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The hole states in the valence band of a large class of semiconductors are degenerate in the projections of
angular momentum. Here we show that the switching of a hole between the states can efficiently be realized by
acoustic solitons. The microscopic mechanism of such a state conversion is related to the valence-band split-
ting by local elastic strain. The conversion is studied here for heavy holes localized at shallow and deep
acceptors in silicon quantum wells.
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I. INTRODUCTION

The strain-induced effects have been proved to be an ef-
ficient tool to study basic properties of semiconductor struc-
tures yielding information on their point-group symmetry,
band parameters, spin-orbit coupling, etc.1,2 During the last
decade the possibility emerged to study such effects in nano-
structures on the extremely short time scale of picosecond
range. This could be done employing acoustic solitary waves
�solitons�.3–6 The acoustic soliton is a pulse of strong nonlin-
ear elastic strain propagating along the crystal with the ve-
locity larger than the sound speed.7 Due to rather high values
of deformation-potential constants in semiconductors, such a
local strain efficiently modifies the band structure and
thereby interacts with charge carriers. The important point is
that, unlike linear acoustic waves, the soliton-type strain
does not change its sign within the pulse.3,7 Therefore, after
the soliton has passed through the sample, the electron state
of a system may differ from the initial one.

In this paper we show that, in semiconductor structures
where the electron or hole states are degenerate in the ab-
sence of strain, acoustic solitons can cause a transition of
carriers between these quantum-mechanical states. We study
such a state conversion for heavy holes localized at acceptors
in quantum wells �QWs�. The ground state of localized holes
in most of the cubic semiconductors is degenerate in the
projection of the angular momentum because of the complex
structure of the valence band. We show that the propagation
of the acoustic soliton of a certain amplitude through the area
of hole localization changes the projection of the hole angu-
lar momentum. The effect of state conversion, particularly
between two easily distinguished states, is of interest not
only from fundamental point of view but can also be utilized
for the information processing and storage.

The acoustic soliton represents a perturbation of purely
mechanical origin, therefore, in the first approximation it
does not interact with the carrier spin. Accordingly, it is con-
venient to consider the effect of state conversion for semi-
conductor structures with negligible spin-orbit interaction
�such as Si, SiC, etc�. Below we focus on silicon-based quan-
tum wells although the main conclusions can be generalized
to other systems. The paper is organized as follows. Section
II is devoted to the calculation of ground hole states in QWs
with weak spin-orbit coupling. In Sec. III, we consider the

effect of an acoustic soliton on the hole states and show that
it leads to switching the hole between different quantum-
mechanical states. In Sec. IV, we demonstrate that such a
state conversion can be fruitfully considered as a precession
of hole pseudospin.

II. TWO-DIMENSIONAL HOLE STATES IN �25� BAND

We neglect spin-orbit coupling and, therefore, assume that
in bulk material the valence-band states at the center of the
Brillouin zone belong to the representations �25� or �15 and
denote the basis functions as X, Y, and Z. Due to quantum
confinement, the heavy-hole states in a structure grown along
the z axis are formed from the Bloch amplitudes X and Y,8

while the light-hole states are formed from the Z amplitude.
The corresponding wave functions of heavy holes have the
form

��r� = ����u�z�X + ����u�z�Y , �1�

where ���� and ���� are smooth envelopes in the QW plane,
which can be combined into a two-component column
����= ����� ,�����T, �= �x ,y� is the in-plane coordinate, u�z�
is the function of size quantization, x, y, and z are the cubic
axes. We note that each state �Eq. �1�� is degenerate in spin
and the spin index is omitted for simplicity. Such a descrip-
tion of hole states in QWs is valid for structures where the
energy separation between the heavy-hole and light-hole
subbands exceeds the energy of spin-orbit coupling.

The envelope functions ���� of a hole localized at an
acceptor in a narrow quantum well can be found by solving

the matrix Schrödinger equation Ĥ����=E����, where Ĥ is
the effective Hamiltonian assuming in the spherical approxi-
mation the form

Ĥ = ��k2 0

0 k2� + ���kx
2 − ky

2 2kxky

2kxky ky
2 − kx

2� + U���Î . �2�

Here k= �kx ,ky� is the momentum operator divided by the
reduced Planck constant �, � and �� are the band parameters
which are expressed in terms of the parameters L and M �see
Ref. 1� via �= �L+M� /2 and ��= �L−M� /2, U��� is the at-

tractive potential of the acceptor, and Î is the unit matrix 2
	2. We assume the acceptor potential U��� to be isotropic.
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Then, the hole states are described by the quantum number
n�n=0,1 ,2 , . . .� and the projection of the orbital angular mo-
mentum onto the z axis j�j=0, 
1, 
2, . . .�. The state with
the projection j can be presented as a superposition of the
Bloch amplitudes �X+ iY� /�2 and �X− iY� /�2 multiplied by
the envelope functions �nj���ei�j−1� and �nj���ei�j+1�, re-
spectively, where �= �� ,� are the polar coordinates in the
QW plane. The corresponding two-column envelope func-
tions �nj��� are given by

�nj��� =
ei�j−1�

�2
� �nj��� + �nj���e2i

i�nj��� − i�nj���e2i� , �3�

where �nj��� and �nj��� satisfy the equation set

�� d2

d�2 +
1

�

d

d�
−

�j + 1�2

�2 ��nj��� + ��� d2

d�2 +
1 − 2j

�

d

d�

+
j2 − 1

�2 ��nj��� = �U��� − Enj��nj��� ,

��� d2

d�2 +
1 + 2j

�

d

d�
+

j2 − 1

�2 ��nj��� + �� d2

d�2 +
1

�

d

d�

−
�j − 1�2

�2 ��nj��� = �U��� − Enj��nj��� . �4�

Enj is the energy of the state �nj��� measured from the sub-
band edge. We note that the states �n , j� and �n ,−j� have the
same energy and their envelope functions are related by
�n,−j���=�n,j

� ���. From Eq. �3� it follows that only the states
with j= 
1 contain envelope functions of s type which are
nonzero at the acceptor and efficiently overlap with the ac-
ceptor attractive potential. Therefore, the ground state of lo-
calized holes is degenerate in the projection of orbital angu-
lar momentum and described by the functions

�0,
1��� =
1
�2
� �0,1��� + �0,1���e
2i


i�0,1��� � i�0,1���e
2i� . �5�

Below we denote them as �
���, respectively.
To elaborate the effect of state switching by an acoustic

soliton we consider two models of the acceptor: �i� Coulomb
potential U���=−e2 / ����, where e is the elementary charge
and � is the dielectric constant and �ii� zero-radius
potential.9,10 In the first case, the ground hole states and the
localization energy E0�0 are calculated numerically by
solving Eq. �4�. The latter approach allows us to find the
states analytically for a given E0 assuming that the range of
attractive potential is much shorter than the hole localization
length. Within this approach, solution of Eq. �4� for the
ground state has the form

�0,1��� =
�1�2

�2���1
2 + �2

2�
�K0��/�1�

�1
2 +

K0��/�2�
�2

2 � ,

�0,1��� =
�1�2

�2���1
2 + �2

2�
�K2��/�1�

�1
2 −

K2��/�2�
�2

2 � , �6�

where K0�x� and K2�x� are the modified Bessel functions of
the second kind �Macdonald functions�, the radii �1 and �2

are given by �1=�−��+��� /E0, �2=�−��−��� /E0, and it is
assumed that �+�� ,�−���0. The functions Eq. �6� can be
obtained from Eq. �4� by the Fourier transformation method.

III. STATE CONVERSION BY ACOUSTIC SOLITON

In the absence of strain, the ground state is degenerate in
the projection of angular momentum and the hole wave func-
tion represents a superposition of �+��� and �−���. The
acoustic soliton lifts the degeneracy causing the transition of
a hole between the above states.

The strain effect on the heavy-hole subband is described
by the effective Hamiltonian1

V̂ = �luxx + muyy nuxy

nuxy muxx + luyy
� , �7�

where l, m, and n are the deformation potential constants,
u�� are the strain tensor components. We consider that the
bulk acoustic soliton propagates in the x direction along the
quantum-well plane inducing time-dependent component
uxx�x , t� of the strain tensor, see inset to Fig. 1. The strain
pulse is assumed weak enough not to cause ionization of the
localized hole or its transition to excited states. Then, accord-
ing to the perturbation theory, the hole wave function ��� , t�
can be expanded over the nondisturbed states �
��� as fol-
lows:

���,t� = c+�t��+��� + c−�t��−��� , �8�

where the coefficients cj�t��j=
� satisfy the coupled equa-
tions

i�
dc+�t�

dt
= V++�t�c+�t� + V+−�t�c−�t� ,

i�
dc−�t�

dt
= V−+�t�c+�t� + V−−�t�c−�t� , �9�

and Vjj��t�=�� j
†���V̂� j����d� are the matrix elements of the

perturbation Eq. �7�. The specific form of the functions Eq.
�5� and the perturbation V�uxx�x , t� leads to the relations
V++�t�=V−−�t� and V+−�t�=V−+�t�, which makes Eq. �9� eas-
ily solvable.

The solution of Eq. �9� assumes the form

10-6 10-5 10-4 10-3

2−π

π

Strain amplitude u
0

P
ha

se
Φ

f

v

uxx(x-vt)
z y

x
+

FIG. 1. �Color online� Dependence of the phase shift � f on the
strain amplitude u0 calculated numerically for the Coulomb poten-
tial �squares� and plotted after Eq. �15� for the zero-radius potential
�solid curve�. Dashed line corresponds to � f =� /2 which is optimal
for the state conversion. Inset sketches the propagation of strain
soliton along the quantum well.
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c+�t� = �a+ cos ��t� − ia− sin ��t��e−i��t�,

c−�t� = �a− cos ��t� − ia+ sin ��t��e−i��t�, �10�

where a+=c+�−�� and a−=c−�−�� are coefficients of the ini-
tial state at t=−�, ��t� and ��t� are phases given by

��t� =
1

�
	

−�

t

V+−�t��dt�, ��t� =
1

�
	

−�

t

V++�t��dt�.

�11�

It follows from Eq. �10� that it is the phase ��t� that de-
scribes the hole state evolution while ��t� constitutes the
common phase factor. In the final state, i.e., at t=+� when
the soliton has completely passed through the area of hole
localization, the phase shift has the form

� f =
l − m

2�
	 �0,1

2 ���d�	
−�

+�

uxx�x,t�dt . �12�

Since the average value of the strain uxx is nonzero within the
soliton, � f �0, and the final hole state differs from the initial
one. The most efficient conversion of the hole state occurs if
the soliton amplitude is so that


� f
 = ��n + 1/2�, n = 0,1,2, . . . �13�

In this particular case, the soliton-hole interaction results in
the complete switching of the hole angular momentum: The
initial state �+��� is converted into the state �−��� and vice
versa, see Eq. �10�.

Acoustic solitons in crystals are typically approximated
by solutions of the Korteweg-de Vries �KdV� wave equation3

or the doubly dispersive equation.11 Since the particular soli-
ton shape is not crucial for our results, we consider the KdV
soliton so that uxx has the form

uxx�x,t� = u0 cosh−2� x − vt

L
� , �14�

where u0 is the strain amplitude, v and L=d /�u0 are the
soliton velocity and size, respectively, and d is a material
constant. In this case �−�

+�uxx�x , t�dt=2d�u0 /v.
Figure 1 shows dependence of the phase shift � f on the

strain amplitude u0. Squares correspond to the numerical cal-
culation of � f given by Eq. �12� for the Coulomb localizing
potential, solid curve represents the analytical dependence

� f =
l − m

2�

d�u0

v
�1 +

�2 − ��2

2���
ln�� + ��

� − ��
�� �15�

derived in the zero-radius-potential approach by integrating
the wave function �Eq. �6��. The band parameters of silicon
used in the calculation are as follows: �=−4.65� / �2m0�, ��
=−1.13� / �2m0�,12 where m0 is free-electron mass, the
deformation-potential constants l=−4.9 eV and m=
−1.5 eV.1 The soliton parameters d=1.5 Å, v=0.9
	106 cm /s, and the strain amplitude u0 in the range
10−6–10−3 are chosen, which corresponds to experimental
data on acoustic phonon pulses in silicon.13

From Fig. 1 it follows that the phase shift � f =� /2 opti-
mal for the state conversion is achieved in Si-based struc-

tures at a moderate strain amplitude u01.8	10−4. It proves
that the hole states can be efficiently manipulated by acoustic
solitons. Moreover, both Coulomb and zero-radius potentials
lead to the same quantitative result indicating that � f weakly
depends on the form of localizing potential for silicon band
parameters. This can be attributed to the fact that the enve-
lope function of the ground heavy-hole state is mainly of s
type even at �� /�0.24. Therefore, the integral ��0,1

2 ���d�
determining the conversion efficiency �see Eq. �12�� is ap-
proximately equal to 1 in accordance with the wave-function
normalization and independent of the explicit form of
�0,1���.

For the strain amplitude u0=1.8	10−4 optimal for the
state conversion, the soliton length L is estimated as 110 Å
that is approximately seven times larger than the radius of
hole localization a0=e2 / ��E0�16 Å in silicon quantum
wells. In the approximation of L�a0, the time evolution of
the phase ��t� for the soliton shape �Eq. �14�� has the form

��t� = � f
tanh�vt/L� + 1

2
. �16�

IV. PSEUDOSPIN REPRESENTATION

The soliton-induced evolution of a hole state can fruitfully
be considered as a precession of pseudospin or a trajectory
on the Bloch sphere. In this approach,14 any superposition
�Eq. �8�� of two states, �+��� and �−���, is attributed to a
unit vector S or a point �Sx ,Sy ,Sz� on the sphere, see Fig. 2.
The components of S are given by

S = �†�� , �17�

where � is the vector of Pauli matrices and � is the spinor
composed of the coefficients c+�t� and c−�t�, �
= �c+�t� ,c−�t��T. In particular, the pure states �+��� and �−���
correspond to the polar points �0,0,1� and �0,0 ,−1�, respec-
tively, while the states ��+���+ei��−���� /�2 with arbitrary
phase � are mapped onto the Bloch sphere equator.

During the soliton-hole interaction the coefficients c


vary in time, see Eq. �10�, which corresponds to motion of

Sz

Sx

Sy

Sx

Sy

Sz(a) (b)

FIG. 2. �Color online� Trajectories on the Bloch sphere repre-
senting the time evolution of the hole state caused by acoustic soli-
ton propagating along �a� x and �b� y axes. Different curves on each
sphere correspond to different initial states. The trajectories con-
necting two poles depict the complete conversion of the hole state
from �+��� into �−���.
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the point �Sx ,Sy ,Sz� on the Bloch sphere. Equation describ-
ing the time evolution of S can be derived from Eq. �9�. It
gives

dS

dt
= ���t� 	 S� , �18�

where ��t�= �1 /��� j j�Vjj��t�� j�j. For a given initial state S0
and ��t�, Eq. �18� allows one to calculate the trajectory S�t�
and restore the wave function. Shown in Fig. 2 are examples
of such trajectories under a soliton-induced uniaxial strain.
The strain uxx�x , t� produced by soliton propagating along the
x axis corresponds to ��t� �x and, therefore, causes S to
rotate around the x axis �Fig. 2�a�� while the strain uyy�y , t�
corresponds to ��t� � y leading to the rotation of S around the
y axis �Fig. 2�b��. In the case of complete conversion of the
hole state from �+��� into �−���, the trajectories pass from
one pole of the Bloch sphere to the other.

The time of switching the hole states is given by �=2�L
+a0� /v. It is of picosecond scale and much less than the
lifetime of localized holes at low temperatures as well as the
soliton lifetime. It suggests that the effect can be studied
experimentally by means of time- and space-resolved optical
spectroscopy. Indeed, the states �+��� and �−��� are charac-
terized by projections +1 and −1 of the orbital angular mo-
mentum, therefore, optical pumping by circularly polarized

light leads to a predominant population of one of the states.
The hole angular momentum can be registered in turn by
analyzing the polarization of recombination radiation or the
polarization change of a probe pulse �see, e.g., Ref. 15�. The
soliton propagation through the area of hole localization re-
verses the projection of hole angular momentum leading to a
change in optical response. We note that ultrashort strain
pulses in experiments consist typically of a few acoustic soli-
tons �“soliton train”� followed by bipolar oscillations5 which
can further modify the hole wave function. The detailed
time-resolved study of the hole state evolution can provide
information about the energy spectrum and relaxation times
of localized holes as well as the strain pulse parameters.

To summarize, we have demonstrated the possibility of
switching the quantum-mechanical state of a localized hole
by an acoustic soliton. The amplitude of the strain soliton
required for switching the hole states in silicon-based quan-
tum wells is found to be 2	10−4 which corresponds to
strain pulses studied experimentally.
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