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Due to the absence of inversion symmetry, spin-orbit interaction leads to a very particular topology of the
evanescent states in zinc-blende semiconductors, which may consist of loops connecting different spin sub-
bands at the zone center. The spin-vector motion along such loops is analytically or numerically studied. A
surprising picture emerges from this detailed analysis. Namely, the two spin sub-bands do not correspond to
opposite spin states near the Brillouin-zone center and merge with identical spins at larger wave vector. This
determines the spin-filtering capabilities of the semiconductor barrier.
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I. INTRODUCTION

Spin-dependent tunneling is of growing importance in
spintronics.1 Fundamental properties of tunneling phenom-
ena in solids are intensively investigated and the structure of
the evanescent states is crucial in determining the tunneling
scheme. In pioneering papers, Heine2 and Jones3 have de-
rived general properties of the complex bands. The evanes-
cent states, which are associated with complex wave vectors,
have to be visualized in a real six-dimensional vectorial
space, instead of the familiar three-dimensional representa-
tion of the real band structure. A careful study of the evanes-
cent band structure inside the band gap of zinc-blende semi-
conductors can be found in Refs. 4 and 5. This
semiconductor family, which is of great technological impor-
tance, is a paradigm for fundamental spin physics because a
very accurate analytical description of the relevant bands can
be obtained. Due to the absence of inversion symmetry, it is
well-known that the spin-orbit interaction removes the spin
degeneracy of the bands.6 Concerning the evanescent states,
a particular structure arises with a deeply directional depen-
dent nature. Its implications for tunneling have been exten-
sively investigated in Ref. 7, paving the way to spin-orbit
engineering of heterostructures. There, it was also shown that
even the familiar notion of probability current has to be re-
visited in the presence of a D’yakonov-Perel’ �DP� field,8 as
well as the matching conditions of the wave function at the
boundaries. Perel’ et al.9 pointed out that a �001�-oriented
tunnel barrier under off-normal incidence presents spin-
filtering capabilities. These properties are related to the par-
ticular topology of the evanescent states in the fundamental
band gap which, along the relevant directions, consist of
loops connecting two different spin sub-bands at the zone
center.4,5 In the present paper we study the spin properties
and especially the spin-vector trajectory along such loops.
This provides us with a tractable case where a number of
general considerations2,3 find illuminating illustrations and it
emphasizes that, when dealing with spin-dependent tunnel-
ing properties, one has to be extremely cautious because the
regular representations do not apply.

In zinc-blende semiconductors, the spin splitting of the
first conduction band is usually studied near the Brillouin-
zone center and described through an effective �2�2�

Hamiltonian, referred to as the DP Hamiltonian.8 In Ref. 4,
the evanescent band structure of GaAs was calculated within
the k ·p framework, incorporating an increasing number of
bands. Starting with the DP Hamiltonian the evanescent band
structure was finally calculated through a �30�30� Hamil-
tonian formalism which had been shown to yield an accurate
description of the first and second real conduction bands and
of the three upper real valence bands over the whole Bril-
louin zone. Concerning the evanescent states in the funda-
mental band gap �between the top of the upper valence bands
and the bottom of the first conduction band� we are inter-
ested in, because their wave-vector extension is limited—
less than about 10 % of the Brillouin zone—it is sufficient to
use a �14�14� Hamiltonian4 which is also the smallest pos-
sible which can include the matrix elements responsible for
the spin splitting. This description takes into account seven
orbital states, the three p-like bonding states which give rise
to the three upper valence bands ��5V�, the s-like antibonding
states which give rise to the first conduction band ��1�, and
the three p-like antibonding states which correspond to the
second conduction band ��5C�. For directions of the type
�� ,0 , iK� �� ,K�0�, referred to the cubic crystallographic
axes, the evanescent states consist of loops as shown in Fig.
1, provided that 0���45° where tan �=� /K.4 The loop ex-
tension in wave-vector space decreases when � increases,
tending to zero when � approaches 45°.

The purpose of the present paper is to study the direction
of the two spin states along a whole loop. This is simple and
analytical near the Brillouin-zone center �in a small energy
domain just below the bottom of the first conduction band�,
where the �2�2� DP Hamiltonian is sufficient, while the
�14�14� Hamiltonian, needed to describe the whole loop,
needs numerical resolution.

II. SPIN-VECTOR CALCULATION

The general expression of a normalized pure spin state is
���=a↑+b↓, �a�2+ �b�2=1, a combination with complex sca-
lar coefficients of ↑, ↓, which are the eigenvectors of 	̂z, the
z component of the Pauli operator �̂. The spin vector is
given by the mean value of the Pauli operator �̂ in the state
���, i.e., ���	̂ j���, j=x, y, z, with ����̂���2=� j���	̂ j���2=1.
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Now, let us consider the state �
�= �f�↑+�g�↓ where �f�
and �g� are two kets in r-space, i.e., �r � f�= f�r�, �r �g�=g�r�,
and 
�r ,	�= �r �
�= f�r�↑+g�r�↓. The normalization of the
wave vector implies �
 �
�= �f � f�+ �g �g�=1. We have �	̂ j�
=	
��r ,	�	̂ j
�r ,	�d3r, so that

�
��̂�
�2 = 1 + 4���f �g��2 − 
f
2
g
2� � 0. �1�

The Cauchy-Schwartz inequality states that ��f �g��
− 
f

g
�0 so that the modulus of the spin vector in a mixed
state is, in general, smaller than 1. Its norm remains equal to
unity if and only if the �f ,g� family is not free, i.e., in a pure
spin state.

In many usual cases—for instance when f and g relate to
different bands of the Hamiltonian without spin—f and g are
orthogonal, then

�
��̂�
�2 = 1 − 4
f
2
g
2 = 4�
f
2 −
1

2
�2

. �2�

If 
f
= 
g
, we have �
��̂�
�2=0. This means that, if a
band associated with a given spin becomes fully hybridized
with another band of opposite spin, with an equal weight for
each of the two spin bands, the mean spin modulus becomes
zero.

Assume that �f� and �g� belong to a vectorial subspace En

with dim En=n, sustended by the orthonormal basis Bn.

More formally, the Pauli operator Ŝ= �̂ � In
̂, where In

̂ is the
identity operator acting over En, is to be used to calculate the

spin vector with �
��̂�
�= �
�Ŝ�
�. The calculation could be
performed in the basis 
↑ ,↓� � Bn, and in this tensorial-

product basis, the matrix representing Ŝ j is the �2n�2n�
matrix consisting of n �2�2� identical diagonal blocs, each
of them being equal to 	 j. When the spin-orbit coupling is
taken into account, 
↑ ,↓� � Bn is not a convenient basis and,
depending on the Hamiltonian, another basis involving hy-
bridized states will be used instead. Then, the matrices S j

representing Ŝ in this basis will take a more complicated
form but, obviously verify the same commutation relations
as well as Tr S j =n Tr 	 j =0 and det S j = �det 	 j�n= �−1�n.

To study the spin motion along an evanescent band, we
calculate the mean value of the Pauli operator in the eigen-
vector �
� corresponding to the energy E. The energy is cal-
culated from the �14�14� Hamiltonian and the eigenvector
can be written �
�=��=1

14 c����� where 
����� is the set of
normalized vectors allowing us to express the �14�14�
Hamiltonian. The ���� are spinors which may be expanded
on the 
↑ ,↓� basis. The orbital part is written in the basis

X ,Y ,Z ,S ,XC ,YC ,ZC� where X, Y, and Z refer to �5V, S re-
fers to �1 symmetry, and XC, YC, and ZC refer to �5C. The
detail of the k ·p matrices up to �30�30� is given in Ref. 10.
For convenience, the �14�14� Hamiltonian—similar to the
expression derived by Pfeffer and Zawadzki11 but not iden-
tical because the basis differs—is reproduced in the Appen-
dix. We have

�
�Ŝ�
� = �
�,n=1

14

c�
�cn����Ŝ��n� = �

j

e j �
�,n=1

14

c�
�
S j

�,ncn, �3�

where e j is the unit vector in the j direction. From the wave
functions, the S j

�,n matrix elements can be straightforwardly
calculated. We express them using the �14�14� �S j��,n

matrices

S j = �	 j
A 0 0

0 	 j
C 0

0 0 	 j
B� . �4�

Here, 	 j
C=	 j acts in the conduction �C� �1 � 
↑ ,↓�

= 
�S�↑ , �S�↓� subset; 	 j
A acts in the antibonding �A� �5C

� 
↑ ,↓� subset, whereas 	 j
B=	 j

A acts in the bonding �B�
�5V � 
↑ ,↓� subset. For j=x or y, we find

FIG. 1. �Color online� Evanescent loop in the wave vector—
energy plane. The energy origin is set at the bottom of the first
conduction band. The wave-vector k lies along the �tan � ,0 , i� di-
rection, at �=� /K=0.4 ��=21.8°�. The spin vector, in the xOy
plane, is represented, after a numerical calculation, for several pairs
of points �identical symbols� related to the two sub-bands at a given
wave vector. For small wave vectors—in the D’yakonov-Perel limit
�out of the representation domain�—the spin vector is given by n−

�respectively, −n+� for the lower-�respectively, upper-� energy band.
Lower right inset: top view of the intercepts of two evanescent
loops with a constant energy plane determining the evanescent com-
ponents of the wave-vector K and K� at constant �. To the first
order, the wave-vector change 
K can be directly measured on the
loop in the main figure. Lower left inset: the unit sphere allows a
simple visualization of the spin-direction trajectory along the loop
�take care that the sphere is pointing down to the north hemisphere,
the axis being along Ox, the spin-filter axis�. The imaginary �in-
plane� component of the wave vector, K ��� lies along Oz �Ox�. The
calculated path, with the symbols referring to the points on the loop,
connects two symmetrical spots where the D’yakonov-Perel’ sub-
bands collapse �DP symbols�, located in the north �shaded area� and
south hemispheres. The departure location in the north hemisphere
lies at the colatitude �DP.

NGUYEN, DROUHIN, AND FISHMAN PHYSICAL REVIEW B 80, 075207 �2009�

075207-2



	 j
A,B =�

0 e−i�j/�3 0 0 − �2/3e−i�j 0

ei�j/�3 0 2e−i�j/3 0 0 − �2e−i�j/3
0 2ei�j/3 0 e−i�j/�3 �2ei�j/3 0

0 0 ei�j/�3 0 0 �2/3ei�j

− �2/3ei�j 0 �2e−i�j/3 0 0 − e−i�j/3
0 − �2ei�j/3 0 �2/3e−i�j − ei�j/3 0

� �5�

with �x=0 and �y =� /2. For j=z, we obtain

	z
A,B =�

1 0 0 0 0 0

0 1/3 0 0 2�2/3 0

0 0 − 1/3 0 0 2�2/3
0 0 0 − 1 0 0

0 2�2/3 0 0 − 1/3 0

0 0 2�2/3 0 0 1/3
� . �6�

The results need a numerical calculation because 
cn� is to
be determined. However, for complex wave vectors with a
small modulus, analytical solutions can be derived and it is
illuminating to consider this case. Near the Brillouin-zone
center, the energy dispersion of the first conduction band is

accurately described by the DP Hamiltonian, ĤDP, which can
be obtained from the �14�14� Hamiltonian performing a
third-order perturbation expansion from remote bands

ĤDP = �ck
2 + �� · �̂ , �7�

where � is the coupling parameter and �c=�2 /2m, with m
being the effective mass; �=��k� is a vector representing the
internal field, ��x ,�y ,�z�= �kx�ky

2−kz
2� ,ky�kz

2−kx
2� ,kz�kx

2−ky
2��.

The HDP matrix is expressed in the 
�S�↑ , �S�↓� basis. The
evanescent states that we are studying correspond to wave
vectors of the form 
���+ i�K�=���ex+ i�Kez� ;� ,�= �1�.
Note that � and � only take the values +1 or −1: �=1, �
=1�−1� refer to the wave-vector k �k�� whereas �=−1, �
=1�−1� refer to the wave vector −k �−k��. We use the nota-
tion �=� /K=tan � so that k=K��� ,0 , i���. Now, the DP
field is �=K3��� ,0 , i���2� and HDP can be written as

HDP = ��ck
2 + i����2K3 ���K3

���K3 �ck
2 − i����2K3� . �8�

For a given wave-vector k, HDP has the two eigenvalues
��=�ck

2+����1−�2K3, �= �1 correspond to the two en-
ergies of two spin states, we shall see the meaning of which
just below. Observe that on a real-energy line we have �
�1 �i.e., ��45°�. The components of the corresponding
eigenstates are a=1 /�2 and b= ����1−�2− i��� /�2. We
calculate �	̂x�=���1−�2, �	̂y�=−��, and �	̂z�=0. This
shows that the spin remains in the xOy plane, perpendicular
to the z-quantization axis. In GaAs, � is a negative quantity12

so that �=−1 ��=+1� corresponds to the higher- �lower-�
energy sub-band. Let us define n�= ��1−�2 , �� ,0�. The
unit vector n+ makes the angle �DP with respect to Ox, with
sin �DP=�=tan �. The result is summed up in Table I,
which indicates ��̂� for a given wave vector at a given �.

These two spins are not collinear unless �=0 �and, in this
latter case, the spin splitting of the evanescent states van-
ishes�. Note that in the DP case the quantum state is ���
=a�S�↑+b�S�↓ and then the norm of the spin vector is equal
to 1.

When going off the Brillouin-zone center, HDP can no
longer be used so that a numerical calculation has to be per-
formed as explained above. The GaAs k ·p parameter values
used in the present calculation are P=9.88 eV.Å, P�
=0.41 eV.Å, EG=1.519 eV, �C=E�8C

−E�7C
=0.171 eV,

Q=8.68 eV.Å, �=0.341 eV, E�=E�7C
−E�6

=2.969 eV,
and ��=−0.17 eV.13 This parameter set yields �
=−24 eV.Å3. To obtain an image of the spin evolution, it is
convenient to plot the spin vector along the loop as shown in
Fig. 1. In the upper part, the evanescent loop describes the
energy for �=� /K=0.4 ��=21.8°�. All the spin vectors
drawn on the curve result from numerical calculation, the DP
limit being out of the representation domain. In the lower
part, the spin path is drawn on the sphere, the spin modulus
being almost constant within an accuracy of 3%. As under-
lined in Sec. II, it is not obvious that the spin motion can be
represented on the unit sphere because, in an hybridized
band, the spin vector has a modulus smaller than 1, and
possibly 0. The quasiconservation of the modulus is essential
for applications to spintronics. Near the Brillouin-zone cen-
ter, the spin-vector n− in the lower-energy sub-band
��=+1� starts from a direction at the polar angle �DP with
respect to Ox. More precisely, on the unit sphere with the
north pole defined by Ox and the longitude of 0° correspond-
ing to the Oy axis, n− is defined by the colatitude �DP and a
longitude of 180°. When increasing the wave-vector modu-
lus, the spin vector rotates at a constant longitude to make
the angle � with respect to Ox. Starting from the �=�DP in
the DP regime, � increases up to a point where the spin
vector lies along Oy ��=90°�. Having in mind a movement
on the sphere, the path first occurs in the north hemisphere
�shaded area�. It starts from a point at the colatitude �DP
which increases versus � ��DP�� within an accuracy of
10% up to about 25°, and �DP=90° for �=45°, the maxi-
mum possible value� to reach the equatorial plane �=90°.
When � is small but nonzero, the departure point lies near
the north pole, but never exactly at the pole. Crossing the
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equatorial plane, the x component of the spin vector becomes
negative and the path lies in the south hemisphere: the spin
continues to rotate to reach a point which is symmetrical to
the departure position with respect to the equatorial plane.
This last location is reached in the small-wave-vector regime
for �=−1 and the spin vector is −n+. Alternatively, one may
think of two spin sub-bands near the zone center which ex-
tend off the zone center to connect at the equator. At large �,
not far from 45°, the departure and arrival locations come
close to the equator: the length of the path becomes shorter
and shorter, tending to zero and it can be seen that, correla-
tively, the length of the evanescent loop decreases to zero.4

In Ref. 7, tunneling of electrons under off-normal incidence
on a �001�-oriented barrier �z axis� was analyzed, taking �
along Ox. Then, the tunnel scheme involves two evanescent
loops in the xOz plane, because, at a given energy the �
component of the wave vector has to be conserved, leading
to two different � angles corresponding to wave-vector com-
ponents K and K� in each “spin” sub-band. As a result, and in
agreement with the calculation by Perel’ et al.,9 the barrier
acts as a spin filter. Fig. 1 in the present paper is also drawn
with reference to this very situation: the Oz axis is the tun-
neling direction—the loop lies in the xOz plane, and Ox is
the “spin-filter axis.” Roughly speaking, the transmission
asymmetry, which is also the transmitted beam polarization
when the primary beam is unpolarized, is equal to
tanh��aK��
K /K��.7 In this expression �aK� determines the
barrier transmission and �
K /K� is the “initial” polarization
of the sub-bands. We have the relation d�
=−cos2 ��� /K��dK /K�, which shows that, when the ratio
� /K is small, d� is a second-order term which can be ne-
glected. Therefore, 
K simply corresponds to the distance
between the two branches of the loop at a given energy,
restoring a familiar picture. In Fig. 1, it can be shown that,
along the loop, 
K /K starts from the value �� /�c�K tan � to
reach about 7% at 
k
=K /cos ��0.1�2� /a0� while the spin
vector only slightly changes. Therefore, it can be expected
that transmission asymmetries as large as 20 % could be
achieved, instead of 2 % in the DP limit for a 40 Å-thick
barrier. In GaSb, the ratio �� /�c� is about five times larger
than in GaAs �Ref. 13� so that extremely high polarizations
might be expected.

III. CONCLUSION

In conclusion, the loop structure of the spin sub-bands
along �tan � ,0 , i� directions is responsible for the spin-

filtering capability of a �001�-oriented GaAs barrier under
off-normal incidence. The � angle defines the in-plane com-
ponent � of the wave vector—a quantity which is conserved
in the tunnel process—through the relation tan �=� /K,
where K is the imaginary component of the wave vector in
the barrier. This peculiar topology is a consequence of the
spin-orbit interaction in the absence of inversion symmetry.
A complete analysis of the spin-vector trajectory has been
performed and, if the result is simple, it is far from intuitive.
For a wave-vector K �tan � ,0 , i� at a fixed � value, the two
sub-bands which originate from the diagonalization of the
D’yakonov-Perel’ Hamiltonian, that we call the DP sub-
bands, do not correspond to opposite spin states, even infi-
nitely close to the Brillouin-zone center. Representing the
spin vector on the unit sphere, these DP sub-bands reduce to
two points located at the same longitude, which are sym-
metrical with respect to the equatorial plane. Their colatitude
�DP which varies between 0 and 90°, depends on �, which
varies between 0 and 45°: at small angles �DP�� whereas
�DP rapidly increases at large �. The loops in the dispersion
relation of the evanescent bands correspond to paths which
connect these two DP spots at the equator when K is large
enough. The spin tag allows us to define properly the point
where the two sub-bands, which might be thought as up- and
down-spin sub-bands near the zone center, connect because
one path entirely lies into the north hemisphere �along this
path, the spin is rather up than down� whereas the other
entirely lies into the south hemisphere �in this region, the
spin is rather down than up�. In the tunneling geometry, at a
fixed energy, the wave with wave-vector k has to be associ-
ated to the wave with wave-vector k� and it is obvious that
these two waves do not correspond to identical spin states so
that a two spin-channel tunneling model has to be used to
account for electron transmission.7 Besides, when going off
the zone center, the bands hybridize, the spin is no longer a
good quantum number and the modulus of the spin vector is
slightly reduced. These peculiarities correspond to a situation
that appears to be quite general in solids.
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APPENDIX: THE (14Ã14) HAMILTONIAN

Let X, Y, and Z be the orbital functions of the �5V valence
band �at k=0, without spin-orbit interaction� in Koster’s
notations.14 Due to spin-orbit interaction the �5V level splits
into �8V and �7V subsets. To save place, the four �8V func-
tions are referred to as �M� with M = �

3
2 , �

1
2 while the two

�7V functions are written as �� 7
2 �, a mnemonic notation re-

calling that these last two functions belong to �7V. S is the
orbital function of the first conduction-band �1. XC, YC, and
ZC are the orbital functions of the second conduction-band
�5C. Due to spin-orbit interaction the �5C level splits into
�8C and �7C subsets. The four �8C functions are written as

TABLE I. Spin vector ��̂� in the D’yakonov-Perel’ sub-bands
��= �1� and relevant wave vectors. n� are unit vectors that are not
collinear.

�=+1 �=−1

k n− −n+

−k −n+ n−

k� n+ −n−

−k� −n− n+
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�cM� and the two �7C functions are written as �c �7
2 �.

When one has to deal with time-reversal operator K̂
=−i	yK̂0, where 	y is the relevant Pauli matrix and K̂0 is the
operation of taking the complex conjugate—as done in Ref.

7—it is preferable to use the basis defined in Ref. 15. Thus,
we construct the basis given in Table II where the atomic
functions �s, �px

, �py
, and �pz

of Ref. 15 are substituted with
S, X, Y, and Z. Then, the �14�14� Hamiltonian writes:

�c 3
2� �c 1

2� �c −1
2 � �c −3

2 � �c 7
2� �c −7

2 � �+ � � 3
2� � 1

2� � −1
2 � � −3

2 � � 7
2� � −7

2 �

E8C
H

BC
�

CC
�

0
1
�2

BC
�

�2CC
�

−1
�2

P�+

0
1
3��
1
�3

PX
−

1
�3

PX
z

0
1
�6

PX
−

�2
3 PX

z

BC

E8C
L

0

CC
�

− �2AC

− �3
2BC

�

�2
3 P�z

−1
�6

P�+

−1
�3

PX
+

1
3��

0
1
�3

PX
z

0
−1
�2

PX
−

CC

0

E8C
L

− BC
�

− �3
2BC

�2AC

1
�6

P�−

�2
3 P�z

−1
�3

PX
z

0
1
3��

−1
�3

PX
−

1
�2

PX
+

0

1
�2

BC

0
1
�2

P�−

0
−1
�3

PX
z

1
�3

PX
+

1
3��

�2
3 PX

z

0

CC

− BC

E8C
H

− �2CC

−1
�6

PX
+

0
1
�3

P�z

1
�3

P�+

−1
�6

PX
+

0
−1
�2

PX
−

− �2
3 PX

z

−2
3 ��

1
�2

BC

− �2AC

− �3
2BC

�

− �2CC
�

E7C
k

0

E7C
k

1
�3

P�−

−1
�3

P�z

− �2
3 PX

z

1
�2

PX
+

0
1
�6

PX
−

0

�2CC

− �3
2BC

�2AC

1
�2

BC
�

0

−2
3 ��

1
�3

P�+

E6
k

0
−1
�2

P−

�2
3 Pz

1
�6

P+

0
1
�3

Pz

−1
�2

P�−

�2
3 P�z

1
�6

P�+

0
1
�3

P�z

1
�3

P+

−1
�3

P�z

0

E6
k

0
−1
�6

P−

�2
3 Pz

1
�2

P+

1
�3

P−

0
−1
�6

P�−

�2
3 P�z

1
�2

P�+

1
�3

P�−

−1
�3

Pz

− �2
3 PX

z

−1
�2

P+

0

E8
H

B�

C�

0
1
�2

B�

1
3��

−1
�3

PX
−

−1
�3

PX
z

0
−1
�6

PX
−

�2C�

1
�6

PX
+

0
1
�2

P−

0

C

− B

E8
H

− �2C

0
1
�3

PX
z

−1
�3

PX
+

1
3��

− �2
3 PX

z

1
�2

B

0
1
�3

Pz

1
�3

P+

1
�2

B

− �2A

− �3
2B

�

− �2C�

E7
k

1
�6

PX
+

0
1
�2

PX
−

�2
3 PX

z

−2
3 ��

0

−2
3 ��
1
�3

P−

−1
�3

Pz

�2C

− �3
2B

�2A

1
�2

B�

0

�2
3 PX

z

−1
�2

PX
+

0
−1
�6

PX
−

0

E7
k

0
1
�6

P−

�2
3 Pz

0

E8
L

− B�

− �3
2B

1
�3

PX
z

0
1
3��
1
�3

PX
−

−1
�2

PX
+

�2A

C

1
�2

PX
−

�2
3 Pz

−1
�6

P+

E8
L

0

C�

− �2A

1
�3

PX
+

1
3��

0
−1
�3

PX
z

0

− �3
2B

�

B

− ��2
666666666666666666666666666666666666666666666664

2
666
666
666
666
666
666
666
666
666
666
666
666
666
666
666
664

�A1�

In Eq. �A1�, the parameters are the following:

P = ��/m0��S�px�iX�;

PX = ��/m0��XC�py�iZ�;

P� = ��/m0��S�px�iXC� .

m0 is the free-electron mass. P, PX, and P� are real.

P�
� = P��kx � iky�, P�

z = P�kz

with P�= P or PX or P�.

EP� = �2m0/�2�P�
2 .

� = �3�/4m0
2c2��X���U/�x�py − ��U/�y�px�iY�;

�C = �3�/4m0
2c2��XC���U/�x�py − ��U/�y�px�iYC�;

�� = �3�/4m0
2c2��X���U/�x�py − ��U/�y�px�iYC� .

U is the periodic potential in the Bloch Hamiltonian
p2 /2m0+U�r�. �, �C, and �� are, respectively, the spin-

orbit-coupling energy of the �5V valence band which results
in �8V and �7V, the spin-orbit-coupling energy of the second
�5C conduction band which results in �8C and �7C, and the
interband spin-orbit-coupling energy between �5V and �5C.

P� and �� vanish in Oh group but are nonzero in Td group.

E8C
H = E8C� − �C1� k̆2 + AC; E8C

L = E8C� − �C1� k̆2 − AC;

E7C
k = E7C� − �C1� k̆2; E8C� − E7C� = �C;

E6
k = E6 + �C� k̆2;

E8
H = E8� − �1�k̆

2 + A; E8
L = E8� − �1�k̆

2 − A;

E7
k = E7� − �1�k̆

2; E8� − E7� = � .

AC = �C2� �2k̆z
2 − k̆�

2�; BC = 2�3�C3� k̆zk̆−;

CC = �3��C2� �k̆x
2 − k̆y

2� − 2i�C3� k̆xk̆y�;
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A = �2��2k̆z
2 − k̆�

2�; B = 2�3�3�k̆zk̆−;

C = �3��2��k̆x
2 − k̆y

2� − 2i�3�k̆xk̆y� .

k̆w = ��2/2m0kw with w = x,y,z .

k̆� = k̆x � ik̆y, k̆�
2 = k̆x

2 + k̆y
2.

E8C� , E7C� , E8�, and E7� would, respectively, be the energies
E��8C�, E��7C�, E��8V�, and E��7V� at k=0 if the �� inter-
band spin-orbit coupling were equal to zero.

Furthermore,

�C� = �C −
EP

3
� 2

EG
+

1

EG + �
� +

EP�

3
� 2

E8C−6
+

1

E7C−6
� ,

�1� = �1 −
EP

3EG
−

EPX

3
� 1

E7C−8
+

1

E8C−8
� ,

�2� = �2 −
EP

6EG
+

EPX

6E7C−8
,

�3� = �3 −
EP

6EG
−

EPX

6E7C−8
, �A2�

where EG is the band-gap energy and En−m=E��n�−E��m�.
As quoted in Ref. 11, � j� �j=1,2 ,3� are Luttinger-like

parameters, in which the k ·p interaction inside

�8C ,�7C ,�6 ,�8V ,�7V� has been subtracted. � j are Luttinger
parameters. The same holds for �Cj� . However and for the
sake of simplicity we take �Cj� equal to zero which does not
change any significant result for the spin splitting in the for-
bidden band gap as shown in Ref. 4. In the same way, �C� is
linked to �c with �C=m0 /mC where mC is the conduction
effective mass.
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TABLE II. The basis wave functions of the �14�14� Hamiltonian. These functions are pairs of Kramers
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2 �= � −3

2 �.

�+�= �S↑� �−�= �S↓�
�c 3

2 �= �i�−�1 /2�XC+ iYC�↑�� � 3
2 �= �i�−�1 /2�X+ iY�↑��

�c 1
2 �= �i��2 /3ZC↑−�1 /6�XC+ iYC�↓�� � 1

2 �= �i��2 /3Z↑−�1 /6�X+ iY�↓��
�c −1

2 �= �i��1 /6�XC− iYC�↑+�2 /3ZC↓�� � −1
2 �= �i��1 /6�X− iY�↑+�2 /3Z↓��

�c −3
2 �= �i��1 /2�XC− iYC�↓�� � −3

2 �= �i��1 /2�X− iY�↓��
�c 7

2 �= �i��1 /3ZC↑+�1 /3�XC+ iYC�↓�� � 7
2 �= �i��1 /3Z↑+�1 /3�X+ iY�↓��

�c −7
2 �= �i��1 /3�XC− iYC�↑−�1 /3ZC↓�� � −7

2 �= �i��1 /3�X− iY�↑−�1 /3Z↓��
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