
Electronic compressibility of graphene: The case of vanishing electron correlations and the role
of chirality

D. S. L. Abergel,1 Pekka Pietiläinen,2 and Tapash Chakraborty1,*
1Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada R3T 2N2

2Department of Physical Sciences/Theoretical Physics, University of Oulu, Oulu FIN-90014, Finland
�Received 4 August 2009; published 17 August 2009�

A recent surprising finding that electronic compressibility measured experimentally in monolayer graphene
can be described solely in terms of the kinetic energy �J. Martin et al., Nat. Phys. 4, 144 �2008�� is explained
theoretically as a direct consequence of the linear energy dispersion and the chirality of massless Dirac
electrons. For bilayer graphene we show that contributions to the compressibility from the electron correlations
are restored. We attribute the difference to the respective momentum dependence of the low-energy-band
structures of the two materials.
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In an interacting electron system of uniform density, the
�inverse� electronic compressibility �−1��� /�n �where � is
the chemical potential and n is the electron density� is a
fundamental physical quantity that is intimately related to the
strength of interelectron interactions.1,2 First measured in
1992, the compressibility of a two-dimensional electron gas3

provides valuable information about the nature of the inter-
acting ground state, particularly in the strong-coupling re-
gime where �in addition to the exchange energy� the Cou-
lomb interaction energy is also known to play a dominant
role. In this context, a recent report on the measurement of
electronic compressibility in monolayer graphene4 revealed
behavior which was totally unexpected.5 In this work, scan-
ning single-electron transistor microscopy was used to mea-
sure the change of local electrostatic potential �and thereby
change in local chemical potential� of a graphene sample
when the carrier density was modulated.5 The observed re-
sults for the local inverse compressibility were found to be
quantitatively described by the kinetic energy alone and the
authors speculated that the exchange and correlation energy
contributions to the compressibility either each other cancel
out or are negligibly small. This interesting puzzle has re-
mained unsolved because the approximate theoretical
schemes adopted by various authors to investigate electron
correlations in graphene6,7 do not find any such cancella-
tions. Similarly, the recently reported Hartree-Fock studies of
compressibility8 in monolayer and bilayer graphene do not
consider electron correlations at all and are therefore not in a
position to address this important issue.

In this Rapid Communication, we investigate the role of
electron correlations in monolayer and bilayer graphene. We
show how in monolayer graphene, two fundamental proper-
ties of the system, viz., the linear energy dispersion and
chirality conspire to allow the exchange and correlation con-
tributions to vanish, just as was observed in the experiment.5

In bilayer graphene on the other hand, where the low-energy
quasiparticles are massive chiral fermions,9,10 the parabolic
dispersion does not allow this vanishing of the two energies,
and the kinetic energy retains a dependence on the electron
correlation function which manifests in the electron com-
pressibility.

The low-energy charge carriers in monolayer graphene
behave as massless Dirac fermions described by the single-
particle Hamiltonian T1

m�� · p̂1, which is linear in momen-
tum p and where the subscript refers to the coordinate label
of the electron on which it acts. The eigenstates of the
Hamiltonian are uniquely labeled by quantum numbers rep-
resenting the wave vector q=p /�, the band �conduction/
valence� b, valley �pseudospin� �, and the z component of the
real electron spin �. The wave functions are of the form,
��r�=eiq·r	, where 	 is an eight component spinor.11 A full
analytical study of the many-electron system in graphene is
clearly an impossible task. However, most of the clues to the
puzzle involving the measured compressibility described
above can be found at the level of two electrons, which is
amenable to a fully analytic solution. We therefore start with
a two-electron system where the electrons occupy the states

 and � corresponding to the full sets of quantum numbers
�q
,� ,b
,� ,�
,� ,�
,��. We denote by � the antisymmetric
noninteracting two-electron wave function

��r1,r2� =
1
�2

��
�r1����r2� − ���r1��
�r2�� .

The correlations due to the mutual Coulomb interaction are
introduced by multiplying the free-particle wave function by
a generic correlation factor F as

 = F�r1,r2���r1,r2� .

At this stage, a precise definition of F is not necessary. The
only requirements are that it should be a real function, and to
preserve the antisymmtery of the correlated wave function 
it is assumed to be symmetric with respect to exchange of the
particle coordinates; i.e., F�r1 ,r2�=F�r2 ,r1�.

In order to evaluate the two-particle energy we have to
normalize the wave function . A straightforward calcula-
tion yields
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��2 = ��	 =
 dr1dr2F�r1,r2�2�1 − 1
2��
��

�1 + b
b� cos��
 − ����cos Q� ,

where Q= �q�−q
� · �r1−r2�, and �
,� are the polar angles of the momenta q
,�. Evaluation of the expectation value of the
kinetic part of the Hamiltonian T m= ��T1

m+T2
m�	 leads to the expression

T m = 1
2�vF
 dr1dr2F 1

4 i��
��
��
��

�eiQZ
�
1 �1 + b
b�e−i���−�
�� + eiQZ�


2 �1 + b
b�ei���−�
�� + e−iQZ�

1 �1 + b
b�ei���−�
��

+ e−iQZ
�
2 �1 + b
b�e−i���−�
��� − ib��cos ��

�F

�x1
+ cos ��

�F

�x2
+ sin ��

�F

�y1
+ sin ��

�F

�y2
+ 2iq�F�

− ib
�cos �


�F

�x1
+ cos �


�F

�x2
+ sin �


�F

�y1
+ sin �


�F

�y2
+ 2iq
F�� ,

where F stands for F�r1 ,r2�, vF is the Fermi velocity, and
Z
�

j is shorthand for

Z
�
j = �b�ei�� + b
e−i�
�

�F

�xj
− i�b�ei�� − b
e−i�
�

�F

�yj

+ iq�F�b� + b
ei���−�
�� .

Due to the linearity of T m in the momentum operators, only
the first-order derivatives appear in the integrand. Terms in
T m of the form


 dr jF
�F

�xj
=

1

2

 dr j

�

�xj
F2,

clearly vanish due to the antisymmetry of the integrand.
Most of the terms left after the volume integration cancel
each other as a consequence of the spinor structure of the
single-particle wave functions, which is a direct manifesta-
tion of the chirality of the electrons. The only surviving
terms sum to

T m = �vF�b
q
 + b�q����2,

that is, the kinetic-energy expectation value �T m	 is simply
the sum of the single free-particle kinetic energies,

�T m	 =
T m

��2 = �vF�b
q
 + b�q�� = T0
m =

���T m��	
���2 ,

and does not depend on the correlation function F at all. We
expect similar cancellations for higher electron numbers, al-
though analytical expressions become intractable already at
the level of three electrons.

Complete cancellation of correlation contributions to the
kinetic energy �never observed in conventional electron sys-
tems� creates an unusual situation as we shall now describe.
In the thermodynamic limit, the potential energy �per par-
ticle� V is usually expressed in the form

�V	 = n
 dr�g�r� − 1�VCoul�r� ,

where n is the single-particle number density, VCoul is the
Coulomb potential and g�r� is the pair-correlation function
which, for r=r1−r2, is given by

g��r�� =
N�N − 1�
��2n2 
 dr3 . . . drN��r1,r2,r3, . . . ,rN��2,

where N is the total number of electrons. The energy func-
tional �per particle� Em is now

Em = t0
m + n
 dr�g�r� − 1�VCoul�r� ,

where t0
m=T0

m /N is the kinetic energy per particle. Its varia-
tion with respect to g�r�, an essential step in determining the
optimal g�r�, would yield an unusual Euler-Lagrange equa-
tion, VCoul�r�=0, which is clearly not the case in graphene.12

To resolve this dilemma we note that the energy functional
Em is actually not bounded below: we can choose correla-
tions such that the potential energy takes arbitrarily large
negative values. This implies that to determine the optimal
g�r� the energy functional derived above is not sufficient and
additional physical constraints, for example, that g�r� should
correspond to the correct number of states in each band,
would be necessary. Clearly, determination of the optimal
pair-correlation functions for massless Dirac fermions in
graphene is a nontrivial problem.13 However, we believe that
the expression for the functional Em is of the correct form;
i.e., once the correct pair-distribution function g�r� is found,
one could evaluate the correct energy from the above form of
the energy functional.
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Let us now turn our attention to the compressibility as
defined in the introduction. To that end we first evaluate the
variation �nEm of Em with respect to n:

�nEm =
�t0

�n
�n + �n
 dr�g�r� − 1�VCoul�r�

+ n
 drVCoul
�g�r�

�n
�n .

From this we can read the derivative as

�Em

�n
=

�t0

�n
+
 dr�g�r� − 1�VCoul + n
 drVCoul

�g�r�
�n

.

The compressibility will then be proportional to

�2Em

�n2 =
�2t0

�n2 + 2
 drVCoul
�g�r�

�n
+ n
 drVCoul

���g�r�/�n�
�n2 .

We therefore need to make an assumption or estimation of
the functional derivative �g�r� /�n. The pair-correlation func-
tion is a many-body quantity, so its exact evaluation is im-
possible. Also, it is not possible to calculate functional de-
rivatives numerically, and any analytical approximation will
necessarily obscure the true functional dependence that we
require. In conventional two-dimensional electron systems,
g�r� varies only slightly as a function of density except at
very low densities where it starts to develop a prominent
peak as a precursor to Wigner crystallization.14 Therefore,

we appeal to previous work, which shows that there are no
phase transitions �such as Wigner crystallization� as the den-
sity of the graphene system is varied15 and so we expect that
the functional variation of g�r� with the density will be neg-
ligible in this system. Alternatively, we could consider a
slightly less stringent condition �drVCoul

�g�r�
�n =0, which im-

plies that the interaction energy depends linearly on the den-
sity of Dirac electrons. Under either of these assumptions,
the compressibility is described entirely by the kinetic energy

�2Em

�n2 =
�2t0

�n2 ,

in accordance with the experimental observation.5 In arriving
at this striking result, there are two basic properties of mono-
layer graphene that play crucial roles: the linear energy dis-
persion and chirality of massless Dirac electrons.

This immediately invites the question: What happens in
bilayer graphene,9,10 where the low-energy charge carriers
behave as massive chiral fermions and as such the Hamil-
tonian is quadratic in momentum operators near the charge
neutrality point. The single-particle Hamiltonian is T1

b=
− 1

2m� �� · p̂1��x�� · p̂1� where m� is the effective electron mass
generated by the inter layer coupling, and has the spectrum
�
= ��q
�2 associated with it. Evaluating the expectation
value of an arbitrary two-particle wave function as in the
monolayer case, an intermediate expression for the kinetic
part of the two-particle energy is

T b = 1
2 ��
 + ��� −
 dr1dr2

�2F

4m�
e−iQiq���cos �� + cos�2�
 − ����

�F

�x1
+ �sin �� + sin�2�
 − ����

�F

�y1
�

+ iq
��cos �
 + cos��
 − 2����
�F

�x2
+ �sin �
 − sin��
 − 2����

�F

�y2
�� −
 dr1dr2

�2F

4m�
eiQiq
��cos �
 + cos��
 − 2����

�F

�x1

+ �sin �
 − sin��
 − 2����
�F

�y1
� + iq���cos �� + cos�2�
 − ����

�F

�x2
+ �sin �� + sin�2�
 − ����

�F

�y2
��

where we have already excluded terms containing mixed sec-
ond derivatives of F which are identically zero on integra-
tion, and those which trivially sum to zero. The integrals of
terms with single derivatives of F are finite, and the prefac-
tors �coming from the pseudospinor part of the products of
wave functions in the expectation value� do not cancel each
other as they did in the monolayer case, but constructively
sum to a finite result. This noncancellation is a feature of the
sublattice structure of the electronic wave function in bilayer
graphene, resulting from the quadratic nature of the low-
energy dispersion relation. On evaluation of the remaining
integrals, and after some elementary algebra, the energy
functional is found to be

Eb = t0
b + �V	 +

�2

8m�

F̃2

��2cos��
 − ���

���q

2 + q�

2�cos��
 − ��� − 2q
q��

where F̃ is the Fourier transform of the correlation function.
We can easily see that there is a nonzero contribution from
the electron correlations to the kinetic energy in this func-
tional, and therefore taking the derivatives with respect to n
yields a compressibility which depends nontrivially on them.
It is clear that this additional term will also be present in the
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many-body energy as its integral over momentum is mani-
festly finite. We would also expect that for bilayer graphene
where the excess electron density is high enough that the
Fermi energy is in the energy range where the linearity of the
spectrum is restored, that the effect of the correlations in the
energy functional will again be suppressed. Quantitative
computation of this term requires precise knowledge of the
radial dependence of F, and the relation between F�r� and
g�r�.16 Both of these issues are beyond the scope of the
present Rapid Communication, however, as indicated in our
present results for bilayer graphene, experimental observa-
tion of a shift in compressibility from the pure kinetic-energy
contribution would provide a way to directly determine the
strength of electron correlations in that system.

To conclude, we have demonstrated that in monolayer
graphene, the electron correlations analytically vanish from
the two-particle kinetic energy. This and the negligibility of
�g�r� /�n lead to the absence of the electron correlation func-

tion in the compressibility, as seen in recent experiments.5

Conversely, the restoration of a quadratic band structure in
bilayer graphene means that the correlations are present in
the kinetic-energy functional and compressibility in this case.
Our work strongly suggests that quantitative agreement be-
tween the single-particle theory and the experimental results
in monolayer graphene has its origin in the fundamental
properties �and in particular, the linear band structure� of this
system. Also, the experimental system exhibits nonhomoge-
neity of the charge distribution, so a full many-body calcu-
lation of the compressibility would have to include this de-
tail. However, the cancellation of the correlation function
from the monolayer two-particle energy functional is inde-
pendent of the energy of the electrons, and will therefore
persist in the inhomogeneous system.
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