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We investigate the electronic structures of the alloyed Bi1−xSbx compounds based on first-principles calcu-
lations including spin-orbit coupling �SOC�, and calculate the surface states of semi-infinite systems using
maximally localized Wannier function. From the calculated results, we analyze the topological nature of
Bi1−xSbx, and found the followings: �1� pure Bi crystal is topologically trivial. �2� Topologically nontrivial
phase can be realized by reducing the strength of SOC via Sb doping. �3� The indirect bulk band gap, which
is crucial to realize the true bulk insulating phase, can be enhanced by uniaxial pressure along c axis. �4� The
calculated surface states can be compared with experimental results, which confirms the topological nature. �5�
We predict the spin-resolved Fermi surfaces and showed the vortex structures, which should be examined by
future experiments.
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I. INTRODUCTION

In an ordinary insulator, the valence and conduction bands
are separated by an energy gap, making it electrically inert.
Therefore, the ordinary insulator is not sensitive to the
change in boundary condition. Recently a new class of insu-
lator, namely, topological insulator �TI�, was proposed.1–6 TI
also has a bulk energy gap, which is usually generated by
spin-orbit coupling �SOC�; however, it is different from the
ordinary insulator in the sense that topologically protected
gapless states, robust against disorder, appear at the edge or
surface of a finite sample within the bulk energy gap. Thus
the TI has conducting channels along its edge or surface. The
quantum spin Hall �QSH� insulator, such as HgTe/CdTe
quantum well,2,3,7 is an example of two-dimensional �2D� TI.
The conducting edge channels of HgTe/CdTe quantum wells
have been theoretically predicted2 and experimentally
observed.3,7 From the theoretical point of view, the TI can be
distinguished from the ordinary insulator by the Z2 topologi-
cal invariants,1,5,6,8 and the existence of gapless spin-filtered
edge states on the sample boundary is guaranteed for TI. The
edge states come in Kramers’s doublets, and time-reversal
�TR� symmetry ensures the crossing of their energy band at
time-reversal invariant momenta �TRIM�. Since these band
crossings on the edge are protected by TR, they cannot be
removed by any perturbation respecting the TR symmetry,
such as nonmagnetic impurities. It is expected that the robust
gapless spin-filtered surface �edge� states have novel appli-
cations in spintronics.

Besides the 2D QSH insulator, the TI can also exist in
three-dimensional �3D� material.4,8–13 Similar to the edge
states in 2D QSH insulator, in 3D TI, topological surface
state protected by TR, which can be described by odd num-
ber of Dirac points, emerges at the surface of the finite 3D
sample.4,6,8,14 Compared with the 2D TI, the 3D TI and its
surfaces can be readily investigated by angle-resolved pho-
toemission spectroscopy �ARPES� and scanning tunnel mi-
croscope experiments. The 3D TI also displays the remark-
able topological magnetoelectric effect.6 Therefore searching

for realistic 3D TI is now becoming an attractive and chal-
lenging subject.

It was first suggested that the semiconducting alloy of
bismuth and antimony �Bi1−xSbx� is an example of such 3D
TI.8,11 Based on the tight-binding �TB� model of Liu and
Allen,15 Fu and Kane8 developed a theory to analyze the
topological nature of the surface state in Bi1−xSbx alloy.11

Experimentally, Hsieh et al.10 observed the surface states by
high-momentum-resolution ARPES and demonstrated the to-
pological nature of the surface states by counting the number
of the Fermi surface crossings from the zone center to the
boundary. However, clear discrepancies exist between the
theory and the experiment about the surface states, although
their final conclusions are consistent with each other. On the
other side, the surface states of pure Bi or Sb have been
intensely studied experimentally and theoretically,16–21 but
there are still fewer careful studies of their alloy. Therefore,
in this paper, we present a systematic study of the surface
states of Bi1−xSbx alloy, based on quantitative first-principles
calculations. We show that pure Bi is topologically trivial
because the SOC is too strong. The effective role of Sb dop-
ing is to reduce the strength of SOC and revert the band
ordering at L point of the Brillouin Zone �BZ�. Finally strong
topological insulator can be reached by Sb doping. By con-
structing the maximally localized Wannier function �MLWF�
from the ab initio schemes, we calculate the surface states of
semi-infinite system, and analyze the shape of Fermi surfaces
as well as the spin-resolved local density of states. These
results are compared with the experiment of Hsieh et al.10 In
addition, although direct band gap exists in Bi1−xSbx system,
indirect band gap can be only realized for a very narrow
doping range, and the material has long been regarded as
typical semimetallic system. In order to make the bulk ma-
terial insulating completely, based on our calculations, we
predict that an efficient way to enhance the indirect band gap
is to apply uniaxial pressure along the c axis.

The paper is organized as follows. In Sec. II we discuss
the crystal structure and symmetry of Bi1−xSbx. In Sec. III we
study the transition between the topological nontrivial and
trivial phases and present a schematic phase diagram as a
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function of SOC. In Sec. IV we develop an accurate method
based on MLWF to obtain the surface Green’s Function, and
study the topologically nontrivial surface states of Bi1−xSbx.
In Sec. V we provide a brief discussion and conclusion.

II. STRUCTURE AND SYMMETRY

Bi and Sb have the same rhombohedral A7 crystal

structure15 with space group R3̄m. The A7 structure can be
regarded as a distorted fcc NaCl structure. For fcc NaCl
structure, there are two sets of sublattices, say Bi-1 for Na
sites and Bi-2 for Cl sites, which both form the fcc structure.
In such fcc structure, Bi-1 and Bi-2 sublattices are equivalent
and we can shift Bi-1 sublattice by �1/2,0,0�, �0,1/2,0�, or
�0,0,1/2� of cubic structure to obtain Bi-2 sublattice. Along
the �111� direction of fcc structure, Bi triangle layers are
stacked with the sequence of ABCABCABC. . ., where A, B,
and C denote three different atomic positions for triangle
plane, as shown in Fig. 1. Without distortions, there exist two
kinds of space-inversion center. One is located at the Bi layer
center and each Bi sublattice is space inverted to itself
�called type-I inversion�, while the other one is located at the
middle way of two Bi layers and each Bi sublattice is space
inverted to another sublattice �called type-II inversion�.

Starting from fcc NaCl structure, two steps are required to
obtain rhombohedral A7 structure. One is the stretching
along the cubic �111� direction, while the second is the rela-
tive shift of inter-Bi-layer distances along the �111� direction,
or in other words dimerization of two Bi layers. The second
step breaks the type-I inversion symmetry but preserve the
type-II inversion. Therefore, after distortions, the inversion
symmetry can only transfer the atoms from one sublattice to
the other, which is very important for our following discus-
sion.

The BZ of fcc structure and rhombohedral A7 structure
are shown in Fig. 2. For fcc structure, there are four equiva-
lent L points, which are located at L1= �� ,� ,��, L2= �� ,
−� ,��, L3= �� ,� ,−��, and L4= �� ,−� ,−�� of BZ. After

two kinds of distortions along the cubic �111� direction, the
fcc structure changes to the rhombohedral A7 structure,
which breaks the equivalence between L1 �which is denoted
as T point in BZ of rhombohedral A7 structure� and L2,3,4.

III. EFFECT OF ALLOYING AND PHASE DIAGRAM

Although pure Bi and Sb have been studied extensively,
the alloyed system is not carefully considered yet. In this
section, we will present a simple TB model by taking the
strength of SOC � and dimerization �d as two key param-
eters to describe the effect of alloying. Based on this TB
model, we obtained a schematic phase diagram for the topo-
logical nature of the compounds, which is instructive for us
to understand the main physics. Then in the next section,
surface states of alloyed system will be studied from accurate
ab initio calculations based on virtual crystal approximation
�VCA�.

A. Effect of alloying

In order to take into account the effect of alloying, certain
kinds of approximations have to be introduced. The first step,
which is conventionally followed, is to assume the uniform
distribution and neglect the disorder effects. However, this
approximation is not sufficient. To further simplify our un-
derstanding, we emphasize the following factors: �1� Sb is
located just on top of Bi in the periodical table, therefore,
they have the same number of valence electrons and form the
same A7 crystal structure. �2� Even 30% Sb alloying into Bi
will only modify the lattice parameters by around 1%.15 �3�
The atomic SOC strength of Sb is weaker than Bi by a factor
of 3. Therefore, we believe the strongest effect of Sb alloying
into Bi is to reduce the SOC strength, and we can neglect the
effect coming from the change in lattice parameters. Follow-
ing this strategy, we construct a simple TB model to under-
stand the main physics.

We consider one s and three p orbitals of each Bi atoms,
together with the two sublattices and two spin degree of free-

(a) (b)

FIG. 1. �Color online� �a� Along the �111� direction of rhombo-
hedral A7 structure, there are three possible atomic positions �A, B,
and C� for the triangle plane. Black filled dots denote A site, red
filled up triangles denote B site, and blue filled down triangles de-
note C site. �b� The schematic plot of Bi-layers projected onto the
plane paralleling to the �111� axis. After the dimerization of two Bi
layers, the Bi-2 moves to the dashed site. �d denotes the magnitude
of the dimerization. first and second NN hopping are the interlayer
hopping between the different sublattices, while third NN hopping
is the intralayer hopping within the same sublattice.

(a) (b)

FIG. 2. �Color online� �a� BZ of fcc structure. �b� 3D BZ of
rhombohedral A7 structure and its projection onto the �111� surface.
The A7 BZ can be obtained from the fcc BZ by two steps: �1�
rotating the �111� direction of cubic to be along the c axis; �2�
slightly distortion of the BZ along the c axis. The L1 point in fcc BZ
is changed to be T point in the A7 BZ, which is now inequivalent to
L2,3,4 due to the distortion. T ���, X�l�, and K in 3D BZ are pro-

jected to �̄, M̄, and K̄ in the 2D BZ of �111� surface.
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dom, and totally there are 16 orbitals, denoted as �s1
↑�, �s1

↓�,
�p1x

↑ �, �p1y
↑ �, �p1z

↑ �, �p1x
↓ �, �p1y

↓ �, �p1z
↓ �, �s2

↑�, �s2
↓�, �p2x

↑ �, �p2y
↑ �, �p2z

↑ �,
�p2x

↓ �, �p2y
↓ �, and �p2z

↓ �. Here z axis is taken along the �111�
direction of fcc structure or the �001� direction of hexagonal
cell and subscript number denotes different sublattices. The
hopping parameters are defined in Fig. 1, with the expression

Vpp� = Ṽpp��1 + ���d − �d0��

Vpp� = Ṽpp��1 + ���d − �d0��

Vss� = Ṽss��1 + 	��d − �d0��

Vsp� = Ṽsp��1 + 
��d − �d0�� �1�

for the first nearest-neighbor �NN� hopping,

Vpp�� = Ṽpp�� �1 − ���d − �d0��

Vpp�� = Ṽpp�� �1 − ���d − �d0��

Vss�� = Ṽss�� �1 − 	��d − �d0��

Vsp�� = Ṽsp�� �1 − 
��d − �d0�� �2�

for the second NN hopping and

Vpp�� = Ṽpp��

Vpp�� = Ṽpp��

Vss�� = Ṽss��

Vsp�� = Ṽsp�� �3�

for the third NN hopping. Here the parameters Ṽm, Ṽm� , and

Ṽm� are for pure Bi which are taken from the Liu-Allen
model,15 where m is pp�, pp�, ss�, or sp�, respectively.
Since the intralayer Bi-Bi distance is larger than interlayer
Bi-Bi distance, Vm and Vm� are larger than Vm� . Linear depen-
dence of �d due to the dimerization is assumed and �d0 is
for the experiment structure of pure Bi. When �d=0, this
system has no dimerization, leading to Vm=Vm� . Then a set of
linear equations is obtained, which can be used to determine
the value of the parameters �, �, 	, and 
.

Besides the hopping terms, the atomic SOC Hamiltonian
can also be taken into account

HSOC =
�

4m2c2 ��V � P� · � , �4�

where �V is the potential gradient, P is the momentum, and
� is Pauli spin matrices. In the atomic limit, the matrix ele-
ments of HSOC in our atomic basis set can be explicitly writ-
ten down, as shown in Liu’s paper.15 In the HSOC matrix
elements � is the spin-orbit coupling parameter.

Therefore, the final Hamiltonian is given as the function
of two variables �d and � with the form

�H11 H12

H21 H22,
� �5�

where H11=H22, H12=H21
† are 8�8 matrices. H11 includes

intrasublattice hopping and on-site SOC interaction, while
H12 represents interlayer hopping. Since the Hamiltonian has
the type II inversion symmetry at T and L points, a unitary
transformation is applied here to rewrite the Hamiltonian in
the new basis with unambiguous parity, the odd parity basis,
1
	2

��s1
��− �s2

���, 1
	2

��p1x
� �+ �p2x

� ��, 1
	2

��p1y
� �+ �p2y

� ��, and 1
	2

��p1z
� �

+ �p2z
� �� and the even parity basis, 1

	2
��s1

��+ �s2
���, 1

	2
��p1x

� �
− �p2x

� ��, 1
	2

��p1y
� �− �p2y

� ��, and 1
	2

��p1z
� �− �p2z

� ��. With the new

basis, the Hamiltonian is changed to be H̃,

�H̃11 0

0 H̃22

� �6�

which is block diagonal, because the odd and even parity
states will not mix in a system with space-inversion symme-
try.

B. Phase diagram

The topological nature of the system can be determined
from the parity of the occupied bands at TRIM.8 The band
gap for Bi1−xSbx is near T and L points, therefore, here we
focus on one T and three L points in BZ. The parity of the
occupied bands for T and L points can be easily obtained

since the eigenstates of H̃11 have odd parity while those of

H̃22 have even parity. In Fig. 3, the energy levels of six p
bands for both L and T points are plotted as a function of �d,
where two different values of � are chosen, �=1.5 eV cor-
responding to the value of Bi and �=0.5 eV corresponding
to the value of Sb. Three lowest levels of total six p bands
should be occupied, namely, the conduction band and va-
lence band are the third lowest band and fourth lowest band,
respectively, which have opposite parities. When increasing
the dimerization parameter �d, at T point the band gap in-
creases rapidly and there is no leveling crossing between the
conduction band and valence band, while at L point, the band
gap is quite small and the sequence of conduction band and
valence band can even change with �=0.5 eV. When �d
=�d0, as indicated by the dashed line in Fig. 3, the occupied
valence bands for Bi ��=1.5 eV� and Sb ��=0.5 eV� have
different parities at L point but the same at T point, therefore,
we conclude the topological natures of Bi and Sb are differ-
ent. This result is the same as that of Fu and Kane,8 in which
they claim that Z2 invariants �0 ;123� are �0;000� for Bi,
which is topologically trivial but �1;111� for Sb, which cor-
responds to topological nontrivial phase.

By determining the gap closing line of the conduction and
valence bands at L points, we can obtain the phase diagram
of the alloy Bi1−xSbx as a function of SOC parameter � and
dimerization parameter �d, as shown in Fig. 4. Since the
topological nature of the system can only be changed by
closing bulk gap, in the region where Sb locates, the system
has the same nontrivial topological behavior to Sb, while in
the other region, the system is topological trivial, which is
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the same as Bi. It can be also understood from the parity
analysis that the Bi is topologically trivial because both L
and T points have reverted bands ordering, namely, parity are
−1 for both L and T. However, by reducing the SOC strength
�i.e., Sb doping�, the parity of L is recovered to be +1 while
T remains to be −1, therefore, topological nontrivial system
is realized. In the next section, accurate simulation based on
ab initio calculations will be presented.

IV. AB INITIO CALCULATIONS AND SURFACE STATES

A. Ab initio method and surface Green’s function

The ab initio calculation is carried out by our BSTATE
�Beijing Simulation Tool for Atom Technology�22 code with
plane-wave pseudopotential method. The generalized gradi-
ent approximation of PBE type23 is used for the exchange-
correlation potential. Especially in Bi’s pseudopotential, we
take into account 5d10 electrons as the valence band by ul-
trasoft pseudopotential scheme. The k-mesh is taken as 12
�12�12 and the cut-off energy is 340.0 eV for the self-
consistent calculation. For pure Bi, the optimized lattice pa-
rameters are a=4.669 Å, c=12.1506 Å, and d=0.2341 Å,
which are in good agreement with previous calculations.

To take into account the effect of alloying, VCA is nec-
essary. There are several ways to do this, particularly in the
pseudopotential approach, the simple linear combination of
Sb and Bi pseudopotentials can be used, and the correspond-
ing pseudopotential of alloyed virtual atom is regenerated by
solving the atomic problem again.22 Unfortunately, this pro-
cedure is not accurate enough for our purpose here. As al-
ready suggested by previous studies,22 such VCA procedure
can be used for those states far away from the Fermi level,
however, for those states very close to the Fermi level, the
error bar is big. The system we study here �Bi1−xSbx� is very
sensitive to the p orbitals, such VCA pseudopotential cannot
give sufficient accuracy. In order to have an accurate VCA
scheme, we need to consider the particularity of our system.
As we already explained in the last section, the alloyed
Bi1−xSbx have the same crystal structure and almost the same
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FIG. 3. �Color online� Energy bands are plotted as a function of the dimerization parameter ��d� with SOC parameter � taken as 1.5 and
0.5 eV. �a� and �b� are for T point while �c� and �d� for L point. The solid blue lines denote the states with parity +1 while the dashed red
ones are the states with parity −1. The dashed black line represents experimental dimerization ��d=�d0�.
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FIG. 4. The phase diagram of the system with two variables: the
dimerization parameter �d and SOC parameter �. In the region
where Sb locates, the parity of L and T points are +1 and −1,
respectively, in other words, the system is in the topological non-
trivial phase with Z2 invariants �1;111�. In the other region where Bi
locates, however, the parity of L and T points are all −1, and the Z2

invariants are �0;000�.
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structure parameters. The main effect of Sb alloying is to
tune the SOC strength, �. Therefore we may have a simple
yet accurate VCA scheme. Here we take Bi’s parameters for
simplicity and tune � in Bi’s pseudopotential to simulate the
doping parameter x of the alloyed Bi1−xSbx. In such a way,
since we do not need to the solve the atomic problem again,
the pseudopotential is accurate enough.

We are interested in the surface states of the semi-infinite
system, a method based on MLWF is developed to calculate
the surface states of semi-infinite system. The ab initio
MLWF �Refs. 24 and 25� method can be regarded as an exact
TB method with its parameters calculated from ab initio self-
consistent electronic-structure calculations. First, the semi-
infinite Bi1−xSbx system can be divided into two parts: the
bulk part and the surface part. The bulk part Hamiltonian is
constructed with the MLWFs from bulk Bi1−xSbx ab initio
calculations, while the surface part Hamiltonian is con-
structed with MLWFs from Bi1−xSbx film with slab calcula-
tions. With these MLWFs’ hopping parameters, iterative
method26,27 is adopted to solve the surface Green’s function
of the semi-infinite system Gnn

l�,l��k
 ,�+ i��, where n and l
denote the supercell along z direction and the atomic bilayer
plane within one supercell, respectively. � gives the orbital
index in one atomic bilayer and k
 is a good quantum num-
ber in semi-infinite system.

The charge density of states �DOS� and spin DOS �Ref. 9�
are related to the surface Green’s function with the expres-
sion

Nn
l �k
,�� = −

1

�
Im�

�

Gnn
l�,l��k
,� + i�� �7�

and

Sn,�
l �k
,�� = −

1

�
Im�

�,�
Gnn

l�,l��k
,� + i��Ol�,l�
�

O�,�
� = �l��ŝ��l�� , �8�

respectively, where ŝ� is the spin �sx,y,z� operator. When n
=0, l=0, N0

0�k
 ,�� and S0,�
0 �k
 ,�� give the local DOS and

local spin DOS at the surface and in the following we use
N�k
 ,�� and S��k
 ,�� for short.

B. Surface state and Fermi surface

The local DOS N�k
 ,E� at the surface is plotted for two
different SOC parameters, �=1.28 eV and �=1.1 eV for
the topologically trivial and nontrivial situations, respec-

tively. In Fig. 5 with �=1.1 eV, developing from the �̄

point, there exists two surface bands connected to the M̄

point, which are denoted as �1 and �2, respectively. At M̄
point, �2 band returns to valence band while �1 band merges
into the conduction band. Therefore, those surface states
cross the Fermi energy five times in total �odd number�,
which indicates the topologically nontrivial nature of this
phase. On the contrary, in Fig. 6 �for �=1.28 eV�, both �1

and �2 bands return to the valence band at M̄ point, and they
cross the Fermi level four times �even number�. This indi-

cates that the system is topological trivial. Bi1−xSbx alloy
with effective SOC parameter � being 1.28 eV belongs to the
same topological phase of pure Bi bulk crystal. The surface
state in Fig. 6 is also consistent with pervious works.19,28 In
an ARPES experiment,20 the surface states of single-crystal
Bi was observed to be different from our theoretical results.
However, in Ref. 20 the authors also discussed that the in-
teraction between the topmost bilayer and the substrate be-
comes very weak because of breaking the transformation
symmetry at the surface. Thus the system they studied is a Bi
bilayer film rather than a bulk crystal, so that there is no
direct discrepancy between the experimental result and our
calculation.

The shape of the Fermi surface for the two different

phases is plotted in Figs. 7 and 8. There are one �̄ point and

three M̄ points in the surface BZ, and they are all TRIM. The

main difference between Figs. 7 and 8 is around the M̄ point.

For both cases, the �̄ point is enclosed by one Fermi arc,

however, the M̄ point is different: it is enclosed by one Fermi
arc at �=1.28 eV, and it is not for �=1.1 eV. Therefore by
counting the total number of TRIM enclosed by Fermi sur-

FIG. 5. Left panel: the surface local DOS for �=1.1 eV. The
dark gray regions denote the continuous bulk bands with a small

gap of about 10 meV at M̄ point, and the white gray regions denote
energy bulk gap. Two surface bands ��1 and �2� disperse within the
bulk gap. The black dashed line indicates the Fermi energy, which

intersects five times with the two surface bands from �̄ to M̄. Right
panel: the region framed by the black rectangle in the left panel is
zoomed in. One surface state ��1� goes up to merge the conduction
band while the other one ��2� goes back to the valence band.

FIG. 6. Left panel: the surface local DOS for �=1.28 eV. The
two surface states ��1 and �2� disperse in a different way in the

present case. At the M̄ point, both �1 and �2 are connected to the
valence band. Therefore the Fermi energy intersects four times with

the surface bands between �̄ and M̄. Right panel: the region framed
by the black rectangle in the left panel is zoomed in.
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face in the BZ, it is even number for �=1.28 eV �one �̄ plus

three M̄�, and odd number for �=1.1 eV �only one �̄ point�.
Here we compare our results with that from TB analysis8

and that from experiment.10 As shown in Fig. 9�a�, we find
five crossing points between the surface bands and the Fermi

energy along the line from �̄ to M̄, this is the same to those
observed in the experiment of Hsieh et al.10 �Fig. 9�, how-
ever, in a simple TB model,11 the number of crossing is three
�Fig. 9�b��. A small discrepancy is found between our ab

initio calculation and the experiment of Hsieh et al.10 near M̄
point, as shown in Figs. 9�a� and 9�d�. In the experiment of

Hsieh et al.,10 a third surface band �3 appears near M̄ point

and be degenerate with �1 band at M̄ point, however, in our
calculation, there is no such band and �1 band will go up and
merge with the conduction band. This discrepancy may come
from additional trivial surface states due to the imperfect
surface. In our calculations, we only treat the perfect surface
without any defects, absorbate, and etc. However, in the
presence of surface imperfection, additional trivial surface
state as show in Fig. 9�c� may appear and intersect with the
nontrivial surface state, this will further complicate the ex-
perimental situation. Nevertheless, this possibility is not
studied in our present calculations, and the discrepancy re-
mains to be justified by future studies.

In addition to the energy resolution, we are also able to
calculate the spin-resolved surface states. As an example, we
carry out the surface state’s calculation for the semi-infinite
Bi1−xSbx system’s top surface, and show the spin-resolved
surface state in Fig. 10. The spin orientation of the surface

states at the Fermi level are plotted for three regions �F1, F2,
and F3� of 2D BZ with �=1.1 eV. Please note the magni-
tude of Sz component is actually very weak �around one
percent of in-plane component�, we plot the Sz distribution
just for the completeness of the results. Clearly, vertex struc-

ture is found for the electron pocket around �̄ point �F1�,
which confirms the topological nature of surface state. Be-
cause top surface’s normal is along the +z direction, we can

confirm that the chirality of the vertex structure around �̄ is

FIG. 7. �Color online� Left panel: the Fermi surface plot for �
=1.1 eV. The white gray hexagonal region is the 2D BZ of �111�
surface for A7 structure. �̄ is enclosed by a hexagonal electron
pocket. There are other six hole pockets and six electron pockets
surrounding. Right panel: the region framed by red rectangle in the
left panel is zoomed in. We can clearly see that the outermost six

small electron pockets do not enclose M̄.

FIG. 8. �Color online� Left panel: the Fermi surface plot for �
=1.28 eV, which is similar to Fig. 7, except that the outermost six

electron pockets enclose the M̄ point. Right panel: the region
framed by red rectangle in the upper panel is zoomed in.

(a)

(c)

(b)

(d)

FIG. 9. �Color online� Schematic picture for the comparison of
the surface bands obtained from �a� our ab initio calculation, �b� TB
model �from the work of Teo et al. �Ref. 11��, and �d� ARPES
experiment results. In ARPES experiment, an additional �3 surface

band �dotted line in �d�� becomes degenerate with �2 band at M̄
point. This additional band may come from the hybridization be-
tween the topological surface states and the other trivial surface
states, as suggested by the red dotted line in �c�.

FIG. 10. �Color online� The spin-resolved Fermi surface for the
semi-infinite Bi1−xSbx’s top surface. The arrow in �a� indicates
�Sx ,Sy�; different colors in �a� and �b� represent Sz along different
directions. The green color in �a� and dark gray in �b� mean that the
Sz is along the +z direction; the red color in �a� and white gray in �b�
mean that the Sz is along the −z direction. The three pieces of Fermi
surface F1, F2, and F3 are marked in Fig. 7. � is taken as 1.1 eV
here.
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left handed and agrees with the recent spin-resolved ARPES
experiment.29,30

C. Indirect band gap

In the above discussions, we call Bi1−xSbx bulk as “insu-
lator” because there exists a direct band gap between the
conduction and the valence bands. Unfortunately, Bi1−xSbx is
actually a semimetal �not true insulator� for most of the dop-
ing range x, namely, there exists finite overlap between the
conduction band bottom �CBB� and the valence band top
�VBT�. If we define the true gap Eg �indirect gap� as the
energy difference between the CBB and the VBT, Eg is nega-
tive for most of the x, and it is positive only for 0.07�x
�0.22.11 On the other hand, to identify the TI nature, except
the parity arguments as discussed above, it is crucially im-
portant to have a full bulk gap throughout the BZ. Therefore,
a serious question for Bi1−xSbx is “can we make the indirect
gap Eg as positive as possible?” or, in other words, “can we
widen the range of doping x where system is truly insulat-
ing?” Here we will show that applying the uniaxial pressure
is an efficient way to open up the indirect band gap Eg.

Figure 11 shows the calculated indirect band gap Eg as

function of c /a ratio with fixed volume. The c /a ratio can be
tuned either by c-axis pressure or by forming thin film
matched to substrate with different lattice parameters. For
both sides of the topological phases ��=1.28 eV or 1.1 eV�,
a broad positive Eg region can be obtained by reducing c /a
ratio slightly �around 3% reduction from its experimental
value c /a=2.6�. From the elastic constant C33 measured ex-
perimentally for Bi,31–33 we can estimate that about 1.2GPa
pressure will reduce the c /a ratio by such an amount �3%�.
For both �=1.28 and 1.1 eV, the CBB is located at L point,
however, the VBT is located at T point for �=1.28 eV, and
at H1 point �around T point in the mirror plane� for �
=1.1 eV. Despite of the different positions of VBT, the ef-
fect of c-axis pressure is always to raise the energy levels
round L point, and lower the levels around the T point. For
�=1.1 eV, energy level at H1 point goes lower, and energy
level at H2 point near the L point in the mirror plane goes
upper. Therefore the positive indirect band gap is realized as
schematically illustrated in the insets of Fig. 11.

V. CONCLUSIONS

As a summary, we develop a method to study the alloyed
Bi1−xSbx system and present a phase diagram to describe the
topological nature of the system. We show that Bi is topo-
logically trivial because the SOC is too strong. By alloying
with Sb, the effective SOC strength is reduced and the topo-
logically nontrivial phase is realized. By accurate ab initio
calculations and MLWF, we calculate the surface states of
semi-infinite system. The results are compared with recent
experiments. We predict the spin-resolved Fermi surface
which can be tested by spin-resolved ARPES. Finally, we
suggest an efficient way to tune the indirect band gap by
uniaxial pressure, such that true bulk insulating state can be
realized for a broad doping range.
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