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We calculate the isotope coefficients � and �� for the superconducting critical temperature Tc and the
pseudogap temperature T� in a mean-field treatment of the t-J model including phonons. The pseudogap phase
is identified with the d-charge-density wave �d-CDW� phase in this model. Using the small electron-phonon
coupling constant �d�0.02 obtained previously in local-density approximation calculations in YBa2Cu3O7, ��

is negative but negligibly small, whereas � increases from about 0.03 at optimal doping to values around 1 at
small dopings, in agreement with the general trend observed in many cuprates. Using a simple phase fluctua-
tion model where the d-CDW has only short-range correlations, it is shown that the large increase of � at low
dopings is rather universal and does not depend on the existence of sharp peaks in the density of states in the
pseudogap state or on specific values of the phonon cutoff. Rather, it is caused by the large depletion of spectral
weight at low frequencies by the d-CDW and thus should also occur in other realizations of the pseudogap.
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I. INTRODUCTION

An open and rather controversially discussed topic in
high-Tc superconductivity is the role played by phonons for
the low-energy electronic properties and, in particular, the
high transition temperatures Tc. A direct way to show the
involvement of the lattice in electronic properties is the study
of the isotope effect on Tc.

1 Experimentally, the correspond-
ing isotope coefficient � is very small in high-Tc cuprates
near optimal doping but increases strongly in the underdoped
region attaining values being comparable or even larger than
those in conventional phonon-mediated superconductors. It
is often argued that these large observed isotope effects in
the underdoped region give direct evidence for a large
electron-phonon coupling in the cuprates.1–3 It even has been
suggested that it is so large that Eliashberg theory breaks
down and that nonadiabatic and polaronic features play an
important role in these systems.4–7 Other approaches have
suggested that large isotope effects may occur in the pres-
ence of a pseudogap.8,9

Below we show that the essential features of the isotope
experiments on Tc can be explained within a mean-field ap-
proximation of the t-J model10–13 using very small values for
the electron-phonon coupling. The pure t-J model exhibits in
mean-field approximation a competition of d-wave supercon-
ductivity and a d-charge-density wave �d-CDW� with transi-
tion temperatures Tc and T�, respectively. The observed
pseudogap can be identified with the d-CDW phase in this
model.12,14 Whereas many experiments support the idea of
two competing phases,15–21 the nature of the additional phase
remains unclear and many proposals besides of the d-CDW
have been considered.22 Experiments suggest that its order
parameter has d-wave symmetry like that of the supercon-
ducting phase. This favors an unconventional charge or spin-
density wave state with internal d-wave symmetry rather
than a conventional one with �anisotropic� s-wave symmetry.
The t-J model yields at large N �N is the number of spin
components� such a d-CDW but its relevance for the physi-

cal case N=2, for instance in form of a phase without long-
range but strong d-wave short-range order, remains
unclear.23–25

In Sec. II, we introduce our model, its phase diagram, and
numerical results for the competing superconducting and
CDW order parameters and the corresponding transition tem-
peratures Tc and T�. We then add phonons assuming always
that the electron-phonon interaction is very small so that they
can be treated in the weak-coupling approximation. Explicit
formulas for the isotope coefficients � and �� related to Tc
and T� will be given. In Sec. III, we present numerical results
for the doping dependences of � and ��. In Sec. IV, we
extend our treatment by including off-diagonal fluctuations
in the d-CDW state using the method of Refs. 26–28. In this
way, the pseudogap phase is treated more realistically be-
cause the long-range order is removed and self-energy ef-
fects are included. Our conclusions are found in Sec. V.

II. THEORETICAL FRAMEWORK

We consider the t-J model29 with the Hamiltonian H,

H = − t �
�i,j�,�

ci�
† cj� − t� �

�i, j��,�

ci�
† cj�

+
J

2 �
�i,j�

SiS j −
1

4
�J − 2VC��

�i,j�
ninj , �1�

where ci�
† ,ci� are creation and annihilation operators, respec-

tively, for electrons at site i and spin projection � subject to
the condition that double occupancies of sites are excluded.
The sums include nearest-neighbor �i , j� and next-nearest-
neighbor �i , j�� sites on a two-dimensional �2D� square lat-
tice and the corresponding hopping elements are t and t�,
respectively. Si and ni are spin and site-occupation operators,
J the Heisenberg coupling constant, and VC a Coulomb in-
teraction between nearest neighbors.
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One way to obtain a mean-field approximation for H is to
introduce N spin components in Eq. �1�, scale the coupling
constants as t→2t /N, t�→2t� /N, J→2J /N, etc., and to con-
sider the large N limit.30 As a result, t and t� are renormalized
yielding the quasiparticle dispersion ��k�. At the same time,
the fermionic operators can be treated as usual creation and
annihilation operators. Explicitly, one obtains ��k�=−2��t
+rJ��cos�kx�+cos�ky��−4t�� cos�kx�cos�ky�−�, with r
=1 /Nc�qcos�qx�f���q��, where f is the Fermi function, � the
doping away from half filling, and � a renormalized chemi-
cal potential. Here and in the following, we use the lattice
constant a of the square lattice as length unit. As previously
discussed,12,32 the relevant order parameters for our mean-
field treatment of the t-J model are a CDW order parameter

��k� = −
i

Nc
�
q

J�k − q��cq↑
† cq+Q↑� , �2�

with J�k�=2J�cos kx+cos ky� and a superconducting �SC� or-
der parameter

	�k� =
1

Nc
�
q

�J�k − q� − VC�k − q���cq↑c−q↓� , �3�

where Nc is the number of primitive cells, �¯ � denotes an
expectation value, Q= �
 ,
� is the wave vector of the
d-CDW, and VC�k�=2VC�cos kx+cos ky�. The Coulomb in-
teraction VC�k� between nearest neighbors has been intro-
duced to prevent an instability of the d-CDW with respect to
phase separation in some regions of phase space.12 From the
self-consistency condition for the self-energy, one obtains
coupled equations for �, 	, the chemical potential, and a
renormalization contribution r to the band dispersion due to
J.12,32 Their most stable solutions have d-wave symmetries in
the interesting doping regions, i.e., ��k�=���k� and 	�k�
=	��k�, with ��k�= �cos kx−cos ky� /2.

A similar mean-field approximation as above is obtained
by using a slave-boson representation for H in Eq. �1�, en-
forcing the constraint on the average, using usual mean-field
decouplings for the third and fourth terms in H and dropping
the antiferromagnetic order parameter. The above expres-
sions for ��k� as well as Eq. �3� are in this way exactly
reproduced, Eq. �2�, with J /2+VC instead of J.

Figure 1 shows the doping dependence of � and 	 at zero
temperature, calculated fully self-consistently for t� / t=
−0.35, J / t=0.3, and VC /J=0.2. In the overdoped region, �
��c�0.14 � is zero. In the underdoped region, ��c � is
nonzero and coexists with 	. 	 shows a maximum near �c
and decays approximately linearly in � toward lower and
higher dopings. The two order parameters compete with each
other which causes the strong decay of 	 with decreasing
doping in the underdoped region. Also shown in Fig. 1 are T�

�dash-dotted line� and Tc �dashed line� where � and 	, re-
spectively, vanish. T� shows near �c a reentrant behavior
which has a simple explanation: the piece of the T� line
above the Tc curve is unaffected by superconductivity. Dis-
carding superconductivity, the T� line would continue to the
right, decreasing slowly and reaching the x axis only at
around ��0.25. Taking superconductivity into account, T�

and also � are suppressed by the presence of a finite 	, i.e.,

below the Tc curve. Since 	 increases rapidly with decreas-
ing temperature, T� even bends back due to the strong repul-
sion and reaches the critical doping �c at zero temperature
where � becomes nonzero. The re-entrant behavior thus re-
flects the strong competition of the CDW and SC order pa-
rameters. The occurrence of a large coexistence region of 	
and �, which extends down to �=0, is plausible because the
Fermi surface consists in the d-CDW state of arcs around the
nodal direction32 which are unstable against the formation of
a BCS gap 	.

In order to discuss the isotope effect, we consider a
phonon-induced electronic density-density coupling between
nearest neighbors and on the same atom. Approximating its
frequency dependence by a rectangular form, as is often done
in approximate solutions of the Eliashberg equation,33 this
effective electron-electron interaction has in the d-wave
channel the form

v�q,i�n� = − 2Vnd�q,i�n�nd�− q,− i�n� , �4�

nd�q,i�n� =
1

Nc
�

k,�=1,2
��k��nck+q�

† ck�. �5�

Similarly, we have in the isotropic s-wave channel

w�q,i�n� = −
W

2
n�q,i�n�n�− q,− i�n� , �6�

n�q,i�n� =
1

Nc
�

k,�=1,2
�nck+q�

† ck�, �7�

where V and W are electron-phonon �EP� coupling constants
in the d- and s-wave channels, respectively, �n the cutoff
function ���D− 	�n	�, �n the bosonic Matsubara frequency
�n=2n
T, and �D the phonon cutoff frequency. nd�q , i�n�
and n�q , i�n� are electronic density operators with d- and
s-wave symmetries, respectively. Effects due to a small EP
interaction can be taken into account in the curves of Fig. 1
by adding the electronic self-energy due to v�q , i�n� and
w�q , i�n� in the form of a Fock diagram. The resulting self-
consistent equations lead to an equation for the renormaliza-
tion function Z�k , i�n� due to W. At T=Tc, this equation can
be solved directly yielding Z�k , i�n�
Z=1+�s, where �s is
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FIG. 1. �Color online� Zero-temperature order parameters � and
	 and the critical temperatures T� and Tc as a function of doping.
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the product of W and the electronic density at the Fermi
energy and T=Tc, i.e., it refers in general to the d-CDW
state. A second equation is obtained which determines the SC
order parameter 	�k , i�n�,

	�k,i�n� = − 4J̃��k�
T

Nc
�
k�n�

��k��g12�k�,i�n��

− 4V��k��n
T

Nc
�
k�n�

��k���n�g12�k�,i�n�� ,

�8�

where J̃ is equal to J−VC. g12 is the element �1,2� of the 4
�4 matrix Green’s function g. Its inverse g−1�k , i�n� is
given by

�
i�nZ − ��k� − 	�k,i�n� − i��k,i�n� 0

− 	�k,i�n� i�nZ + ��k� 0 i��k,i�n�
i��k,i�n� 0 i�nZ − ��k� − 	�k,i�n�

0 − i��k,i�n� − 	�k,i�n� i�nZ + ��k�
� ,

�9�

with the abbreviation k=k−Q. ��k , i�n� is the d-CDW or-
der parameter renormalized by the phonons and given by

i��k,i�n� = − 4J��k�
T

Nc
�
k�n�

��k��g13�k�,i�n��

+ 2V��k��n
T

Nc
�
k�n�

�n���k��g13�k�,i�n�� ,

�10�

where g13 is the element �1,3� of the Green’s function matrix
g.

For the calculation of Tc, it is sufficient to linearize the
right-hand side of Eq. �8� with respect to 	�k , i�n�. Further-
more, we may neglect the phonon renormalization for � in
this case. Below, we will be interested only in a small EP
constant V yielding also only a small renormalization. More-
over, as will be shown below, this small renormalization is
practically independent of the ionic mass M and thus may be
neglected in calculating the isotope effect on Tc. We there-
fore have solved Eq. �10� using only the first term on the
right-hand side and use the solution in Eq. �9� to obtain g12.
Equation �8� represents an integral equation with two sepa-
rable kernels which can easily be solved. Writing Eq. �8� as a
condition for Tc, we find

�1 + F11��1 + F22� − F12
2 = 0, �11�

with

F11 = − 2J̃
0

�

d�
Nd�Z��

Z�
tanh� �

2Tc
� , �12�

F12 = − 2�VJ̃
0

�

d�
Nd�Z��

Z�

2




�I���1

2
+

i�

2
Tc
� − �� �D

2
Tc
+ 1 +

i�

2
Tc
�� ,

�13�

and F22=�V / J̃F12. � is the digamma function and I denotes
the imaginary part. Nd��� is given by

Nd��� =
2�


Nc
�
k

�2�k�I�G�k,� − i��� , �14�

where � is a positive infinitesimal quantity,

G�k,z� =
z2 − �2�k� − �2�k�

�z2 − �1
2�k���z2 − �2

2�k��
, �15�

and

�1,2 =
��k� + ��k�

2
�

1

2
����k� − ��k��2 + 4�2�k� . �16�

Nd��� represents a weighted density of electronic states at Tc
and is shown in Fig. 2 for two different dopings. It consists
of a sharp peak near the energy � due to excitations across
the d-CDW gap and a structure at lower energies related to
the van Hove singularity. It is convenient to characterize V
by a dimensionless EP coupling constant

�d = VNd�0� . �17�

According to the above equations, phonons affect Tc in a
twofold way, namely, via V=�d /Nd�0� and via Z=1+�s. �d
and �s characterize the phonon-induced pairing interaction of
d-wave and s-wave symmetries, respectively. Putting �s to
zero V increases Tc. To see this, we rewrite Eq. �11� in the

form 1+ F̂11=0. F̂11 is given by Eq. �12� if one makes there

the change J̃→ J̃ / �1−F12
2 / �1+F22��. This means that V in-

creases J̃ and thus increases Tc. On the other hand, if we put

V=0, Eq. �11� reduces to 1+ F̂11=0 with F̂11 given by Eq.

�12� modified by J̃→ J̃ /Z and Tc→TcZ. Each of these two
changes diminishes Tc. Thus phonons may lower or may
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FIG. 2. Weighted density Nd��� of electronic states for two
dopings �.
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increase Tc depending which of the above two effects is
larger. Numerical calculations indicate that generically, the
second effect dominates and that Tc decreases if one couples
to phonons.34 Most important for us is, however, the follow-
ing observation. Our aim is not to determine the change in Tc
when the electron-phonon coupling is turned on but when the
ionic mass M is changed. It is well known that �s is inde-
pendent of the ionic mass M, thus there will be no change in
Z by isotope substitutions and � will always be positive. For
small EP couplings, we may even put Z=1 and keep only the
linear term in V in the calculation of the isotope coefficient
�=−d ln Tc /d ln M. From Eq. �11�, one finds for � in this
limit

� =
�D

Tc
F12� �F12

��D
�� �F11

�Tc
�−1

, �18�

where the derivatives in Eq. �18� are to be taken at the Tc
without phonons and we also assumed �D�M−0.5.

III. RESULTS FOR THE ISOTOPE COEFFICIENTS

In deriving the above formulas, we assumed that the
phonon-induced interaction V affects only 	 but not � and
thus also not T�. To check this approximation, we have cal-
culated the isotope coefficient �� related to T� and defined
by ��=−d ln T� /d ln M. The calculation of �� is very similar
to that of �.

Numerical values for �� as a function of doping through-
out the underdoped regime are given in Table I for V / t
=0.04 and �D / t=0.1. All values for �� are negative, i.e., ��

shows an inverse isotope effect. However, this isotope effect
is 2 orders of magnitude smaller than the usual BCS value of
1/2 and thus tiny. Furthermore, the absolute value of �� de-
creases with decreasing doping quite in contrast to � as will
be shown below. The negligible isotope effect on T� which
we found is in agreement with the experiment8 though there
exist also data which have been interpreted in terms of a
large isotope coefficient ��.35 Strictly speaking, in our calcu-
lation of �, the renormalized d-CDW order parameter at T
=Tc enters the density of states function Nd���, Eq. �12�.
Since we have shown that T� is independent of the ionic
mass M, we may conclude that the d-CDW order parameter
at T=Tc has also only a negligible isotope effect justifying
the above procedure to calculate �.

Figure 3 shows � as a function of doping for V / t=0.04
and two phonon cutoffs �D corresponding to the buckling
and half-breathing phonon modes in YBa2Cu3O7.36 In the
overdoped region, � is nearly independent of �D and � and
about 0.03, i.e., very small. In the underdoped region, �
monotonically increases with decreasing � and reaches ap-
preciable values, for instance, 1/4 at a Tc which is only re-
duced by a factor of 2 from its maximum value.

To understand the increase of � at low dopings better, one
can rewrite Eq. �18� approximately as �Nd���� /Nd�0��−F22�
using a low Tc approximation in the denominator. �Nd���� is
an average of Nd��� around the phonon frequency �D over
an energy interval of about �D. This interval is determined
by the functions � in Eq. �13� and caused by the sharp cutoff
in Matsubara frequencies. According to Fig. 2, Nd�0� de-
creases rapidly with decreasing �, reflecting the fact that
Nd�0� is due to the arcs left over from the Fermi line after
formation of the d-CDW gap. The length of the arcs, how-
ever, decreases strongly with decreasing �. From Fig. 2, it is
clear that for most phonon frequencies, the large spectral
weight near the d-CDW gap will substantially contribute to
this average. As a result, �Nd���� /Nd�0��1 and, since −F22
is a slowly increasing function with decreasing �, a large
enhancement of � results at low dopings. A sharp cutoff for
real frequencies, usually used in BCS theory, would yield
�Nd����=Nd��D�. Consequently, � would exhibit strong
resonances for �D�� or, more generally, if �D is near well-
pronounced peaks in Nd���. Implementing the phonon cutoff
in terms of Matsubara frequencies, as we did, corresponds to
a rather soft cutoff in real frequencies. Such a procedure is
closer to an exact solution of Eliashberg equations, yields a
finite phonon contribution to Z, and is also free of the above
unphysical resonances in � if �D and the gap energy � are
of similar magnitude. Another advantage of our procedure is
that � depends only weakly on �D, also for ��c. If there is
no pseudogap, Nd��� is rather constant in the phonon energy
region which means that the above density ratio
�Nd���� /Nd�0� is one and � very small for all dopings.

Qualitatively, the curves for � in Fig. 3 are similar to
those in Refs. 8 and 9 where phenomenological pseudogaps
were used and the problem of resonances was avoided either
by considering only the limit �D�� or by a non-states-
conserving pseudogap. This as well as the above approxi-

TABLE I. Isotope coefficient �� for different dopings �.

� 0.028 0.048 0.064 0.090 0.115 0.139 0.164
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FIG. 3. �Color online� Isotope coefficient � as a function of
doping for two phonon cutoffs �D. Also shown are the curves for �
and Tc from Fig. 1
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mate expression for � in terms of the density ratio
�Nd���� /Nd�0� suggests that the above curves for � are
rather independent of the specific features of our model
�d-CDW with long-range order� but rather generic for under-
doped cuprates with a pseudogap.

Very remarkable in Fig. 3 is the fact that the tiny value of
0.04 for the effective EP coupling V / t is able to produce
large values for � comparable to those seen in experiment in
the underdoped region. The local-density approximation
�LDA� yields �d�0.022 in YBa2Cu3O7,37 which is roughly
1 order of magnitude smaller than �s.

38,39 �For a different
view on the magnitude of the EP coupling constants in cu-
prates, see Ref. 40�. Using the LDA value Nd�0�=1.108 /eV
from Ref. 37, the relation Eq. �17�, and t=0.5 eV, we get in
the LDA V / t�0.04 which is the value used in our calcula-
tion. This shows that the large experimental values for � in
the underdoped region do not contradict, at least in our com-
peting model, the small LDA values for the EP coupling. The
case of overdoped samples is presently less clear because of
conflicting experimental results.1,41 An isotope coefficient �
which is small throughout the overdoped region41 would
agree with our Fig. 3.

IV. EXTENSION TO FINITE CORRELATION LENGTHS
OF THE d-CDW

In the previous sections, our employed mean-field treat-
ment yielded a d-CDW with long-range order and excitations
with infinite long lifetimes. Such idealizations are certainly
not realized in the cuprates and one may wonder to what
degree our previous results depend on them. Generally
speaking, we do not expect drastic modifications because the
strong increase of � with decreasing doping was due to the
rearrangement of spectral weight due to the d-CDW gap.
This shift of spectral weight should not be seriously affected
by fluctuations or the loss of long-range order as long as the
correlation length is sufficiently large. In this section, we will
investigate this expectation on a more quantitative level. To
this end, we will employ a model26–28 which allows treating
exactly a certain class of semiclassical fluctuation of the off-
diagonal order parameter.

First we consider only the d-CDW part of g−1, i.e., the
first and third rows and columns of Eq. �9� where we may
put Z=1 considering again the weak-coupling case. Trans-
forming the part induced by the variation of the order param-
eter into r space, we get

gCDW
−1 �k − i � ,i�n� = �i�n − ��k − i�� − i��k��0ei�

i��k��0e−i� i�n − ��k − i��
� ,

�19�

with �=px+� and k=k−Q. p is a random variable with
Cartesian components distributed according to a Lorentzian.
� is a random phase which will not enter our final expres-
sions and thus its distribution function has not to be speci-
fied. We apply now the unitary transformation

U1�x� = ei��3/2, �20�

to Eq. �19�, where �3 is a Pauli matrix. After some algebra,
we find

g̃ CDW
−1 �k − i � ,i�n� = U1

†�x�gCDW
−1 �k − i � ,i�n�U1�x�

= �i�n − ��k� + �1 − i��k��0

i��k��0 i�n − ��k� + �2
� ,

�21�

with the abbreviations �1=v�k�p /2 and �2=−v�k�p /2.
vx,y�k� are given by ���k� /�kx,y. In deriving Eq. �21�, we also
expanded ��k− i�� up to first order in � assuming that the
changes in one-particle energies induced by the variation of
the order parameter vary slowly in space. To simplify the
following, we will take �1=�2=� which holds exactly for the
case t�=0.

The matrix in Eq. �21� can be diagonalized by a second
unitary transformation U2 yielding

U2
†�k�g̃ CDW

−1 �k,i�n�U2�k�

= �i�n − �1�k� + � 0

0 i�n − �2�k� + �
� , �22�

with the eigenvalues �1,2�k� of the unperturbed d-CDW,
given by Eq. �16�. Taking also superconductivity into ac-
count, we note that the Heisenberg interaction is invariant
under the gauge transformation U1. Applying the second uni-
tary transformation U2 to the Heisenberg interaction and us-
ing the BCS factorization, the transformed matrix g−1 splits
into two 2�2 matrices and the resulting gap equation can
easily be calculated. Adding also phonons, one finds that
Eqs. �11�–�13� still hold if the density Nd��� of Eq. �14� is
replaced by the expression

�


Nc
�
k,�

��k�2I
1

�� − i� + ��2 − ��
2�k�

. �23�

Finally, Eqs. �11�–�13� have to be averaged over the distri-
bution function P�p�,

P�p� =
�2


2�px
2 + �2��py

2 + �2�
, �24�

where �=1 /� and � is the correlation length of the off-
diagonal order-parameter fluctuations. According to Eq. �19�,
�0 is the equilibrium d-CDW order parameter after omitting
the factor ��k�. It thus varies in r space with the momentum
Q because it connects electron states with momenta k and k.
The random variable p modulates the equilibrium total mo-
mentum Q of the d-CDW in an additive way and it is dis-
tributed according to a Lorentzian. It is sufficient to apply the
necessary average over p just to the expression of Eq. �23�
yielding

N̄d��� =
�


Nc
�
k,�

��k�2

�I
1

�� − i/�2���	vx�k�	 + 	vy�k�	��2 − ��
2�k�

.

�25�

It is easy to see that the above expression can formally be
obtained from Nd��� if one replaces there the infinitesimal �
by the finite, k-dependent imaginary part �	vx�k�	

LARGE ISOTOPE EFFECT ON Tc IN CUPRATES… PHYSICAL REVIEW B 80, 064519 �2009�

064519-5



+ 	vy�k�	� / �2��. The latter quantity in Eq. �25� is averaged
over the Fermi line in the pure d-CDW state, i.e., for �=1
over the arc around the nodal line and for �=2 over the
remaining small piece near the antinodal point which, how-
ever, vanishes for our two considered dopings. Thus the �
=2 contribution in Eq. �25� is negligibly small. In the �=1
contribution, �	vx�k�	+ 	vy�k�	� / �2�� varies only little along
the arc so we may replace this quantity by its average over
the arc and obtain for �=0.085 the value 1.15vF /�, where
vF�4.6t is the square root of the Fermi-surface average of
v2�k� in the normal state. This allows to describe phase cor-
relations with a finite correlation length � as an inverse life
time effect with energy � / t=1.15vF / �t��.

Figure 4 shows N̄d��� for the two dopings of Fig. 2 and
for the case of a correlation length �=250, corresponding to
an inverse lifetime of about 0.02t. Though such a large cor-
relation length may seem to simulate a rather well-ordered
state, most of the fine structures in Fig. 2 are wiped out by
phase fluctuations. In particular, the two peaks seen in Fig. 2
have merged into one broad and rather structureless peak. At
low frequencies, the changes introduced by phase fluctua-
tions are rather minor. In the inset in Fig. 4, the static value

N̄d�0� is plotted as a function of doping showing the pro-

nounced decrease of N̄d�0� with decreasing � similar as in
the case without phase fluctuations in Fig. 2. This behavior
for the density is rather robust as function of � as long as �
�1 holds.

Figure 5 shows the doping dependence of the isotope co-

efficient � using the same parameter as in Fig. 3 but N̄d���
instead of Nd���. Comparing Figs. 3 and 5 reveals that this
change of densities does hardly affects � so that correspond-
ing curves in these two figures are practically identical. This
demonstrates that the steep increase of � with decreasing
doping is not related or even caused by the sharp peaks
present in Nd��� or by special values for the phonon cutoff
�D. Instead, it is a rather universal property caused by the
large shift of spectral weight toward higher frequency due to
the pseudogap. If the correlation length � is decreased from
large to small values of the order of the lattice constant, the

depletion in the density N̄d�0� at low energies becomes
smaller and smaller. In accordance with the decreasing shift

of spectral weight from low to high energies, the isotope
coefficient � also decreases approaching a similar small
value as in the absence of a pseudogap, i.e., in the overdoped
region.

Figure 5 can qualitatively be understood in a simple way
considering our previously approximate expression
�Nd���� /Nd�0� for �. The numerator is essentially given by
the area under the density curve in Figs. 2 and 4. Its value
thus is independent of the shape of the density curve, i.e.,
whether it has sharp or broad peaks, as long as the area
below the curve is constant. This area is practically the same
in Figs. 2 and 4. On the other hand, the �=0 values of the
densities both decrease strongly and in a similar way with
decreasing �. As a result, � should be of similar magnitude
in both cases and, in particular, show a strong increase to-
ward low dopings in agreement with Fig. 5. The above ap-
proximate expression for � may also explain why the calcu-
lated values for � of Ref. 5 are for our electron-phonon
coupling V much smaller than ours. Their density of state
function at �d=0, plotted in their Fig. 4, is large at �=0
compared to the modulation due to the pseudogap which
implies only a small redistribution of spectral weight by the
pseudogap.

V. CONCLUSIONS

We have shown that a mean-field treatment of the t-J
model which identifies the pseudogap with the gap of a
d-CDW state is able to explain the large isotope effect in
underdoped cuprates. Interestingly, a very small EP coupling
constant V / t�0.04 is sufficient to explain the experimental
data. This value is very close to that calculated for
YBa2Cu3O7 within the LDA. This shows that the large val-
ues for � of order 1 found in the underdoped region are, at
least in our competing model, compatible with the small EP
coupling constants predicted by the LDA. The obtained huge
increase of the isotope coefficient � with decreasing doping
is rather independent of the phonon cutoff frequency �D and
the spectral properties of the excitations in the pseudogap
state. The latter information is obtained by considering a
simple phase fluctuation model where the d-CDW state has
only short-range correlations.
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Most important for the large increase of � with decreasing
doping is in our calculation the large depletion of spectral
weight at low frequencies and its shift to high energies by the
pseudogap. Because of this, we conjecture that our results
are not specific to the employed d-CDW providing the
pseudogap but also hold for other order parameters such as
the antiferromagnet order parameter as long as they lead to a
strong depletion of spectral weight at low frequencies. Our
calculation shows, in particular, that it is not necessary to

assume a large EP interaction in cuprates or extrinsic effects
such as pair breaking due to impurities42,43 to explain the
observed isotope effect of Tc.
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