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Using both the self-consistent Bogoliubov-de Gennes formulation and non-self-consistent T-matrix ap-
proach, we perform a comprehensive investigation of the in-gap bound states induced by a localized single
impurity in iron-based superconductors. We focus on studying signatures associated with the unconventional
sign-changed s-wave pairing symmetry. For a nonmagnetic impurity, we find that there are two in-gap bounds,
symmetric with respect to zero energy, only in the sign-changed s-wave pairing state, not in the sign-
unchanged s-wave state, due to the existence of nontrivial Andreev bound states caused by the sign change. For
a magnetic impurity, we find that due to the breakdown of the local time-reversal symmetry, there exist only
bound-state solutions �with orbital degeneracy� carrying one of the electron-spin polarizations around the
impurity. As increasing the scattering strength, the system undergoes a quantum phase transition �level cross-
ing� from a spin-unpolarized ground state to a spin-polarized one. While the results for the magnetic impurity
are qualitatively similar in both the sign-changed and sign-unchanged s-wave superconducting �SC� states, the
bound states in the first case are more robust and there is no � phase shift of the SC gap near the impurity in
the strong scattering regime.
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I. INTRODUCTION

Iron-based superconductors, a newly discovered family of
superconductors with layered conducting planes,1–5 have
stimulated enormously theoretical and experimental studies
in the condensed-matter community. This is not only because
of the Tc can be as high as 55 K but is also due to its striking
similarity to the high-Tc cuprates. One evident observation is
that the undoped iron-based superconductors, as cuprates,
exhibit antiferromagnetic order �though still metallic� and the
superconductivity occurs only when electrons or holes are
sufficiently doped into the Fe layers. Due to the close prox-
imity to the magnetism, the mechanism of the superconduc-
tivity is expected to be unconventional.6–14

As an important hint to unveil the mechanism of the su-
perconductivity, the determination of an explicit supercon-
ducting �SC� gap structure is indeed essential. The basic
electronic-band structures of the iron-based superconductors
have been predicted by the first-principle calculations15,16

that there are two hole Fermi pockets around � point and two
electron Fermi pockets around M point in the first Brillouin
zone �FBZ� with all five orbitals of an iron atom getting
involved. As a result of this complexity, undoubtedly, nailing
down right SC gap structure is still one of the most challeng-
ing issues in this rapidly growing field.

On the theoretical side, there have been many proposals
for the possible pairing symmetries of iron pnictides, includ-
ing nodeless or nodal SC order parameters.17 Majority of
studies so far, either from weak-coupling or strong-coupling
approach, suggest an extended s-wave state �so-called s�

state�, where the relative sign of SC order parameters
changes between the hole and electron pockets �see Fig.
1�.7–9,18 In particular, in a recent paper done by Seo et al.,7 it
gives, in the proposed two-orbital exchange-coupling
model,19 an explicit cos kx · cos ky form of the pairing sym-
metry in momentum space, as long as two general conditions

are satisfied: �i� the next-nearest-neighbor �NNN� superex-
change coupling J2 dominates and �ii� Fermi pockets are
small near the aforementioned spots in the FBZ. Further-
more, this simple form, cos kx · cos ky, is in good agreement
with the SC gaps measured by the angle-resolved photoemis-
sion spectroscopy �ARPES�.20–22 Although this model does
overestimate its insulating behavior near the undoped re-
gime, this deficiency is irrelevant to determination for the
properties of the SC state. We will focus on this pairing state
�for simplicity, s� state� within this model throughout this
paper.
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FIG. 1. �Color online� Fermi surfaces of the two-orbital model
representing iron pnictides at �=1.65 in the �unfolded� FBZ. The
blue �red� curves correspond to the hole �electron� Fermi pockets.
The � sign within pockets indicate the relative sign change in the
cos kx · cos ky SC order parameter. Also, the solid thin lines mark the
nodal lines of it.
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On the experimental side, however, there is still no census
on the gap structure of the SC state. For instance, the ARPES
results support a fully gapped SC state,20–22 consistent with
point-contact Andreev spectroscopy23 and magnetic reso-
nances measured by neutron-scattering experiments,24–26

while some penetration depth experiments,27–29 NMR
experiments,30–33 and other experiments34 seemingly contra-
dict with former interpretation. Even though it has been ar-
gued that s� state could partially reconcile these
difficulties,35–38 it is still far from this SC order parameter
being settled down. This, again, reflects an urgent call for a
practical way to detect the SC gap structure, especially with
sensitivity of measuring the sign change in the internal SC
phase.

Despite of several theoretical works proposing various
ways to detect the phase structure of the SC order
parameter,39–43 achieving experimental realization reliably
remains challenging. Since disorder is an intrinsic property
in doped superconductors, a comprehensive study of impu-
rity effects can also help indirectly probing SC order param-
eters. Here we propose tunneling measurements of impurity-
induced states as a probe which is sensitive to the internal
phase of the gap function between electron and hole Fermi
pockets. Such sort of measurements has been proved invalu-
able in determining the nodal d-wave pairing symmetry of
the high-Tc cuprates.44 In addition, the study of the impurity
effects can also provide useful information about the SC gap
structure and even uncover competing orders.45–51

In this paper, we perform a detailed investigation of the
impurity-induced bound states in iron-based superconductors
within a two-orbital exchange-coupling model. By using
both the self-consistent Bogoliubov-de Gennes �BdG� for-
mulation and non-self-consistent T-matrix approach we find
the following general features. �i� For the nonmagnetic �in-
traorbital� impurity potential, there exist two in-gap bounds,
symmetric with respect to zero energy, only in the s-wave
cos kx · cos ky pairing state, not in the sign-unchanged s-wave
state. The basic physics of this result stems from the emer-
gence of nontrivial Andreev bound state within the SC gap
due to the impurity scattering that destroys any unconven-
tional �as opposed to the usual s-wave� phase assignment.
�ii� For the magnetic �intraorbital� impurity potential, due to
the breakdown of the local time-reversal symmetry, there
exist only bound-state solutions �with orbital degeneracy� for
one of the electron-spin polarizations around the impurity. As
increasing the scattering strength, the system undergoes a
quantum phase transition �level crossing� from spin-
unpolarized ground state to spin-polarized one. Unlike the
case with the nonmagnetic impurity, the results in the s-wave
cos kx · cos ky pairing state are qualitatively similar to those in
the usual s-wave state. However, the sign-changed pairing
state can sustain more robust bound-state solutions without a
� phase shift of the SC gap near the impurity in the strong
scattering regime. The rich spectral features in our calculated
energy- and space-dependent local density of states �LDOS�
may be directly resolvable by future scanning tunnel micro-
scope and assist to ultimately determine the phase structure
of the SC order parameter.

The organization of this paper is as follows. In Sec. II we
briefly introduce the model and formalism we adopted. In

Secs. III and IV we present our results for the cases of
nonmagnetic- and magnetic-impurity systems, respectively.
Finally, some remarks are given in Sec. V and we conclude
in Sec. VI.

II. MODEL AND FORMALISM

Our tight-binding microscopic Hamiltonian for the iron-
based superconductors, describing iron atoms on a two-
dimensional square lattice with two orbitals per site, is based
on the so-called two-orbital exchange-coupling model devel-
oped in Refs. 7, 35, and 52. Explicitly, H0=Ht+Hint, where
the noninteracting part reads

Ht = �
k

�†�k�ĥt�k���k� ,

ĥt�k� = ���+�k� − ���0 + �−�k��3 + �xy�k��1� � 	3 �1�

with �†�k�= �c1,k,↑
† ,c1,−k,↓ ,c2,k,↑

† ,c2,−k,↓� in Nambu spinor
representation. c
,k,�

† creates an electron carrying momentum
k with orbital 
 �
=1,2 for two degenerate “dxz” and “dyz”
orbitals, respectively� and spin polarization �. For a compact
notation, we have made use of two sets of Pauli matrices, �i
and 	i, acting on orbital- and particle-hole spaces, respec-
tively, with �0 or 	0 the 2�2 identity matrix. The matrix

elements of ĥt, �+�k�=−�t1+ t2��cos kx+cos ky�
−4t3 cos kx cos ky, �−�k�=−�t1− t2��cos kx−cos ky�, and
�xy�k�=−4t4 sin kx sin ky are parametrized by four hopping
amplitudes. The normal-state Fermi surfaces in the unfolded
BZ can be reasonably produced by setting t1=−1.0, t2=1.3
and t3= t4=−0.85 �see Fig. 1�. For convenience, we have
taken �t1�=1 as our energy units, lattice constant a�1, and
also have made �=1.65, which corresponds to electron den-
sity ne�2.1 per site. The interacting part contains several
terms and can be expressed as

Hint = �
	rr�


�



J1�S
,r · S
,r� −
1

4
n
,rn
,r��

+ �
		rr�



�



J2�S
,r · S
,r� −
1

4
n
,rn
,r�� + ¯ , �2�

where S
,r= 1
2c
,r,�

† �� ���c
,r,�� and n
,r are the local spin and
density operators with orbital 
. 	rr�
 and 		rr�

 denote
nearest-neighbor �NN� and NNN pairs of sites, respectively.
“¯” represent our ignored orbital crossing exchange cou-
pling and Hund’s coupling terms, which are argued by one of
us in Ref. 7 to be unimportant on determining the pairing
symmetry of the SC state in this model.

In this paper, we will focus on the s-wave cos kx · cos ky
pairing symmetry in iron-based superconductors and neglect
uncompetitive/subleading pairing symmetries such as s-wave
cos kx+cos ky and d-wave cos kx−cos ky �as shown in Ref.
7� by setting exchange coupling J1=0. Also, we will assume
that the low-energy physics of the system may reliably be
captured by the mean-field approximation as long as the pair-
ing interaction is small compared to the bandwidth. By de-
fining the local s�-wave pairing amplitude for orbital 
,
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�
�r,r + � = − J2	c
,r,↓c
,r+,↑
 �3�

with = � x̂� ŷ indicating NNN pairing, the mean-field
Hamiltonian of H0 is then written as

H0
MF = Ht +

1

4 �
r,,


��

��r,r + �c
,r,↓c
,r+,↑ + H.c.� . �4�

Furthermore, as a useful comparison, we shall consider the
“sign-unchanged” onsite s-wave symmetry as well in order
to extract the nontriviality of the “sign-changed” s-wave
symmetry. In this case, we replace the interacting term by
Hint=−�U��
,rn
,r,↑n
,r,↓ and make use of the following
mean-field decoupling instead

− �U� �

,r,�

n̄
,r,�̄n
,r,� + �

,r

��s

� �r�c
,r,↓c
,r,↑ + H.c.� , �5�

where

�s
�r� = − �U�	c
,r,↓c
,r,↑
, n̄
,r,� = 	n
,r,�
 . �6�

The interaction between the conduction electrons in the su-
perconductor and a single nonmagnetic impurity onsite rI
can be written as

Hnimp = VI�

,�

c
,rI,�
† c
,rI,�

+ VI� �

�
�,�

c
,rI,�
† c
�,rI,�

, �7�

where VI �VI�� represents the intraorbital �interorbital� scat-
tering strength. On the other hand, the scattering from a
static �classical� magnetic impurity with magnetic moment s�
is given by

Hmimp = JI�



S
,rI
· s� +

JI�

2 �

�
�,�

c
,rI,�
† �� ���c
�,rI,�� · s� ,

�8�

where JI �JI�� represents the intraorbital �interorbital� mag-
netic scattering strength. Note that due to spin-rotational
symmetry, one can choose the coordinate system for the spin
degrees of freedom such that z axis points in the direction of
s�. Consequently, it is sufficient to keep only z component in
Eq. �8� hereafter.

A. Self-consistent Bogoliubov-de Gennes formulation

In order to treat the impurity scattering problem and a
spatial variation in the superconducting order parameter on
equal footing, we will mainly use self-consistent BdG
formulation,53,54 which has been proved beneficial in gaining
real-space information, to demonstrate our results of investi-
gation.

Within this formulation, we diagonalize the quadratic,
mean-field Hamiltonian �4� plus impurity term �either Eq. �7�
or �8�� through the BdG equation,


K̂1� K̂12� �̂1 0

K̂12� K̂2�
0 �̂2

�̂1
� 0 − K̂1�̄

� − K̂12�̄
�

0 �̂2
� − K̂12�̄

� − K̂2�̄
�
�u1r�

n

u2r�
n

v1r�̄
n

v2r�̄
n � = Enu1r�

n

u2r�
n

v1r�̄
n

v2r�̄
n �

�9�

with nth eigenvalue En and the operators in the matrix above
obey

K̂1�u1r�
n = − t1u1r�x̂�

n − t2u1r�ŷ�
n − t3�



u1r+�
n

+ ��VI + �JIsz/2�r,rI
− ��u1r�

n ,

K̂2�u2r�
n = − t2u2r�x̂�

n − t1u2r�ŷ�
n − t3�



u2r+�
n

+ ��VI + �JIsz/2�r,rI
− ��u2r�

n ,

K̂12�u1r�
n = − t4�



eiQ·u2r+�
n + �VI� + �JI�sz/2�r,rI

u2r�
n ,

�̂
v
r�
n =

1

4�


�
�r,r + �v
r+�
n , �similar to u
r�

n � ,

where �=� correspond to spin up/down,  are NNN vec-
tors, and Q= � �

2 , �
2 �. The relation between quasiparticle op-

erators � and electron operators is c
,r,�=�n�u
r�
n �
,n,�

−�v
r�
n� �
,n,�̄

† �, and hence combining with the definition of
s-wave cos kx · cos ky SC order parameter, this gives rise to
the following self-consistent conditions,

�
�r,r + � =
J2

2 �
n

�u
r↑
n v
r+↓

n� + u
r↓
n v
r+↑

n� � � tanh
En

2kBT
.

�10�

For onsite s-wave pairing, we instead have

�s
�r� =
�U�
2 �

n

�u
r↑
n v
r↓

n� + u
r↓
n v
r↑

n� �tanh
En

2kBT
,

n̄
,r,� = �
n

�v
r�
n �2�1 − f�En�� + �

n

�u
r�
n �2f�En� , �11�

where f�E� is the Fermi distribution function. Notice that the
summation here is only over those eigenstates with positive
eigenvalues due to the symmetry property of the BdG
equation in the whole spin space: If
�u1↑

n ,u2↑
n ,v1↓

n ,v2↓
n ,u1↓

n ,u2↓
n ,v1↑

n ,v2↑
n �t is an eigenfunction of the

equation with eigenvalue En, then �v1↑
n� ,v2↑

n� ,−u1↓
n� ,−u2↓

n� ,
−v1↓

n� ,−v2↓
n� ,u1↑

n� ,u2↑
n��t is also an eigenfunction with eigenvalue

−En.
Unless otherwise stated, we always perform our compu-

tations on a finite lattice of N=32�32 sites with periodic
boundary conditions at temperature kBT=0.03. We obtain the
resulting quasiparticle spectrum by repeatedly diagonalizing
BdG Eq. �9� and iteration of the pairing amplitudes accord-
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ing to self-consistency condition �10� �or Eq. �11� for onsite
s-wave� until sufficient accuracy is achieved �e.g., the rela-
tive error of the pairing amplitudes is less than 1%�. We
choose suitable J2=8 and U=2.56 such that the ratio of the
SC coherence peak, �coh�0.4, to the maximum bandwidth
of the bands, Wmax=12, is around 0.033. With this choice, we
can restrict the SC coherence length ���vF /�coh�4a, as
suggested in experiments. Finally, it is practically useful to
note that for the case of nonmagnetic impurity, the subindex
� becomes unimportant for u and v, and we can save the
computation effort by cutting the spin space half, i.e., keep-
ing only index �=↑ in Eq. �9�.

B. Non-self-consistent T-matrix approximation

By assuming that the relaxation of the superconducting
order parameter is negligible, we greatly simplify our
impurity-scattering problem and make the physics more
transparent. As we will see later, the validity of using
T-matrix approach44,55 to capture qualitatively right physics
is justified by comparing with the results from the BdG for-
mulation. In addition, the main difference between a “self-
consistent” treatment and a “non-self-consistent” treatment
in this approach is the inclusion of �normal/anomalous� self-
energy corrections to the bare electron Green’s function or
not. Basically, these corrections are proportional to the im-
purity concentration and hence can be reasonably ignored for
a single-impurity problem, as in our case here. However, the
price we have to pay for this simplification is the loss of
complete information around the impurity site.

Let us start with a mean-field Hamiltonian in the SC state,

H0
MF=�k�†�k�ĥ�k���k�, where ĥ�k�= ĥt�k�+��k��0 � 	1,

with notations defined before in the momentum space. Note
that we have taken a suitable gauge choice to make SC order
parameter real and set for s�-wave pairing, �
�k�=��k�
=�0 cos kx cos ky, while for onsite s-wave pairing, �s
�k�
=��k�=�s0. In the same compact notation, now the impurity

potential can be unified as Himp=�k,k��
†�k�V̂��k�� with V̂

=V���� � 	� �no summation over � and ��, where different
types of impurity scattering problems are related by V03
=VI , V13=VI� , V00=JIsz /2 and V10=JI�sz /2 �otherwise, V��

=0�.
Defining �̃=�+ i0+, the Green’s function for a clean SC

system is given by

G0�k,�̃� = ��̃I4 − ĥ�k��−1 � �G11
0 �k,�̃� G12

0 �k,�̃�
G21

0 �k,�̃� G22
0 �k,�̃�

� ,

�12�

where G
�
0 is a 2�2 matrix acting on the particle-hole space.

The full Green’s function in the single-impurity problem
within T-matrix approximation is then written as

G�k,k�,�̃� = G0�k,�̃�k,k� + G0�k,�̃�T�k,k�,�̃�G0�k�,�̃�

with the whole impurity-induced effect contained only in the
T matrix. Standard perturbation theory gives

T��̃� = V̂ + V̂g0��̃�V̂ + V̂g0��̃�V̂g0��̃�V̂ + . . .

= �I4 − V̂g0��̃��−1V̂ , �13�

where g0��̃�=� d2k
�2��2 G0�k , �̃�. These equations allow us to

determine the solutions of the impurity-induced bound states
via Det�T−1�=0 in the subgap regime, ���� ���k��.

III. NONMAGNETIC IMPURITY

We begin with our discussion on the effect of nonmag-
netic �scalar� impurity in s�-wave superconductors. It is well
known that nonmagnetic impurities in a single-band, isotro-
pic s-wave superconductor are not hard pair breakers and
hence the impurity-induced spectral feature lies essentially at
the gap edge.44,56,57 However, as we will see later, it is not
the case for a s�-wave superconductor due to its nontrivial
SC phase structure in the momentum space. Any potential
scattering between hole and electron Fermi pockets may de-
stroy the phase assignment and leads to the formation of
nontrivial in-gap bound states.

Consider first the case of intraorbital potential scattering,
where VI�0 and VI�=JI=JI�=0. For a s�-wave supercon-
ductor, we show in Fig. 2�a� the LDOS, which is obtained
via

N���,r� = −
1

N
�
n,


��u
r�
n �2f��En − �� + �v
r�̄

n �2f��En + ��� ,

�14�

then summing over spin � at the impurity site, and compare
it with the one without any impurity �dotted curve�. For the
demonstration purpose, we choose a moderate scattering
strength, VI=4. The spectroscopic signature of bound-state
solutions is clearly seen as two peaks, symmetric with re-
spect to zero energy and within the SC coherence peak
�coh�0.4, in the LDOS at the impurity site. Furthermore,
the weaker spectral weight at positive energy and the stron-
ger one at negative energy arise from the absence of particle-
hole symmetry in the system. The presence of such in-gap
bound states in s� pairing state is indeed in sharp contrast to
the similar problem in the sign-unchanged s-wave pairing
state, where no peak can be found within the SC gap as
shown in Fig. 2�b�. The localized nature of the impurity-
induced states within the gap is further proved by showing
the LDOS as a function of energy � and the distance R= �r
−rI� off the impurity position along certain directions in Fig.
3. As R is away from the impurity site by one or two lattice
constants, the peaks disappear quickly and the LDOS recov-
ers back to the shape of the bulk DOS.

Above results can be qualitatively understood by �non-
self-consistent� T-matrix approach. Combining g0��̃� for the
s�-wave pairing state derived in Appendix and the inverse of

the scattering matrix V̂−1, the inverse of the T-matrix in Eq.
�13� is given by
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T−1��̃� = VI
−1�0 � �	3 + cn� �̃

��coh
2 − �̃2

	0 − �0	3�� ,

�15�

where we have defined the dimensionless scattering strength
cn=VI��0 ���0�O�1� in the iron pnictides and �0�0 is
related to the used energy cutoff here �see Appendix��. It is
important to realize that as �2��coh

2 , Im�T−1�→0. Thus,
true bound states at real � could be found by the condition
Det�T−1�=0, leading to the bound-state energy,

�0 = � �coh

�1 − cn�0�
��1 − cn�0�2 + cn

2
. �16�

This is in contrast to the case of the nodal d-wave pairing,
where we usually get virtual bound states at complex �.44

Note that for each solution in Eq. �16�, it is doubly degener-
ate due to orbital degeneracy. Also, as sharply opposed to the
s�-wave pairing, there are no in-gap bound states found for
the onsite s-wave state, quite consistent with the results
shown in Figs. 2�a� and 2�b�. In fact, this distinct feature
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FIG. 2. �Color online� LDOS �red curve� at the nonmagnetic-impurity site, rI= �16,16�, for �a� the s�-wave pairing state and �b� the
onsite s-wave pairing state with VI=4. The dotted black curves represent the LDOS at the same position �renormalized by a factor of 4� in
a clean system for comparison ��coh�0.4�.
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FIG. 3. �Color online� LDOS as a function of energy � and the distance R away from the nonmagnetic impurity along �a� +y direction
and �b� diagonal direction. The red, pink, and green curves represent LDOS at the impurity site, its first neighbor, and its second neighbor
along y or diagonal direction, respectively. All curves with different Rs are shifted by 0.05 along vertical axis with each other. Note that the
parameters are the same as those used in Fig. 2 and the self-consistent pairing potential at rI is around 0.17.
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comes from the �nearly� absence of 	1 component in T−1��̃�,
which is proportional to �coh in the sign-unchanged s-wave
pairing.

In addition, by increasing the scattering strength VI�0,
the bound-state solutions for the s�-wave pairing state, as
estimated by T-matrix approach, evolves from the gap edge
in the weak scattering limit to ��coh�0 /��0

2+1 in the unitary
scattering limit. However, the qualitative behavior changes
greatly when increasing the magnitude of the negative scat-
tering strength. From Eq. �16�, reversing the sign of cn tells
us that there must be a minimum bound-state energy, occur-
ring at a critical VI�0. �It does not reach zero energy in our
system because a small 	1 component in T−1 would appear
practically due to imperfect cancellation of the � terms on
electron and hole Fermi pockets and the SC gap relaxation
should be taken into account as well.� The numerical results,
as seen in Figs. 4�a� and 4�b�, indeed follow what we have
discussed from T-matrix consideration.

Next, we consider the change in the SC gap function
caused by a single nonmagnetic-impurity scattering. Figure

5�a� shows the self-consistent SC pairing potential ��r�
=�
,�
�r ,r+� /8 with s�-wave symmetry. Since the impu-
rity potential is short ranged, the SC gap changes largely in
the vicinity of the impurity site and recovers soon to its
maximum value away from the impurity. It is clear that there
are two relevant length scales controlling the behavior. The
shorter one associates with the range of the impurity poten-
tial in which the SC gap is strongly suppressed due to much
smaller electron population. The other scale is comparable to
the SC coherence length ��4a in which the SC gap is
weakly oscillating. This oscillation simply indicates the com-
petition between the impurity potential and the SC pairing
potential. Another subtle feature in Fig. 5�a� is that the con-
tour line of � is anisotropic and in roughly diamond shape
round the impurity site. This should be due to the fact that
the DOS from dxz and dyz orbitals is most likely dominated
by the �elliptic� electron pockets around �0,�� and �� ,0� in
this model, causing the anisotropy of the SC coherence
length. This feature may only slightly depend on the specific
form of the pairing symmetry since similar anisotropy of the
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spatial dependence of the onsite s-wave SC gap function,
�s�r�=�
�s
�r� /2, is also seen in Fig. 5�b�. Interestingly, we
also observe that the spatial distribution of LDOS at �0,
N��0 ,r�, respect the same anisotropy �not shown�.

As a final remark in this section, we comment on the case
when there exists small component of the interorbital,

nonmagnetic-impurity scattering, i.e., V̂= �VI�0+VI��1� � 	3.
We sketch the analysis briefly below by using the T-matrix
approximation. The easiest way to consider this problem is to
make a unitary transformation in the orbital space such that
the transformed scattering matrix becomes �VI�0+VI��3�
� 	3. Also, the transformed g0��̃� is the same as before due
to the fact that it is diagonal in the orbital space. Thus, we
now simply deal with new impurity potentials VI�VI� sepa-
rately within each �transformed� orbital. The direct conse-
quence is simply the breakdown of the orbital degeneracy
such that each bound-state energy �0 splits into two. This is
still a distinguishable feature from the s-wave pairing state in
which essentially no sharp peaks in LDOS at the impurity
site when �����coh.

IV. (CLASSICAL) MAGNETIC IMPURITY

We now turn to the discussion on the effect of magnetic
impurities in the s� pairing state. The magnetic impurities,
the pair breakers of the Cooper pairs, are known to induce
in-gap bound states in the conventional nodeless
superconductors.58–60 These bound-state solutions are usu-
ally localized near the impurity, possibly with nontrivial spin
configuration around it, and may dramatically modify the
ground-state properties of the system once the magnetic in-
teraction is much stronger than the condensation energy,
�coh.

To investigate possible features in our target pairing state,
we consider the case of intraorbital, purely magnetic-
impurity scattering, where JI�0 while VI=VI�=JI�=0. Exam-
ining the LDOS spectrum at the impurity site in Fig. 6�a�,

one can immediately see that there are two sharp peaks,
symmetric with respect to zero energy within the SC gap
��coh�0.4�, indicating the presence of the bound-state solu-
tions. The asymmetric spectral weights for the peaks are
again due to the breakdown of the particle-hole symmetry in
the system. However, the presence of in-gap peaks in the
LDOS is also observed in the onsite s-wave pairing state as
shown in Fig. 6�b�, except for the reversed magnitudes of the
spectral weights on the two peaks. This subtle difference
may not be considered as a general feature since the asym-
metry of the spectral weights depends on the position and the
scattering strength. Furthermore, as we examine the LDOS
spectra away from the impurity, the peak positions do not
change and their spectral weights decay rapidly after a few
lattice constants comparable to the SC coherence length �. In
Fig. 7�a�, the spatial distribution of LDOS at fixed bound-
state energy, N���0 ,r� �see Eq. �14��, further confirms our
observation. While in Fig. 7�b�, we find no essential differ-
ence for the sign-unchanged s-wave pairing state, except that
the spectral weights are more concentrated on the impurity
site. For energies outside the SC gap, the spatial distribution
becomes much more extended with only a suppressed region
around the impurity �not shown here�, as one can expect.

Similar to the nonmagnetic-impurity problem discussed in
the last section, the T-matrix approach may assist us to un-
derstand the properties of the magnetic-induced bound states
more clearly. For the s�-wave pairing symmetry, the inverse
of the T matrix is obtained via the replacement of VI

−1 and cn
in Eq. �15� by the inverse of the effective magnetic moment,
�sef f�−1, and the dimensionless magnetic scattering strength,
cm=sef f��0 �sef f �JIsz /2�. Det�T−1�=0 is satisfied at61

�0 = �coh

1 � �cm�0�
��1 � �cm�0��2 + cm

2
. �17�

For cm�0, �0�0, we will ignore the second bound-state
solution above �“+” sign in Eq. �17�� since it is very close the
gap edge as cm�1 while its magnitude approaches to that of

(a) (b)

FIG. 6. �Color online� LDOS as a function of energy � �red curves� in the presence of a magnetic impurity at rI= �16,16� for �a� s� wave
with JIsz /2=2 and �b� onsite s wave with JIsz /2=2.2. The black, dotted curves represent the bulk DOS normalized by the number of sites
N for useful comparison ��coh�0.4�.
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the first solution as cm�1. Therefore, it is hardly discernible
in our numerical LDOS results. The first bound-state solution
in Eq. �17� is to be compared with the one obtained from the
case with onsite s-wave symmetry, where the in-gap bound
state occurs at

�0 = �coh

1 − cm
2 �1 + �0

2�
��1 − cm

2 �1 + �0
2��2 + 4cm

2
. �18�

Now, we see that in both pairing symmetries, the presence of
the in-gap bound states is consistent with our numerical re-
sults shown in Figs. 6�a� and 6�b�. In addition, one should
notice that, first, each solution is doubly degenerate due to
orbital degeneracy; second, although the quasiparticle
bound-state energy �0 appears not symmetric with respect to
zero energy, the resonance peaks in LDOS are indeed sym-
metric since each quasiparticle state has its particle and hole
components at −��0� and ��0� separately.44 So far, in some
sense, the magnetic-impurity effect could not be a good
probe to distinguish the sign-changed s-wave symmetry from
the sign-unchanged one. Nevertheless, there are still “subtle”
features possessed only by the s�-wave pairing state, as we
will explain next.

The in-gap bound state is more robust for the s�-wave
pairing symmetry in the strong impurity scattering regime. In
single-band s-wave superconductors, one of remarkable
properties due to a localized magnetic impurity is that the
first-order quantum phase transition takes place as the effec-
tive moment, sef f =JIsz /2, is greater than certain critical
value, sc

ef f. This transition represents the jump of the spin
quantum number of the ground state from 0, where the mag-
netic impurity is unscreened, to spin 1/2, where the magnetic
impurity is partially screened. We refer interested readers to
the review paper by Balatsky et al.44 for detailed discussions.
Here, in our case, one indication for such a transition is given
by Eq. �17�, where �0 switches sign as

JIsz

2 �
1

��0��0� . This is
similar to the case of s-wave state but with slightly different

critical value. However, in the strong scattering limit, where
cm�1, we observe that the bound-state energy for s�-wave
pairing never evolves back to the gap edge, but it does for
the onsite s-wave pairing, as shown clearly in Figs. 8�a� and
8�b�, respectively, from our numerical study �flipping the
sign of cm does not change the result�. This feature may
suggest that the bound-state solution in the sign-changed SC
state is more robust than the one in the sign-unchanged case
in the strong scattering regime. Note that the noncrossing to
the zero energy is understood due to the local SC gap relax-
ation and many-body effect.44,62

A further evidence to verify this transition �level crossing�
can be provided by the spin-resolved LDOS, defined in Eq.
�14�, around the impurity site. As shown in Figs. 9�a� and
9�b�, one can clearly see that the spin configurations are
completely interchanged as JIsz /2 crosses the critical value
�2.2. Similar results are also found for the onsite s-wave
pairing state �not shown�.

No � phase shift of the SC gap function around the im-
purity for sef f �sc

ef f with the s�-wave pairing symmetry. In
Figs. 10�a� and 10�b�, we show the self-consistent SC pairing
potentials for the s�-wave and s-wave pairing symmetries,
respectively. The basic features are not much different from
the cases we have discussed in the nonmagnetic-impurity
problem. However, as pointed out by Salkola et al.,62 the
phase of the SC order parameter changes by � at the
magnetic-impurity site with respect to the bulk phase when
sef f is larger than the critical value. This is indeed a sharp
feature we have seen for the sign-unchanged s-wave pairing
state in Fig. 11�b� but not for the s�-wave pairing state in
Fig. 11�a�.

Finally, we comment on the case when there exists small
component of the interorbital impurity scattering, i.e., JI�0
and JI��0. Similar to the case with a nonmagnetic impurity,
this would lead to the splitting of the bound-state energy due
to the breakdown of the orbital degeneracy. Consequently,
we now have two critical values, sc1

ef f and sc2
ef f, when increas-

ing the effective magnetic moment, JIsz /2 with fixed ratio

(a) (b)

FIG. 7. �Color online� The spatial distribution of LDOS for �a� s� wave at �0=−0.05, and �b� onsite s wave at �0=−0.05. They
correspond to the arrows indicated in Figs. 6�a� and 6�b�, respectively.
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JI� /JI. These transitions correspond to the change in the spin
quantum number in the ground state, that is, from 0 to 1/2
and 1/2 to 1, respectively. When sc1

ef f �sef f �sc2
ef f, the spin and

orbital degrees of freedom are strongly correlated and more
complicated spin configurations are expected. This may de-
serve further study in the future.

V. REMARKS ON NODAL PAIRING SYMMETRIES AND
MANY IMPURITIES

Although we have mainly concentrated on the effects of a
single nonmagnetic �magnetic� impurity in fully gapped,
sign-changed, s-wave superconductors, we would like to
make two remarks which are closely related to, or suggested

by the current study. �1� Considering the case of sign
changed, but with SC nodes on electron Fermi pockets, as
called for attention in recent theoretical works,63–65 is of
course beyond the scope of this paper and may deserve a
future study. However, following the same T-matrix calcula-
tions sketched above, we can consider certain nodal pairing
states in a straightforward manner. For instance, the gap
function could be of the form, �
�k�=�0�cos kx+cos ky� /2,
i.e., the A1g nodal pairing symmetry with nodes on the elec-
tron pockets. When evaluating g0��̃�, one can realize that the
	1 component in Eq. �15� is not absent �or negligible� any-
more �with contribution mainly from the hole pockets�, and
it makes the system much closer to a sign-unchanged s-wave
pairing state. Thus, in the single nonmagnetic-impurity prob-
lem, the should-be-present peaks in the LDOS disappear or

(a) (b)

FIG. 8. �Color online� The energy of bound states �0 as a function of the effective magnetic-impurity moment JIsz /2 for �a� s�-wave
pairing and �b� onsite s-wave pairing ��coh�0.4�.

(a) (b)

FIG. 9. �Color online� The spatial distribution of the spin-resolved LDOS for s�-wave pairing symmetry at �= ��0� with �a� JIsz /2
=1.5 before the transition and �b� JIsz /2=4 after the transition. Only spin-down �spin-up� distribution is shown in �a� ��b�� while the others
are nearly zero on the entire lattice.
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are nearly indistinguishable with the gap edge �continuum�.
�2� There are already several papers66–68 discussing about the
issue of many impurities and its relation to the SC Tc with
sign-changed s-wave pairing. In particular, Senga and
Kontani68 present a detailed study on the �nonmagnetic�
impurity-induced DOS and the suppressed Tc with various
interband �intraband� scattering strengths I� �I� within
T-matrix approach. According to their results, at the fixed
ratio I� / I=1, the induced-impurity band would move toward
zero energy without going back to the gap edge as increasing
the scattering strength, associated as well with a large sup-
pression of Tc. This tendency corresponds to our observation
that the impurity-induced bound-state energy never evolves
back to the gap edge as increasing the scattering strength,
and should be in sharp contrast to the sign-unchanged s-wave
pairing state, in which Anderson’s theorem69 is expected to
be satisfied.

VI. CONCLUSIONS

In conclusion, we have studied the impurity-induced in-
gap bound states in iron-based superconductors with �sign-
changed� s�-wave pairing symmetry by using both the self-
consistent BdG formulation and non-self-consistent T-matrix
approach. In comparison to the sign-unchanged s-wave pair-
ing state, we have found several signatures, which are mainly
associated with the sign change in the SC order parameter. In
particular, for a nonmagnetic impurity, the two in-gap bound-
state peaks appear in the LDOS at or near the impurity site
and their formation is due to the sign-reversal effect in the
order parameter during Andreev reflection processes. For a
magnetic impurity, there also exist bound-state solutions, but
only for one of the electron-spin polarizations around the
impurity at the resonance energy due to the breakdown of the
local time-reversal symmetry. Above a critical effective mag-
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FIG. 10. �Color online� The spatial dependence of the SC gaps for �a� s�-wave pairing symmetry and �b� the onsite s-wave pairing
symmetry. The parameters are same as those used in Fig. 6.
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FIG. 11. The SC order parameter �dxz orbital only� at the impurity site rI as a function of the effective magnetic moment JIsz /2 for �a�
s� wave and �b� onsite s wave. Note that x axis is in logarithmic scale and the rescaling factor �0 of the SC gap is chosen to be 0.54 �0.38�
for graph �a� ��b��.
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netic moment, the ground state of the system undergoes a
quantum phase transition from a spin-unpolarized state to a
spin-polarized one. Although in the presence of a magnetic
impurity, both sign-changed and sign-unchanged s-wave
pairing states behave qualitatively the same, we emphasize
that the former pairing state can sustain more robust bound-
state solutions without a � phase shift of the SC gap near the
impurity in the strong scattering regime.

Note added. As we nearly complete our paper, we find
two interesting papers by Zhang et al.,70 and Tao Zhou et
al.,71 discussing similar issues on the impurity effect. Their
insightful results are basically consistent with ours.
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APPENDIX: DERIVATION OF g0(�̃) WITHIN T-MATRIX
APPROXIMATION

In order to calculate the bare Green’s function G0�k , �̃�
and its corresponding g0��̃�, it is more convenient to turn our
orbital basis into band representation, where we can easily
obtain the Green’s function for each band, by the following
unitary transformation

U†�k�� �x�k� �xy�k�
�xy�k� �y�k�

� U�k� = ��e�k� 0

0 �h�k�
� ,

�A1�

where

U�k� = �cos��k/2� − sin��k/2�
sin��k/2� cos��k/2�

� ,

cos �k =
�−�k�

��−
2�k� + �xy

2 �k�
, sin �k =

�xy�k�
��−

2�k� + �xy
2 �k�

,

�A2�

and �x�y��k�=�+�k���−�k�. In the normal state, �e�h��k f�=�
associates with two electron �hole� pockets. H0

MF now trans-

forms as H̃0
MF=�k�̃†�k�h̃�k��̃�k�, where h̃�k�= ����e�k�

+�h�k�� /2−���0+ ���e�k�−�h�k�� /2��3� � 	3+��k��0 � 	1.

Consequently, the bare Green’s function G̃0�k , �̃� for band
electrons is given by

��� + i0+�I4 − h̃�k��−1 ��G̃e
0�k,�̃� 0

0 G̃h
0�k,�̃�

� , �A3�

where

G̃e�h�
0 �k,�̃� =

�̃	0 + ��k�	1 + ��e�h��k� − ��	3

�̃2 − ��e�h��k� − ��2 − �2�k�
. �A4�

Now, we can transform above Green’s function back to its
orbital representation defined in Eq. �12� with matrix ele-
ments,

G11�22�
0 �k,�̃� = G̃e�h�

0 �k,�̃�cos2��k

2
� + G̃h�e�

0 �k,�̃�sin2��k

2
� ,

G12�21�
0 �k,�̃� = �G̃e

0�k,�̃� − G̃h
0�k,�̃��sin��k

2
�cos��k

2
� .

�A5�

Upon integrating over momentum in the FBZ, we obtain the
following approximate expression for g0��̃�,

g0��̃� =� d2k

�2��2�G11
0 �k,�̃� G12

0 �k,�̃�
G21

0 �k,�̃� G22
0 �k,�̃�

� ,

=
1

2
� d2k

�2��2�0 � �G̃e
0�k,�̃� + G̃h

0�k,�̃�� ,

�− ��0�0 � � 
��̃�
��0

2 − �̃2
�̃	0 − ���̃�	3�, �sx2y2�

or − ��0�0 � �
��̃���̃	0 + �0	1�
��0

2 − �̃2
− ���̃�	3�, �s� ,

�A6�

where 
��̃�= 1
� �tan−1�

Ec

��2−�̃2 �+tan−1�
Eg

��2−�̃2 ���1, ���̃�

= 1
2� ln�

Ec
2+�2−�̃2

Eg
2+�2−�̃2 ���0, with Eg representing the average en-

ergy difference between the pocket center and the Fermi
level and Ec representing the energy cutoff with respect to
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FIG. 12. �Color online� The arrows show the direction and mag-

nitude of the vector ��xy�k� ,�−�k�� in the �unfolded� FBZ. It is then
easy to extract �k information from this arrow map. The orbital-
resolved Fermi pockets are also put on top of the map for conve-
nience. Red and green colors represent dxz and dyz orbitals, respec-
tively ��=1.65�.
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the Fermi level.72 �0 is the density of states at the Fermi
level.

Note that to get the second equality, we have taken into
account the features of �k in the FBZ �see Fig. 12�; to get the
third/fourth equality, we have made several approximations:
�i� for each pocket, the energy dispersion is quadratic with

respect to the pocket center, �ii� the density of states around
the Fermi level �and within the cutoff energy Ec� for each
pocket is a constant �0, and �iii� for s�-wave pairing, ��k�
��coh for hole pockets while −�coh for electron pockets.
This is in contrast to the onsite s-wave case where we take
��k�=�coh for all Fermi pockets.72
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