic structures have been extensively dem-
onstrated in carbon nanotubes.1 With respect to the
electronic-transport properties, ballistic transport has been
observed up to room temperature in carbon nanotubes. As for
the thermal transport, thermal conductivity of single-walled
carbon nanotubes has been measured2 and the observed
T-linear temperature dependence below 50 K has been ex-
plained well by the ballistic thermal transport.3 In the ballis-
tic limit, the thermal conductance of one-dimensional �1D�
system is quantized by the quantum conductance, �0
=�2kB

2T /3h and the metallic single-walled carbon nanotubes
have a thermal conductance of 8�0 at low temperatures.
Here, 4�0 is contribution of four acoustic phonon modes and
the remaining 4�0 is contribution of two electronic bands
which cross the Fermi level.

On the other hand, a graphene, a single atomic layer of
graphite, which is two-dimensional form of carbon, is found
to exhibit high crystal quality and to have ballistic electronic
transport at room temperature. Graphene-based electronics
has attracted much attention due to high carrier mobility in
the bulk graphene. Recently, graphene ribbons have also
been interested since the electronic structure can be con-
trolled by both the edge shape and the ribbon width, just as
carbon nanotubes. Very recently, chemically derived ultras-
mooth graphene nanoribbons �GNR� with width below 10
nm has been produced.4 Electrical-transport experiments
showed that all of the sub-ten-nanometer GNRs were semi-
conductors and afforded graphene-field-effect transistors
�FET� with on-off ratios of about 107 at room temperature.
The performance of GNR-FET operation at a room tempera-
ture has been analyzed for the device with the width and
length of 2 and 236 nm, respectively.5 The ratio of the bal-
listic current was analyzed to be about 21% and 4.5%, re-
spectively, at Vds=1 V and Vds�0.1 V. The small ballistic-
ity at low drain bias is thought to be caused by edge elastic
scattering. Extensive studies have been tried to produce
straight edge narrow GNRs and recently GNRs have been
produced also from carbon nanotubes by unzipping
process.6,7

The recent demonstration of field effect in a graphene and
GNRs has opened a new research venue. The electronic
structure of gated graphene and graphene ribbons has been
studied in the Hartree approximation on the basis of tight-
binding model.8 By applying the gate bias, carriers are in-
jected and the Fermi level can be shifted relative to that of
the intrinsic graphene or graphene ribbons. The change of the
band structure caused by the electron-electron Coulomb in-
teraction is shown to be not so large for the gated graphene
ribbons. Performance limits has also been studied for GNR-
FETs with a constriction, based on the Landauer formula in
the tight-binding model.9 Simulations were also performed to
assess the effects of static disorder on the conductance of
metallic armchair- and zigzag-edge GNRs in the tight-
binding model.10 GNRs were found to have outstanding bal-
listic transport properties in the presence of a substrate-
induced disorder. However, only the zigzag-edge GNRs
retain the ballisticity in the presence of edge disorder.

The electronic structure of graphene ribbons was studied
for the first time in the tight-binding approximation by Fuji-
ta’s group11,12 and the ribbons are classified into two typical
types, a zigzag ribbon and an armchair ribbon, by their edge
shapes. The zigzag ribbons with zigzag edges are metallic
and the Fermi energy is located at the flat band of which
wave function is localized in the vicinity of the zigzag edges.
The armchair ribbons, on the other hand, are metallic or
semiconducting depending on the ribbon width. Recently, the
energy band gap of graphene nanoribbons has been measured
actually and larger energy gaps opening is shown for narrow-
ing ribbons below 20 nm while the expected directional de-
pendence could not been confirmed.13 The width dependence
of the band gaps of GNRs was calculated for ribbon width
below 10 nm, based on a first-principles approach.14 Both
armcahir and zigzag ribbons are shown to have band gaps,
contrary to the tight-binding calculations. The origin of the
energy gaps for GNRs with armchair edges arises from both
the quantum confinement and the relaxation of edges and
that for GNRs with zigzag edges does from a staggered sub-
lattice potential on the hexagonal lattice due to the edge
magnetization.

In our previous paper, we studied the Fermi-level depen-
dence of the ballistic thermal conductance for the gated
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graphene sheets15 and showed that the electronic contribu-
tion can be more dominant than phonon contribution in low
temperatures if the Fermi level is sufficiently large. Recently,
the thermal conductance of a graphene sheet has been mea-
sured actually at a room temperature and it exhibits a value
close to the ballistic thermal conductance.16 The ballistic
thermal conductance of a graphene, on the other hand, is
shown to give the lower limit of the ballistic thermal con-
ductance per unit circumference length of carbon
nanotubes.17

Our purpose is to calculate the ballistic thermal conduc-
tance of electrons in gated graphene ribbons in a wide range
of ribbon width and to clarify the dependence on both the
temperature and the Fermi level. As for the phonon contri-
bution to the ballistic thermal conductance of GNRs, �ph has
a value of 3�0 at low temperatures irrespective of both the
ribbon width and the edge shape, corresponding to three
acoustic phonon modes.18 The normalized thermal conduc-
tance by �0 begins to increase with temperature at T=4 K
for a zigzag ribbon of Nz=8 and for an armchair ribbon of
Na=11.18

II. FORMULATION

First, we formulate the ballistic thermal conductance of
electrons in 1D system. The ballistic thermal current of the
1D electron system formed between a hot heat bath and a
cold heat bath arranged in the x direction is described as the
Landauer heat flux as follows:

Q̇el = 2�
m
�

vm�0

dk

2�
��m�k� − ��vm�k��f��m�k�,�,Thot�

− f��m�k�,�,Tcold�� , �1�

where �m�k� represents the 1D electron-energy dispersion re-
lation of the mth band along the ribbon axis, vm�k�=

��m�k�
	�k is

the electron group velocity and f��m�k� ,� ,T� is the Fermi-
distribution function with the Fermi level � at a temperature
T. Here, the transmission coefficient for each electron state is
assumed to be unity. Changing the integration variable in Eq.
�1� from k to xm= ��m�k�−�� /kBT and assuming the linear

dependence of Q̇el on 
T=Thot−Tcold, the thermal conduc-

tance of electrons, �el= Q̇el /
T, can be written as

�el = �
m

2kB
2T

h
�

vm�0
xm

2 exp�xm�
�exp�xm� + 1�2dxm. �2�

Here, it should be mentioned that the indefinite integral of
Eq. �2� can be obtained analytically as follows for x�0:

�x

x�2 exp�x��
�exp�x�� + 1�2dx� = −

x2 exp�− x�
�1 + exp�− x��

− 2x log�1 + exp�− x��

+ �
n=1

�

�− 1�n2 exp�− nx�
n2 . �3�

The similar equation can be derived for x�0. The contribu-

tion of single energy band which crosses the Fermi level with
positive group velocity has 2�0 at T=0 where �0
=�2kB

2T /3h is the thermal quantum conductance, since

�
n=1

�
�− 1�n−1

n2 =
�2

12
. �4�

Here a factor 2 in 2�0 is attributed to the spin degeneracy.
We consider two typical types of graphene ribbons, a zigzag
ribbon and an armchair ribbon, as shown in Fig. 1. In the
following numerical calculation of �el, the dispersion rela-
tions of �m�k� are calculated in the tight-binding approxima-
tion to obtain the band structure of graphene ribbons in a
wide range of widths. We consider only the � band since the
� band is distant from the Fermi level. We use parameters,1

the nearest-neighbor transfer integral, t=−3.033 eV, the
overlap integral, S=0.129, and the lattice constant of a
graphene sheet, a=0.246 nm. Typical dispersion relations
are shown in Fig. 2 for both a zigzag ribbon and a metallic
armchair ribbon. A zigzag ribbon has a flat band with two-
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FIG. 1. Schematic figures of �a� a zigzag ribbon with a width of
Nz=4 and �b� an armchair ribbon with Na=7.
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FIG. 2. Energy dispersion relations in the tight-binding model of
�a� a zigzag ribbon with a width of Nz=8 and �b� an armchair ribbon
with Na=8.

WATANABE et al. PHYSICAL REVIEW B 80, 085404 �2009�

085404-2



fold degeneracy at the intrinsic Fermi level which is taken to
be zero. An armchair ribbon, on the other hand, is metallic
for a ribbon width of Na=3M −1, where M is an integer and
otherwise semiconducting. In the metallic armchair ribbons,
two bands crosses the intrinsic Fermi level. First-principles
calculations of H-terminated zigzag graphene ribbons exhibit
the similar electronic structure for � bands.19,20 However,
recent first-principles calculations show opening of the band
gap for sub-ten-nm graphene ribbons14,21–23 and we discuss
the effect on the ballistic thermal conductance in the Sec. IV.

III. NUMERICAL RESULTS

First, we present in Fig. 3 the normalized ballistic thermal
conductance by the quantum conductance, �0, in the intrinsic

graphene ribbons as a function of temperature for both zig-
zag ribbons and armchair ribbons. Only the states at the
Fermi level contribute at very low temperatures and hence
the ballistic thermal conductance below about 50 K is deter-
mined mainly by two bands which touch the intrinsic Fermi
level and one band which crosses the intrinsic Fermi level
with positive group velocity, respectively, for zigzag and
armchair ribbons in the tight-binding model. As temperature
increases, both the higher and the lower bands than the Fermi
level begin to contribute and the normalized thermal conduc-
tance increases monotonically with temperature.

Second, we present in Fig. 4 the normalized ballistic ther-
mal conductance of electrons in the gated graphene ribbons
for both a zigzag ribbon with Nz=200 and an armchair rib-
bon with Na=200, as a function of temperature. It is seen
that the normalized thermal conductance at T=0 increases by
4�0 as the Fermi level crosses the bottom of the excited
bands. When the Fermi level is just above the bottom of the
excited band, the electron contribution just below the Fermi
level disappears with increasing temperature and hence its
temperature dependence exhibits nonmonotonic behavior
with a valley. In the temperature dependence of the thermal
conductance itself instead of the normalized conductance by
�0, �el increases monotonically with temperature and has a
point of inflection since �0 is proportional to T. In Figs. 5
and 6, we plot the normalized thermal conductance as a func-
tion of the Fermi level, for zigzag ribbons and armchair rib-
bons, respectively. A staircase with a height of 4�0 at T
=1 K changes to a staircase with a height of 2�0 at T
=100 K for both the zigzag ribbons and armchair ribbons.
The step height of 4�0 at T=1 K for zigzag ribbons is at-
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FIG. 3. Electron-derived thermal conductance �el in the tight-
binding model of �a� zigzag ribbons at Nz

=8,101,200,302,401,602,800 and �b� armchair ribbons at Na

=11,101,200,302,401,602,800 as a function of temperature. �el

for �400,400�, �300,300�, �200,200�,�100,100�, �50,50�, and �4,4�
armchair nanotubes are also plotted by broken lines in �a� and those
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tubes are plotted by broken lines in �b�. No temperature dependence
is noticed for two narrowest zigzag nanotubes in �b�.
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tributed to two minima at k0 for each excited subband and
that for armchair ribbons is attributed to neary twofold-
degenerate minima at k=0 for each excited subband. The
change in the step height to 2�0 at 100 K is caused by the
valley structure in Fig. 4, i.e., negligible occupation probabil-
ity of electrons near the bottom of the excited subbands just
below the Fermi level. On the other hand for negative values
of the Fermi level, �, i.e., for hole injection, the same be-
havior can be obtained. This electron-hole symmetry is at-
tributed to the k-linear dispersion relation in the vicinity of
the intrinsic Fermi level located at the Dirac point in a
graphene sheet.

IV. DISCUSSION AND CONCLUSION

First, we remark on the relation between the ballistic ther-
mal conductance of electrons in graphene ribbons and single-
walled carbon nanotubes,1 in the tight-binding model. The
�n ,n� armchair nanotubes has 4n � bands and can be formed
by rolling along the ribbon axis the zigzag ribbons with a
width of Nz=2 n. On the other hand, �n ,0� zigzag nanotube
has 4n � bands and can be formed by rolling along the
ribbon axis the armchair ribbons with a width of Na=2 n.
Indeed, armchair nanotubes are always metallic as zigzag
ribbons and zigzag nanotubes are metallic when n is a mul-
tiple of 3 and otherwise semiconducting as armchair ribbons.
However, two bands crosses the Fermi level for metallic
nanotubes and the electronic thermal conductance has 4�0 at
low temperatures instead of 2�0 of metallic graphene ribbons
in the tight-binding model. The thermal conductance of elec-
trons in armchair nanotubes and zigzag nanotubes are also
plotted in Figs. 3�a� and 3�b�, respectively. The single-walled
�n ,n� or �n ,0� carbon nanotubes with n�200 in Fig. 3 have
approximately similar magnitudes to the corresponding nan-
oribbons at 100 K in the tight-binding model. This means
that the edge effect of ribbons almost diminishes at 100 K for
wide ribbons with Nz�400 or Na�400.

Second, we comment on the ballistic thermal conductance
per unit width of intrinsic graphene ribbons. In the tight-
binding model, the thermal conductance per unit width ap-
proaches that of a graphene sheet at 100 K above Wz
=80 nm �Nz=376� and Wa=50 nm �Na=408� for zigzag
ribbons and armcahir ribbons, respectively. In contrast to the
tight-binding model, the first-principles calculation predicts
opening of the energy gap for narrow sub-ten-nanometer
ribbons.14 At the ribbon widths of Wz=80 nm and Wa
=50 nm, the extrapolated energy gaps from those of the sub-
ten-nm ribbon widths in the first-principles calculation be-
come 11.4 and 4.75 meV, respectively. Thus, the ballistic
electron thermal conductance per unit width of intrinsic
graphene ribbons is thought to be much smaller than that of
a graphene sheet by opening of the energy gap with narrow-
ing the ribbon width and it approaches that of a graphene
sheet at 100 K above Wz=80 nm and Wa=50 nm for zigzag
ribbons and armcahir ribbons, respectively, due to reduction
of the edge effect.

Third, we discuss about the relation between the ballistic
electronic thermal conductance �el and the ballistic electronic
conductance S for gated graphene ribbons. In the diffusive
electronic transport of metal, it is well known that the
Wiedemann-Franz law is satisfied between the electronic
conductivity � and the thermal conductivity � of electrons.24

�

�T
= L , �5�

where L is called as the Lorentz number and it takes a con-
stant value of L0= 1

3�2�
kB

q �2.24 If we evaluate the ballistic
electronic conductance S of a gated graphene ribbon by as-
suming a small chemical-potential difference between two
parallel gates, S is given by
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S = �
m

2q2

h
�

vm�k��0
dxm

exp�xm�
�exp�xm� + 1�2 . �6�

Here, xm= ��m�k�−�� /kBT and the transmission coefficient is
assumed to be unity. In low temperatures, S can be calculated
as S=2q2 /h, S=6q2 /h, S=10q2 /h, and so on as the Fermi
level increases, in the tight-binding model. This means that
the Wiedemann-Franz law is satisfied with the same Lorentz
number L0 as the classical diffusive transport for metallic-
gated graphene ribbons at low temperatures.

Next, we will discuss about the effects of assumed ap-
proximation on the numerical results. We adopted a simple
tight-binding model to calculate the electronic band structure
of graphene ribbons. It is a good approximation for both
carbon nanotubes and a graphene sheet.1 As mentioned
above and in the first Sec. I, however, the ground state for
zigzag ribbons with the sub-ten-nm width becomes antifer-
romagnetic with the up- and down-spin densities localized at
the opposite edges.14,21,23 A small energy gap opens at the
Fermi energy in the band structure for each spin, contrary to
the metallic nature in the tight-binding model. The bottom of
the conduction band is located inside the Brillouin zone but
the energy dispersion is very small between the bottom and
the Brillouin-zone edge, keeping the nature of the flat band
in the tight-binding model. The similar situation holds also
for the top of the valence band, although the energy disper-
sion near the Brillouin-zone edge is larger than that of the
conduction band. The calculated energy gaps in eV can be fit
by Eg=9.33 / �Wz+15� with a width of Wz in angstroms be-
low 7 nm.14 For example, this relation gives Eg=41 meV at
Wz=21 nm �Nz=101�. However, the energy difference be-
tween the antiferromagnetic ground state and the ferrimag-
netic excited state with the majority spin density localized at
both edges is very small and the energy difference decreases
with increasing ribbon width.14 In the ferrimagnetic excited
state, both the majority and the minority spin have the simi-
lar metallic band structure as that obtained by the tight-
binding model, although a part of the flat band is occupied
for the majority spin but unoccupied for the minority spin.23

The ballistic thermal conductance is not sensitive to the de-
tailed dispersion relation and the ferrimagnetic state gives
the similar behavior as the ballistic thermal conductance cal-
culated in the tight-binding approximation. We think that the
tight-binding model can give the qualitative results for zig-
zag ribbons of Nz�100 in a temperature range of
T�100 K. As for the armchair ribbons, on the other hand,
the ground state for the metallic armcahir ribbons in the
tight-binding model changes to semiconducting caused by
both the edge relaxation and the quantum-confinement effect
and a small energy gap opens at the Fermi energy.14,22 The
energy gap in eV decreases as Eg=0.648 / �p+1�, where Na
=3p+2.14 For example, Eg becomes 9.7 meV at Na=200
�Wa=25 nm�. Thus, we expect that the tight-binding model
can give the qualitative results for armchair ribbons of Na
�200 in a temperature range of T�100 K. As for intrinsic
graphene ribbons, they become semiconductors and the elec-
tron contribution to the normalized ballistic thermal conduc-
tance vanishes in low temperatures. The opening of the en-
ergy gap changes the quantized values of the normalized

ballistic thermal conductance at T=1 K for gated graphene
ribbons in Figs. 5 and 6 to 0 ,4 ,2 ,6 ,10. . ., for zigzag ribbons
and to 0 ,2 ,6 ,10, . . ., for armcahir ribbons. The appearance
of the plateau at 4 for zigzag ribbons is attributed to the
small energy dispersion near the conduction-band edge.

With respect to scattering effect, we assumed the ballistic
transport with the transmission coefficient of unity. This
means our numerical results give the upper limit for the ther-
mal conductance. As mentioned in the first Sec. I, the edge
disorder is considered as the main scattering mechanism for
graphene ribbons.5 The localized character of the wave func-
tion at the flat band is maximum at k=� /az for zigzag rib-
bons and decreases as the wave vector k decreases. The con-
tribution to the thermal current arises from the region of
positive group velocity, vm�k��0, and hence the contribution
of the flat band is not included. This means that the thermal
current is carried by the bulklike state and hence the edge
disorder becomes not so sensitive for zigzag ribbons. Indeed,
this insensitivity to irregular edges is shown for zigzag
ribbons.10 Scattering by irregular edges is the dominant scat-
tering mechanism for narrow armchair ribbons.10 However,
the edge scattering mean-free path is proportional to the rib-
bon width5 and hence a large mean-free path is expected for
wide ribbons.

Finally, we mention scattering effect by electron-electron
Coulomb interaction. In one-dimensional system, the Cou-
lomb interactions cause strong perturbation on electrons near
the Fermi level. The resulting system is predicted to be dis-
tictly different from the Fermi liquid and is called as the
Luttinger liquid. In the Luttinger liquid, the forward scatter-
ing by the long-range part of the electron-electron interaction
is renormalized. Recently, Zarea and Sandler showed for un-
doped metallic armchair ribbons that charge band gap opens
in the Luttinger liquid state,25 similar to the result in first-
principles calculation.14 The gap in the Luttinger liquid is
caused by forward scattering by electron-electron interaction
and the gap is reduced by both doping and increase in the
ribbon width. The gap opening and the anomalous transport
properties in the Luttinger liquid state were predicted for
undoped metallic armchair carbon nanotubes.26 The peculiar
tunneling behavior into the Luttinger liquid was confirmed
experimentally by measurements of the conductance of
bundles of single-walled carbon nanotubes.27 The gap open-
ing is a serious issue in a one-dimensional system since it
means that the Fermi liquid state does not become stable
with respect to electron-electron interaction. However, the
single-particle Fermi liquid picture describes many experi-
mental results in nanotubes.1 We expect the same situation
for graphene ribbons with width above 20 nm.

In summary, we investigate the ballistic thermal conduc-
tance of electrons in gated graphene ribbons and clarify both
the temperature and the Fermi-level dependences. In the in-
trinsic graphene ribbons, the normalized thermal conduc-
tance by the quantum conductance, �0, increases monotoni-
cally with temperature. In the gated graphene ribbons, the
normalized thermal conductance of electrons increases step-
likely as the Fermi level increases but the temperature de-
pendence of the normalized thermal conductance exhibits
nonmonotonic behavior. The value of a step height changes
from 4�0 to 2�0 with increasing temperature. The ballistic
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electron thermal conductance per unit width of graphene rib-
bons is smaller than those of corresponding single-walled
nanotubes and a graphene sheet. It approaches that of a
graphene sheet at 100 K above the ribbon width of about 80
and 50 nm for zigzag ribbons and armchair ribbons, respec-
tively, due to reduction of the edge effect.
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