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We studied the energy levels of graphene-based Andreev billiards consisting of a superconductor region on
top of a monolayer graphene sheet. For the case of Andreev retroreflection we show that the graphene-based
Andreev billiard can be mapped to the normal-metal-superconducting billiards with the same geometry. We
also derived a semiclassical quantization rule in graphene-based Andreev billiards. The exact and the semi-
classically obtained spectrum agree very well both for the case of Andreev retroreflection and specular Andreev
reflection.
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In the well-known Andreev billiards consisting of a nor-
mal metal surrounded by a superconductor �NS� the dynam-
ics of the quasiparticles is determined by the so-called An-
dreev retroreflection.1 The spectrum of Andreev billiards is
described by the Bogoliubov-de Gennes �BdG� equation and
has been long studied2,3 �for review of the topic see, e.g.,
Ref. 4�.

The electronic properties of graphene can be described
accurately by massless Dirac fermion type excitations using
two-dimensional relativistic quantum mechanics5–7 and also
by semiclassical methods8 �for reviews on the physics of
graphene see, e.g., Ref. 9�. In the seminal paper by
Beenakker10 it has been shown that when monolayer
graphene is interfaced with a superconductor then two types
of Andreev reflection are possible depending on the ratio of
the Fermi energy EF

�G� and the electron energy E. For EF
�G�

���G��E the Andreev retroreflection is dominant as in NS
billiards �here ��G� is the superconducting pair potential in-
duced in the graphene�. In contrast, when EF

�G��E���G�, a
different type of scattering process takes place at the
graphene-superconductor interface, which is named specular
Andreev reflection. The specular Andreev reflection does not
exist in NS systems and it is a prominent consequence of
the peculiar band structure of the monolayer graphene.
Beenakker’s paper10 has been followed by numerous works11

�for a review on Andreev reflection in graphene see Ref. 12�.
Note that although graphene itself is not superconducting,
due to the proximity effect a superconductor can induce non-
zero pair potential in the graphene as well. Indeed, supercur-
rent has been observed experimentally13 between two super-
conducting electrodes on top of a graphene monolayer.
Moreover, experimental results of Ref. 14 attest to the
ballistic propagation of quasiparticles in graphene-
superconductor hybrid structures.

The most widely studied theoretical model of Andreev
billiards is that of a two-dimensional electron gas �2DEG� in
a quantum dot contacted by a bulk superconductor �see e.g.,
Ref. 4�. One of the major obstacles that has thwarted so far
the direct comparison of the theoretical predictions and ex-
perimental results is the inevitably existing tunnel barrier and
mismatch of the Fermi velocities and effective masses be-
tween the 2DEG and the superconductor �often referred to as

“nonideal NS interface” in the literature�. This mismatch
causes the probability of normal reflection to increase at the
NS interface while the probability of the Andreev reflection
diminishes significantly. The situation when both normal and
Andreev reflection take place at the NS interface is theoreti-
cally more difficult to address. In graphene however, when
the superconductivity is induced by external superconducting
contacts, such mismatch may not exist so that the graphene-
superconductor systems may experimentally be ideal to
study most of the theoretical predictions made assuming per-
fect �i.e., with no mismatch� NS interfaces.

In this paper we consider graphene Andreev billiards
�GABs�. In particular, we assume that in a closed region D
of the graphene sheet the superconducting pair potential is
zero and outside this region it takes on a constant value ��G�.
We demonstrate, in one hand, that when the retroreflection is
the dominant scattering process at the normal graphene-
superconductor interface the electronic properties of GABs
can indeed be obtained in semiclassical approximation from
the known results for NS billiards with ideal NS interface.
On the other hand, we also calculate the exact spectrum of a
GAB for the case when the dominant scattering process is
the specular Andreev reflection and we show that it can also
be understood using semiclassical considerations.

To see the relation between the energy spectrum of NS
billiards and GABs note the following: the dispersion rela-
tion of the quasiparticles in the normal ���N�=0� region of
the NS billiards for energies E���N� can be linearized
around the Fermi energy EF

�N� as E�p�= �vF
�N��p− pF

�N��,
where the sign +�−� refers to the electronlike �holelike� qua-
siparticles. Here p is the magnitude of the momentum, pF

�N�

=�2mEF
�N� is the Fermi momentum, and vF

�N�= pF
�N� /m is the

Fermi velocity. This linearization is allowed if we are inter-
ested in the properties of the bound states �E���N�� of NS
billiards because for typical NS billiards the dimensionless
parameter ��N� /EF

�N��1 is much less than unity. The same
linear dispersion can be found for electronlike �holelike�
quasiparticles in the ��G�=0 region for GABs in the retrore-
flection regime but with Fermi velocity vF

�G� and Fermi mo-
mentum pF

�G�. This simple observation is the core of the inti-
mate relation between the graphene-based and normal-metal
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Andreev billiards. As long as the effect of the superconductor
in semiclassical approximation can be described by the same
way for GABs as for the NS billiards, i.e., by a simple phase
shift −arccos�E /��N,G��, one can expect that when the An-
dreev retroreflection is the dominant scattering process the
gross features of the energy spectrum of a GAB will closely
resemble the spectrum of a NS billiard having the same ge-
ometry. This happens because the quasiparticles have linear
dispersion in both cases. Moreover, if the Fermi velocities
and Fermi momentums are the same, i.e., vF=�kF

�N� /m
=EF

�G� / ��kF
�G�� and pF=�2mEF

�N�=EF
�G� /vF, the quasiparticles

in the ��N,G�=0 region will have the same dispersion relation
for both NS billiards and GABs. Note that if pF and vF are
the same then EF

�N�=EF
�G� /2.

To demonstrate the idea discussed above we consider a
simple, circular shape GAB. It consists of normal graphene
region of radius R surrounded by superconducting graphene.
Owing to the valley degeneracy of the Hamiltonian the full
BdG equation for graphene-superconductor systems de-
couples to two four by four, reduced Hamiltonians that are
related to each other by a unitary transformation �see, e.g.,
Ref. 10�. We now take the one corresponding to the valley K.
Due to the circular symmetry of the setup the reduced
Hamiltonian is separable in polar coordinates and therefore
the eigenfunctions can be labeled by an integer number m
corresponding to the angular-momentum quantum number.
One can show that the ansatz for the wave functions satisfy-
ing the Schrödinger equation for the reduced Hamiltonian in
the region where ��G�=0, i.e., for r�R with energy E are
�m

�N��r ,	�= �c+
�N�
+

�N��r ,	�+c−
�N�
−

�N��r ,	��eim	, where 
+
�N�

�r ,	�= �−iJm�k+r� ,Jm+1�k+r�ei	 ,0 ,0�T and 
−
�N��r ,	�= �0,0 ,

−iJm�k−r� ,Jm+1�k−r�ei	�T are the two eigenstates, and k�

= �EF
�G��E� / ��vF�. In the superconducting region r�R

where the pair potential is ��G� the wave function has the
form �m

�S��r ,	�= �c+
�S�
+

�S��r ,	�+c−
�S�
−

�S��r ,	��eim	, where

+

�S��r ,	�= �u+
�S� ,v+

�S��T, u+
�S�=�+v+

�S�, and v+
�S�= �−iHm

�1�

�q+r� ,Hm+1
�1� �q+r�ei	�T. The eigenstate 
−

�S��r ,	� is obtained by
the replacement +→− and the first kind of Hankel functions
to the second one and q�= �EF

�G�� i����G��2−E2� / ��vF�,
while ��=e�i arccos�E/��G��. Here Jm�x� and Hm

�1,2��x� are the
Bessel and the Hankel functions.15 To ensure that the wave
function of the bound states is normalizable, the wave func-
tion in the superconducting region must go to zero as r
→�. This condition can be satisfied by choosing the appro-
priate Hankel function in the eigenstates 
�

�S��r ,	�.15 Finally,
the unknown coefficients c�

�N� and c�
�S� can be determined

from the boundary conditions �m
�N��r=R ,	�=�m

�S��r=R ,	�
valid for any 	. Thus, the condition for nontrivial solutions
of the coefficients c�

�N� and c�
�S� can be found from the zeros

of a four by four determinant. After some algebra we obtain
a quite simple secular equation for the energy levels with
fixed angular-momentum index m

Im��+DGS
�+��m,E�DGS

�−��m,E�� = 0, �1a�

DGS
�+��m,E� = � Jm�k+R� Hm

�1��q+R�
Jm+1�k+R� Hm+1

�1� �q+R�
� , �1b�

and DGS
�−��m ,E�= �DGS

�+��m ,−E���, and Im� . � and � stand for
the imaginary part and the complex conjugation, respec-

tively. Note that Hm
�2��q−R�= �Hm

�1��q+R���. The solutions of
Eq. �1� for m=0, �1, �2, . . ., are the exact energy levels of
a circular shape GAB. Note that Eq. �1� is valid both in the
case of Andreev retroreflection �EF

�G����G��E� and for
specular Andreev reflection �EF

�G��E���G��. One can also
notice that the eigenenergies depend only on two dimension-
less parameters: EF

�G� /��G� and c
�G� /R, where c

�G�

=�vF
�G� /��G� is the coherence length in the superconducting

graphene.
We now compare the density of states �DOS� ��E�

=	nm��E−Enm� of a circular shape GAB and of the corre-
sponding NS billiard. For details of the calculation see a
similar calculation for NS billiards in Ref. 16. It is more
convenient to plot the integrated DOS, namely, the so-called
step function N�E�=	nm��E−Enm�, where ��x� is the
Heaviside function. Our numerical results for EF

�N� /��N�

=EF
�G� / �2��G�� are shown in Fig. 1. One can see that the step

functions for the considered NS billiard and GAB are indeed
very similar.

It is also clear from Fig. 1 that the DOS ��E�
=dN�E� /dE shows singularities at certain energies En

�sing�.
Singularities of this kind arise in the case of NS billiards as
well �see e.g., Ref. 16 and we shall discuss their origin
below�.

We now demonstrate on the example of circular GABs
that at semiclassical level the results for NS billiards and
GABs can be mapped into each other by choosing the pa-
rameters appropriately. In numerous works3,17–21 it was
shown that for NS billiards in semiclassical approximation
the step function reads

NBS�E� = M	
n=0

�

�1 − F�sn�E��� , �2a�

sn�E� =
n� + arccos�E/��N��

E/��N� c
�N�. �2b�

Here M is the number of open channels in the normal region,
c

�N�=�vF
�N� /��N� is the coherence length in the NS system,

FIG. 1. �Color online� The exact step function N�E� for circular
shape GAB �solid line� and NS �circles� billiards in the case of
Andreev retroreflection. The parameters for GAB and NS billiard
are EF

�G� /��G�=10 and EF
�N� /��N�=5, respectively, and c

�G� /R=0.12
for both cases. The trivial factor 2 owing to the valley degeneracy in
graphene is not included.
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F�s�=
0
s P�s��ds� is the integrated path-length distribution

and P�s� is the classical probability that an electron entering
the billiard at the NS interface returns to the interface after a
path of length s. The path-length distribution P�s� is normal-
ized to one, i.e., 
0

�P�s�ds=1 and one can see that it is a
purely geometry-dependent function. In particular, for circu-
lar billiards it was found that P�s�= 1

�2R�2
s

�1−�s/2R�2 ��2R−s�
and M =2�kF

�N�R.16 Finally, the quantity sn�E� in Eq. �2b�
depends on the quantization condition for the periodic mo-
tion of the electron-hole quasiparticles.17,20 As it has been
pointed out above, in good approximation the quasiparticles
have linear dispersion in the nonsuperconducting region for
both GABs and NS billiards. If the effect of the supercon-
ductor in GABs can be taken into account by a simple phase
shift −arccos�E /��G��,12 expressions of the type of Eq. �2�
can be used to calculate the semiclassical approximation of
N�E� for GABs as well.

Moreover, employing the same steps as in Ref. 16 from
Eq. �1� one can derive the following semiclassical quantiza-
tion rule for circular shape GABs

S+�E� − �rS−�E� − 2 arccos
E

��G� = 2��n +
1 − �r

4
� ,

�3a�

S��E� = 2��k�R�2 − m2 − 2marccos
m

k�R
, �3b�

where �r=1,−1 for Andreev retroreflection and specular An-
dreev reflection, respectively, and n is a non-negative integer.
Functions S��E� are the radial action �in units of �� of elec-
trons and holes22 and the term −2 arccos E /��G� in Eq. �3a�
accounts for the two Andreev reflections in one period of the
orbit, while the second term in the left-hand side of Eq. �3a�
results from the sum and the difference of the Maslov indices
� /4 of the electronlike and holelike particles for �r=1 and
�r=−1, respectively.

Formally, in the case of Andreev retroreflection the quan-
tization condition shown in Eq. �3� is the same as for a

circular NS billiard16 but the meaning of k� is different for
the two systems �for NS billiards see e.g., Ref. 16�. However,
from Eq. �3� it is easy to find that if R�N� /c

�N�=R�G� /c
�G� and

EF
�N� /��N�=EF

�G� / �2��G�� then to first order in E /��N,G� the
quantization condition for circular GABs and NS billiards is
the same and the step function N�E� is given by Eq. �2� with
coherence length c

�G�. The exact and semiclassically calcu-
lated N�E� are plotted in Fig. 2. The agreement between the
two results is excellent.

Moreover, from Eq. �2�, we find that the positions of the
singularities in the DOS are given by En

�sing� /��G�

= �n+1 /2�� / �1+2R /c
�G�� valid for such integers n that

En
�sing����G� holds. Note that the position En

�sing� /��G� of the
singularities depends only on R /c

�G� but not on EF
�G� /��G�.

Therefore even if EF
�N� /��N��EF

�G� / �2��G�� but R�N� /c
�N�

=R�G� /c
�G�, the singularities in the DOS for a circular GAB

and NS billiard would appear at the same energies.
Next we consider the case of specular Andreev reflection

in graphene Andreev billiards. Again, the solutions of Eqs.
�1� and �3� give the exact and the semiclassically calculated
energy levels of circular shape GABs. In Fig. 3 the calcu-
lated step function N�E� is plotted and as one can see it is
completely different from that obtained for the case of An-
dreev retroreflection shown in Fig. 1. Moreover, the quantum
results in Fig. 3 again show very good agreement with the
semiclassical ones that can be obtained from Eq. �3�. This
implies that in the case of specular Andreev reflection the
DOS depends linearly on the energy for E→0. Namely, it
can be shown from Eq. �3� that in this limit the DOS in
semiclassical approximation �without the valley degeneracy�
is given by ��E�=8 EA

�3��vF�2 , where A is the area of the bil-
liard. It is interesting to note therefore that �apart from the
valley degeneracy� ��E� is bigger by a factor of 16 /�2 than
in the case of neutrino billiards.23

In summary, we calculated the energy levels of graphene-
based Andreev billiards. We showed that for energy levels
corresponding to the case of Andreev retroreflection
the graphene-based Andreev billiards in a very good

FIG. 2. �Color online� The exact �solid line� and the semiclas-
sically �circles� calculated step function N�E� obtained from Eqs.
�1� and �2�, respectively, for the case of Andreev retroreflection. The
parameters are the same as in Fig. 1.

FIG. 3. �Color online� The exact �solid line� and the semiclas-
sically �circles� calculated step function N�E� obtained from Eqs.
�1� and �3�, respectively, for specular Andreev reflection. The pa-
rameters are EF

�G�=0 and c
�G� /R=0.03.
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approximation can be mapped to the normal-metal-
superconducting billiards with the same geometry. We also
derived a semiclassical quantization rule in graphene-based
Andreev billiards and the spectrum obtained from this rule
agrees very well with that obtained from the exact quantum
calculations for circular shape of GS billiards.
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