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We formulate the effective Gross-Neveu-Yukawa theory of the semimetal-insulator transitions on the hon-
eycomb lattice and compute its quantum critical behavior near three �spatial� dimensions. We find that at the
critical point Dirac fermions do not survive as coherent excitations and that the �1 /r tail of the weak Coulomb
interaction is an irrelevant coupling. The emergent Lorentz invariance near criticality implies a universal ratio
of the low-temperature specific heats of the metallic and the rotational-symmetry-broken insulating phase.
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I. INTRODUCTION

It is well known that the large overlap between the pz
orbitals from neighboring carbon atoms makes graphene an
excellent conductor.1 Nevertheless, one can conceive of situ-
ations in which the relative strength of the repulsive Cou-
lomb interaction between electrons would be higher so that
graphene would turn into a Mott insulator. A recent calcula-
tion suggests that just taking the graphene sheet away from
the substrate may gap out the Dirac points.2,3 If so, varying
the dielectric constant of the surrounding medium over a
sufficiently wide range could in principle be used to tune
through the metal-insulator �MI� transition in graphene. An-
other possibility would be stretching the sheet to reduce the
hopping between the pz orbitals. Such a quantum phase tran-
sition would be the analog of the Higgs mechanism for
gauge-neutral fermions in particle physics, with the Higgs
boson here as a composite field. It would represent maybe
the simplest example of fermionic quantum criticality, in
which the gapless fermions exist only near the isolated points
in the momentum space. A finite gap would also make
graphene more interesting for potential applications in
electronics.4

A unique feature of the Mott phase in graphene is that it
may come in several varieties: from the familiar Néel and
staggered-density phases,5,6 to the more exotic insulators that
break the time-reversal symmetry �TRS�.7 There have been
several studies of the MI transition in graphene.2,6–12 Never-
theless, several fundamental questions still await answers.
Among these, the following qualitative issues seem particu-
larly pertinent: �1� what is the role of Dirac fermions in the
critical behavior, �2� how does the criticality depend on the
nature of the order parameter �OP� in the Mott insulator, �3�
what is the fate of fermions near the critical point, �4� is the
long-range tail of the Coulomb interaction relevant? Ques-
tions 1 and 3 echo some of the central themes of the wider
field of quantum critical phenomena,13,14 whereas the last
question, as we will argue, is related to the classic problem
of triviality of the continuum limit in nonasymptotically free-
field theories.

In this paper, we present an effective theory of the Mott
transition in graphene which allows us to address these and
related issues in a controlled and transparent way. Our action
contains both the self-interacting bosonic �or “Higgs”� OPs

and the Dirac fermions, coupled by Yukawa-like terms. It
represents a simple modification of the Gross-Neveu theory,
derived previously in the large-N limit,6 but with a crucial
feature: there is an upper critical �space� dimension in the
problem of three. This allows one to perform the �=3−d
expansion, with the Higgs and the fermionic fields at all
stages of the calculation treated on the same footing, thus
placing the Mott criticality in graphene at the same level of
rigor as the textbook �4 theory. We find the MI transition in
graphene to be of the second order, and to be governed by
the critical point laying at a finite Yukawa coupling �Fig. 1�.
Although crucial for the critical behavior, Dirac fermions
acquire a small positive anomalous dimension, so that the
residue of the quasiparticle pole continuously vanishes as the
transition is approached from the metallic side. Whereas the
transition may be tuned by increasing the strength of Cou-
lomb repulsion, its �1 /r tail is in fact an irrelevant pertur-
bation to the leading order in �. We determine the depen-
dence of the critical exponents on the broken symmetry of
the Mott phase. Our analytical results compare favorably
with those of a recent numerical work.2 The emergent Lor-
entz symmetry near criticality implies the existence of a par-
ticular universal quantity: the ratio of the low-temperature
specific heats of the semimetal and of the rotationally non-
invariant insulator. Finally, possible analogies between the
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FIG. 1. Schematic flow in the critical plane for Mott transitions
in graphene. For any positive bosonic quartic coupling � the tran-
sition is continuous and governed by the fermionic critical point F.
g is the Yukawa coupling between the OP and Dirac fermions. The
other marked fixed points are the Gaussian �G� and the Wilson-
Fisher �WF�. The �unmarked� bicritical fixed point is unphysical, as
argued below.
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Mott criticality in graphene and the chiral symmetry break-
ing in 3+1-dimensional quantum electrodynamics �QED4�
are noted.

The remainder of the paper is organized as follows. In the
next section we discuss the order parameters and the effec-
tive field theory near the transition. In Sec. III we perform
the analysis of the problem near 3+1 dimensions, and in Sec.
IV we discuss our results, as well as the universal amplitudes
specific to the problem at hand.

II. EFFECTIVE THEORY

Let us begin by fixing the necessary notation. Present the
Dirac fermion for spin-1/2 electrons as �†= ��↑

† ,�↓
†�, where

each spin component is defined as

��
†�x�,�� = T�

�n

�� dq�

�2	a�2ei�n�+iq� ·x��u�
†�K� + q� ,�n�,

v�
†�K� + q� ,�n�,u�

†�− K� + q� ,�n�,v�
†�− K� + q� ,�n�� ,

�1�

where K� = �1,1 /�3��2	 /a�3� is the Dirac point, and u and v
are the Grassmann fields on the two sublattices of the hon-
eycomb lattice. The reference frame is rotated so that qx

=q� ·K� /K. The noninteracting Lagrangian is then Lf

=�̄
����, with the 
 matrices defined as 
0= I2 � �z, 
1

=�z � �y, and 
2= I2 � �x, and �̄=�†
0. The ultraviolet cut-
off is ��1 /a, where a is the lattice spacing. We have set the
Fermi velocity to unity.

In 2+1 dimensions there are two qualitatively different
ways to gap out the Dirac fermions.7 The first one preserves
the chiral symmetry �CS� generated by 	
3 ,
5 ,
35
, 
35
= i
3
5, but breaks the TRS for each spin component sepa-
rately. The time-reversal in the above representation is de-
fined as ��→ It��, where It= ��x � I2�K and K is the com-
plex conjugation.15 Choosing 
3=�x � �y and 
5=�y � �y,
the TRS-breaking OP may be written as

 = �s,� t� = ���̄
35��,��̄�� 
35��� , �2�

with s and t as its �real� singlet and triplet components.
The Pauli matrices act on spin, and 
 matrices act on Dirac
indices. A lattice realization of  has been offered long ago
in terms of circulating currents between the neighboring sites
on the same sublattice.16 It was also shown recently that 
�0 is favored by the second nearest-neighbor repulsion on
honeycomb lattice.17

The second-order parameter preserves the TRS, but
breaks the CS

� = ��s,�� t� = ���̄��,��̄�� ��� . �3�

In the representation above, for example, the singlet corre-
sponds to staggered density, and the triplet to staggered mag-
netization. A finite �s ��t� may then be induced by a large
nearest-neighbor �on-site� repulsion.6 In this case a finite sin-
glet component breaks the Ising symmetry of the sublattice
exchange, whereas the triplet breaks also the �spin� rotational
symmetry.

We may promote the above fermion bilinears into sepa-
rate dynamical fields and write the effective action near the
Mott transition as S=d�dx�L, with L=Lf +Ly +Lb+Lc, where
the bosonic part is

Lb = �
�=,�

�1

2
��s�− ��

2 − v�,s
2 �2 + t�,s��s + �� t · �− ��

2 − v�,t
2 �2

+ t�,t��� t� + ��,s�s
4 + ��,t��� t · �� t�2 + ��,st�s

2�� t
2� , �4�

and the Yukawa terms that couple bosonic and fermionic
fields are

Ly = �
�=�,

	g�,s�s�̄M�� + g�,t�� t · �̄M��� �
 , �5�

where the matrices M�=1 and M=
35. Note that L lacks the
Lorentz symmetry due to the assumed generic bosonic ve-
locities v�,s�v�,t�1. The form of L is dictated by the spin-
rotational, time-reversal, and sublattice-exchange �Ising�
symmetry of the original problem on honeycomb lattice.

One may also account for the long-range tail of the Cou-
lomb interaction by including the term

Lc = ia�̄
0� +
1

2e2a���d−1a . �6�

We allow for a general spatial dimension d, but in a manner
that assures that the integration over the scalar gauge field a
would introduce the �e2 /r density-density interaction be-
tween fermions in any d.18

Integrating out the Higgs OPs in the symmetric phase
t�,s , t�,t�0 would produce local quartic terms for the remain-
ing fermionic degrees of freedom, and reduce the theory to
the Gross-Neveu form derived before in the large-N limit.6

The advantage of the Yukawa form is that it becomes renor-
malizable in 3+1 dimensions, where both the Yukawa and
the Higgs self-interaction couplings become dimensionless.
The relationship between the Gross-Neveu and the Yukawa
descriptions mirrors the one between the nonlinear and linear
sigma models in standard critical phenomena,19 and there is a
substantial evidence that both describe the same critical
point.20 In the remaining part of the paper we exploit this
equivalence and study the effective Yukawa theory in d=3
−� dimensions, with an eye on �=1 relevant to graphene.

A possible objection to the pursuit of the above strategy
may be that the Higgs bosons  that involve 
35 do not gap
the Dirac fermions in 3+1 dimensions, where the CS is re-
duced to U�1�. If we were to compute the beta functions
directly in 2+1 dimensions, on the other hand, at least per-
turbatively there can be no difference between those with �
and  labels. This is because the matrix 
35 commutes with
all the 
 matrices which appear in the fermion propagators.7

This leads us to conjecture that the critical behaviors at � and
 transitions that share the same spin symmetry are identical.

III. �—EXPANSION

With the above rational in mind, hereafter we consider
only the CS breaking transition. Anticipating some of the
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results we set v�,s=v�,t=1 and e2=0, and integrate out both
the fermionic and the bosonic modes within the four-
momentum shell � /b� ��2+k�2�1/2��. There are two criti-
cal points, distinguished by the rotational symmetry of the
OP: �1� at t�,s=0 �t�,t=�� and �2� at t�,t=0 �t�,s=��.21 They
may be tuned by increasing the nearest neighbor and the
on-site repulsive terms in the Hubbard model, respectively.6

To one-loop order we find

dgu
2

d ln b
= gu

2�� − �7 − S�gu
2� , �7�

d�u

d ln b
= �u�� − 8gu

2� − 4�9 + S��u
2 + 2gu

4, �8�

where gu=g�,u / �8	2��� and �u=��,u / �8	2���, u=s , t, and
S=0�S=2� for singlet �triplet� couplings. The purely bosonic
Wilson-Fisher fixed point is unstable in the g direction, and
the critical point lies at a finite Yukawa and quartic couplings
�Fig. 1�. The flows in both cases resemble the one of
superconductors,22 except that the bicritical point now lies in
the unphysical region, so that both the singlet and the triplet
transition are always second order.

Let us examine the stability of the critical point with re-
spect to perturbations. First, breaking the Lorentz symmetry
by a small difference in the fermionic and bosonic velocities
is irrelevant: for �u=1−v�,u�1, to the leading order in � we
find

d�u

d ln b
=

4�

S − 7
�u. �9�

Weak Coulomb interaction is also readily found to be �mar-
ginally� irrelevant

de2

d ln b
= −

4

3
�2�d,3 + 1�e4, �10�

similarly as in the purely bosonic theories.18 Here we res-
caled e2 /8	2→e2. The first term in the bracket derives from
the usual polarization, and it is present only in d=3, where
the second term in Eq. �6� becomes analytic in momentum.18

The remaining term comes from the renormalization of the
Fermi velocity.23

The correlation-length critical exponent is then

� =
1

2
+

3�5 + S�
�7 − S��9 + S�

� + O��2� , �11�

and

�b =
4

7 − S
� + O��2� , �12�

with �b as the usual OP’s anomalous dimension.
The fermion propagator at the critical point behaves as

Gf
−1���2+k2��1−�f�/2, where the fermionic anomalous dimen-

sion is

� f =
3

2�7 − S�
� + O��2� . �13�

The scaling then implies6 that the residue of the Dirac qua-
siparticle’s pole vanishes near the critical point as a power
law,

Z � �t�,u�3�/�4�7−S��+O��2�. �14�

There are therefore no sharp fermionic excitations right at
the critical point.

Both the bosonic and the fermionic anomalous dimen-
sions, being proportional to the critical point values of the
Yukawa coupling, are finite already to the leading order in �.
This implies that the exponents have rather different values
from the usual mean field. Since there does not seem to be a
dangerously irrelevant coupling in the problem the hyper-
scaling should hold and we may obtain the remaining expo-
nents from the usual scaling relations.24 This way we find


 = 1 +
4�3 + S�

�7 − S��9 + S�
� + O��2� , �15�

� =
d + 3 − �b

d − 1 + �b
= 3 −

1 + S

7 − S
� + O��2� . �16�

For a large number of Dirac fields N one similarly finds:6

�=1+O�1 /N� and �b=1+O�1 /N�, and thus 
=1+O�1 /N�,
and �=2+O�1 /N�. Various calculations on the Gross-Neveu
models in the past20 also suggested that the infinite-N results
are often good estimates of the exponents’ actual values.

IV. DISCUSSION

The critical exponents have recently been computed nu-
merically for two species of Dirac fermions interacting via
�1 /r interactions. Whereas only the standard power laws
and no essential singularity11,12 were observed,2 the critical
exponents 
=1, and ��2.3, particularly when expressed in
terms of �=0.85 and �b=0.82 appear distinctly not to be of
the usual mean-field variety. They do seem close to our one-
loop results, however, particularly for the triplet OP, where
for �=1 we find ��0.88 and �b�0.80. The correlation-
length exponent is also very close to the previous two-loop
result25 for the singlet OP. These are only crude estimates,
but we believe that the observation of the values of � and �b
near unity should be taken as a sign of the Gross-Neveu-
Yukawa fermionic criticality. Although the strength of 1 /r
interaction may be used as the tuning parameter, both the
present �, earlier6,26,27 1 /N expansions, and the results near
1+1 dimensions28 suggest this to be ultimately an irrelevant
coupling. The Mott transition in graphene may be analogous
to the situation in the QED4,29 where the CS breaking tran-
sition brought by the increase in the electromagnetic charge
appears to be described by the Nambu-Jona-Lasinio La-
grangian with only short-range interactions. This is one way
to phrase the triviality of the continuum limit of QED4.30

Let us list some further results specific to the Mott criti-
cality in graphene. As the critical point is approached from
the insulating side both the masses of the Higgs OP and of
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the Dirac fermions approach zero, with the universal ratio

�mb

mf
�2

=
8�u

gu
2 =

16

9 + S
+ O��� , �17�

analogous to the universal Ginzburg-Landau parameter at the
superconducting critical point.22,24 The emerging Lorentz in-
variance in the critical region implies that �a� the dynamical
critical exponent z=1, so that the Fermi velocity is not
critical,7 �b� the �nonuniversal� velocity of bosonic excita-
tions in the critical region approaches the �nonuniversal�
Fermi velocity. For the triplet OP this means that the spin
waves on the insulating side will have the same velocity as
the Dirac fermions on the metallic side, when both are near
criticality. As a consequence, the ratio of the specific heats on
the metallic and insulating side in the critical region ap-
proaches a universal value

lim
T→0

C�t�,t → 0+�
C�t�,t → 0−�

= 4�1 − 2−d� . �18�

The numerator �denominator� corresponds to the specific

heat of the eight �two� free relativistic fermions �Goldstone
bosons� in d dimensions. Assuming that the Lorentz invari-
ance is still emergent at the critical point in d=2 7 the same
ratio is exactly 3 at the transition into the spin-density-wave
phase in the Hubbard model on honeycomb lattice.

In conclusion, we presented an effective theory of the
Mott transition on honeycomb lattice that becomes solvable
near three spatial dimensions. We argued that the quantum
critical point in graphene should be relativistically invariant,
and possibly logarithmically trivial. An interesting conse-
quence of our theory is the existence of a simple universal
ratio of the specific heats of the two phases near the transi-
tion. This particular prediction should hopefully become test-
able in the future numerical and experimental studies.
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