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We present a spin-rotation-invariant Green-function theory of long- and short-range order in the ferro- and
antiferromagnetic Heisenberg model with arbitrary spin quantum number S on a stacked square lattice. The
thermodynamic quantities �Curie temperature TC, Néel temperature TN, specific heat CV, intralayer, and inter-
layer correlation lengths� are calculated, where the effects of the interlayer coupling and the S dependence are
explored. In addition, exact diagonalizations on finite two-dimensional �2D� lattices with S�1 are performed,
and a very good agreement between the results of both approaches is found. For the quasi-2D and isotropic
three-dimensional magnets, our theory agrees well with available quantum Monte Carlo and high-temperature
series-expansion data. Comparing the quasi-2D S=1 /2 magnets, we obtain the inequalities TN�TC and, for
small enough interlayer couplings, TN�TC. The results for CV and the intralayer correlation length are com-
pared to experiments on the quasi-2D antiferromagnets Zn2VO�PO4�2 with S=1 /2 and La2NiO4 with S=1,
respectively.
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I. INTRODUCTION

Low-dimensional ferromagnetic �FM� and antiferromag-
netic �AF� quantum spin systems,1 such as the quasi-two-
dimensional �2D� Heisenberg ferromagnets �e.g., K2CuF4
with spin S=1 /2 �Ref. 2�� and antiferromagnets �e.g.,
La2NiO4 with spin S=1 �Ref. 3� being isostructural to the
high-TC parent compound La2CuO4�, are of current interest.
Their study is motivated by the progress in the synthesis of
low-dimensional materials. For example, very recently a de-
fective graphene sheet was reported to be a room-
temperature ferromagnetic semiconductor that may be
described by an effective quasi-2D Heisenberg model.4

Investigations of layered Heisenberg magnets by numeri-
cal methods, e.g., quantum Monte Carlo �QMC� simulations
and high-temperature series expansions �SE�, have been per-
formed for a selected number of cases and quantities only.
QMC data are available for quasi-2D and spatially isotropic
three-dimensional �3D� antiferromagnets with S=1 /2 �Refs.
5–7� and S=1 �Ref. 6�. SE results exist for the 3D antiferro-
magnet with S=1 /2, 1, and 3/2 �Ref. 8� and for the 3D
ferromagnet with S=1 /2 �Refs. 8 and 9� and S=1 and 3/2
�Ref. 8�. Note that the numerical studies of ferromagnets and
of S�1 /2 systems are rather scarce.

On the other hand, analytical approaches which are ca-
pable to evaluate the thermodynamics of layered ferro- and
antiferromagnets with arbitrary spin below and above the
magnetic transition temperature TM �M =C ,N; TC �TN� de-
notes the Curie �Néel� temperature in the FM �AF� case� are
desirable. In particular, the relation between TM and the rel-
evant exchange couplings can be used to determine those
couplings from experiments. Moreover, analytical theories
may have the advantage of being applicable in such cases,
where the QMC method cannot be applied, e.g., in the pres-
ence of frustration. However, the mean-field spin-wave theo-
ries based on the random-phase approximation �RPA�,10,11

that is equivalent to the Tyablikov decoupling of Green

functions,12 and on auxiliary-field representations
�Schwinger-boson,13,14 Dyson-Maleev,15 and boson-fermion
representations16� are valid only at sufficiently low tempera-
tures and do not adequately take into account the temperature
dependence of magnetic short-range order �SRO� in the para-
magnetic phase. For the 3D antiferromagnet, this deficiency
has been removed by the quantum hierarchical reference
theory of Ref. 17. For quasi-2D ferro- and antiferromagnets,
an essential improvement in comparison to the standard
mean-field approaches may be achieved by employing the
second-order Green-function technique18 that we call, in the
absence of spin anisotropies, rotation-invariant Green-
function method �RGM�. This technique provides a good de-
scription of SRO and long-range order �LRO� and has been
applied recently successfully to low-dimensional quantum
spin systems.19–30

In this paper we use the RGM and develop a theory of
magnetic order in ferro- and antiferromagnets on a stacked
square lattice. Thereby, we extend the previous work on the
quasi-2D S=1 /2 antiferromagnet22 and the layered S=1 /2
ferromagnet28 to arbitrary values of the spin quantum num-
ber. We perform a systematic study of thermodynamic prop-
erties, where we contrast the FM with the AF cases. This
allows to explore the role of quantum fluctuations. Besides
the physical motivation for employing the RGM to layered
magnets given above, this paper has a methodical motiva-
tion. To test the quality of the RGM, a comparison of our
results and those of previous analytical approaches with
available data of numerical methods �QMC and SE� is
performed.

We consider the 3D spatially anisotropic Heisenberg
model with arbitrary spin S,

H =
J�

2 �
�i, j�xy

SiS j +
J�

2 �
�i, j�z

SiS j �1�

��i , j�xy and �i , j�z denote nearest-neighbor �NN� sites in the
xy plane and along the z direction of a simple cubic lattice,
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respectively� with Si
2=S�S+1�. For the layered ferromagnet

�antiferromagnet� we have J��0 �J��0�, where �= �, �.
We calculate the thermodynamic properties �magnetic transi-
tion temperatures, specific heat, and correlation lengths� and
study the crossover from isotropic 2D �J�=0� to 3D
�J�=J�� quantum magnets. For comparison, we perform
Lanczos exact diagonalizations �ED� to calculate the ground
state of the 2D antiferromagnet with S=1, 3

2 , and 2 on a
lattice of N=16 sites and full ED to get the thermodynamic
quantities for the 2D S=1 ferromagnet on a lattice of N=8
sites.

The rest of the paper is organized as follows: In Sec. II,
the theory based on the RGM for model �1� is developed,
where the extension of previous RGM approaches22,28 to ar-
bitrary spins implies specific technical aspects. In Sec. III,
the thermodynamic properties of the 2D and 3D ferromag-
nets and antiferromagnets are investigated as functions of
temperature, spin, and interlayer coupling, also in compari-
son to available QMC and SE data, and are related to experi-
ments. Finally, a summary of our work is given in Sec. IV.

II. ROTATION-INVARIANT GREEN-FUNCTION
THEORY

To evaluate the spin-correlation functions and the thermo-
dynamic quantities, we calculate the dynamic spin suscepti-
bility �q

+−���=−��Sq
+ ;S−q

− ��� �here, ��. . . ; . . .��� denotes the
two-time commutator Green function12� by the RGM.18 Us-
ing the equations of motion up to the second step and sup-
posing rotational symmetry in spin space, i.e., �Si

z�=0, we

obtain �2��Sq
+ ;S−q

− ���=Mq+ ��−S̈q
+ ;S−q

− ��� with Mq

= ���Sq
+ ,H� ,S−q

− �� and −S̈q
+= ��Sq

+ ,H� ,H�. For the model �1� the
moment Mq is given by the exact expression

Mq = − 8J�C100�1 − �q� − 4J�C001�1 − cos qz� , �2�

where Cmnl	CR= �S0
+SR

−�=2�S0
zSR

z �, R=mex+ney + lez, and

�q= 1
2 �cos qx+cos qy�. The second derivative −S̈q

+ is approxi-
mated in the spirit of the schemes employed in Refs. 18, 20,

22, 25, and 26. That means, in −S̈i
+ we decouple the products

of three spin operators along NN sequences �i , j , l� as

Si
+Sj

+Sl
− = �1��Sj

+Sl
−�Si

+ + �2��Si
+Sl

−�Sj
+, �3�

where the vertex parameters �1� and �2� are attached to NN
and further-distant correlation functions, respectively, either
within a layer ��= �� or between two layers ��=��. The
products of three spin operators with two coinciding sites,
appearing for S�1, are decoupled as19,25,27

Si
+Sj

−Sj
+ = �Sj

−Sj
+�Si

+ + 	��Si
+Sj

−�Sj
+, �4�

where the vertex parameter 	� is associated with the NN
correlator in the layer or between NN layers. We obtain

−S̈q
+=�q

2Sq
+ and

�q
+−��� = − ��Sq

+;S−q
− ��� =

Mq

�q
2 − �2 , �5�

with

�q
2 = �1 − �q�

� + 16J�

2�1�C100�1 − �q��

+ �1 − cos qz�

� + 4J�
2 �1�C001�1 − cos qz��

+ 
̃�1 − �q��1 − cos qz� , �6�


� = 2J�
2
S̄ + 2	�C100 + 2�2��2C110 + C200� − 10�1�C100�

+ 8J�J���2�C101 − �1�C100� , �7�


� = J�
2 
S̄ + 2	�C001 + 2�2�C002 − 6�1�C001�

+ 8J�J���2�C101 − �1�C001� , �8�


̃ = 8J�J���1�C100 + �1�C001� , �9�

where S̄= 4
3S�S+1�. From the Green function �5� the correla-

tion functions CR= 1
N�qCqeiqR are determined by the spectral

theorem,12

Cq = �Sq
+S−q

− � =
Mq

2�q
�1 + 2n��q�� , �10�

where n���= �e�/T−1�−1 is the Bose function. The NN corr-
elators are directly related to the internal energy u per site,
u=3J�C100+ 3

2J�C001, from which the specific heat CV
=du /dT may be calculated. Taking the on-site correlator
CR=0 and using the operator identity Si

2=Si
+Si

−−Si
z+ �Si

z�2, we
get the sum rule

1

N
�

q
Cq =

2

3
S�S + 1� . �11�

Let us consider the static spin susceptibility �q	�q��=0�
with �q���	�q

zz���= 1
2�q

+−���, i.e., �q=Mq /2�q
2. The lowest-

order expansion of Mq and �q
2 at q=0 yields �q= �a�qx

2+qy
2�

+bqz
2� / �c�qx

2+qy
2�+dqz

2�, where a=−J�C100, b=−J�C001, c
=
� /4, and d=
� /2. Calculating the uniform static suscep-
tibility �=limq→0�q, the ratio of the anisotropic functions Mq
and �q

2 must be isotropic in the limit q→0, i.e.,
limqx�y�→0�q �qz=0=limqz→0�q �qx�y�=0. That is, the condition
a /c=b /d has to be fulfilled which reads as the isotropy
condition

� = −
4


�

J�C100 = −
2


�

J�C001. �12�

Note that such a condition was also employed in Refs. 20,
22, 26, and 28.

The phase with magnetic LRO at T�TM is described by
the divergence of the static susceptibility at the ordering vec-
tor q0, i.e., by �q0

−1=0, with q0=0 and q0=Q= �� ,� ,�� in the
FM and AF case, respectively. In this phase the correlation
function CR is written as18

CR =
1

N
�

q��q0�
CqeiqR + Ceiq0R �13�

with Cq given by Eq. �10�. The condensation part C deter-
mines the magnetization m that is defined in the spin-
rotation-invariant form m2= 3

2N�RCRe−iq0R= 3
2C. The LRO
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conditions for the ferromagnet and antiferromagnet read as

�=0 �cf. Equation �12�� and �Q=0, respectively.

The magnetic correlation lengths above TM may be calcu-
lated by expanding �q in the neighborhood of the vector
q0.18,25,29 For the ferromagnet �q0=0�, the expansion yields
�q=��1+�

2�qx
2+qy

2�+�
2 qz

2�−1 with the squared intralayer
��= �� and interlayer ��=�� correlation lengths

�
2 = �J���1�� . �14�

For the antiferromagnet, the expansion around q0=Q gives
�q=�Q�1+�

2�kx
2+ky

2�+�
2 kz

2�−1 with k=q−Q and

�
2 = −

1

4�Q
2 �
� + 64J�

2�1�C100 + 2
̃� −
2J�C100

MQ
, �15�

�
2 = −

1

2�Q
2 �
� + 16J�

2 �1�C001 + 2
̃� −
2J�C001

MQ
.

�16�

To evaluate the thermodynamic properties, the correlation
functions CR and the vertex parameters �1�, �2�, and 	�

appearing in the spectrum �q �Eqs. �6�–�9�� as well as the
condensation term C in the LRO phase have to be deter-
mined. Besides Eqs. �10� and �13� for calculating the corr-
elators, we have the sum rule �11�, the isotropy condition
�12�, and the LRO conditions for determining the param-
eters; that is, we have more parameters than equations. To
obtain a closed system of self-consistency equations, we re-
duce the number of parameters by reasonable simplifications
that we have to specify for the FM and AF cases.

�i� Ferromagnet: Considering the ground state �T=0�, we
have the exact result

CR�0� =
2

3
S�R,0 +

2

3
S2, �17�

which can be reproduced by Eq. �13�, CR�0�
= 1

N�q��0��Mq�0� /2�q�0��eiqR+C�0�, if C�0�= 2
3S2 and

Mq�0� /2�q�0�= 2
3S. The equality Mq

2�0�= 16
9 S2�q

2�0� requires
the equations �1��0�= 3

2 and 
��0�=0 �LRO condition, see
above� or, explicitly, J��1+ 1

S +	� +3�2� −
15
2 �+2J���2�− 3

2 �
=0 and J��1+ 1

S +	�+�2�− 9
2 �+4J���2�− 3

2 �=0. In the spe-

cial case S=1 /2, in −S̈i
+, products of spin operators with two

coinciding sites do not appear, which is equivalent to setting
	�=0. Then, the solution of the equations 
��0�=0 yields
�2��0�= 3

2 , i.e., we have �2��0�=�1��0�. We take this equal-
ity also for S�1 and get 	��0�=2− 1

S . To determine the pa-
rameters at finite temperatures, we first consider the high-
temperature limit, where all � parameters approach unity,18

limT→��1,2��T�=1, and the high-temperature series
expansion27 yields limT→�	��T�		�=1–3�4S�S+1��−1. Be-
cause we have identical vertex parameters �2� and �1� as
well as identical parameters 	� and 	� at T=0 and for T
→�, we put �2��T�=�1��T�	���T� and 	��T�=	��T�
		�T� in the whole temperature region. Then, at T�TC we
have the four parameters ��, ��, 	, and C. For their deter-
mination, besides the sum rule �11� and the LRO conditions,

� =0 and 
�=0, we need an additional condition. Reason-

ing similarly as in Ref. 18 for � parameters, we consider the
ratio

r	�T� 	
	�T� − 	�

���T� − 1
= r	�0� �18�

as temperature independent. For T�TC �C=0� we have 
�

�0, and the number of quantities and equations �Eqs. �11�,
�12�, and �18�� is reduced by one.

�ii� Antiferromagnet: As revealed by previous studies of
the 2D S=1 /2 antiferromagnet,18 contrary to the FM case,
the introduction of the vertex parameter �2��1 appreciably
improves the results as compared with the simplification �2
=�1. We expect the same behavior also for the layered anti-
ferromagnet. This can be understood as follows. In the LRO
phase and paraphase with AF SRO, the parameter �1� is
associated with NN correlators of negative sign, whereas �2�

is connected with positive further-distant correlation func-
tions. Therefore, the difference in the sign of the correlators
may be the reason for the relevance of the difference be-
tween �1� and �2�. This is in contrast to the FM case, where
all correlators have a positive sign, and the equality �2�

=�1� is a good assumption. Accordingly, we put �2�=�2 �cf.
Ref. 22�, and, as in the FM case, we take 	�=	. To deter-
mine the five parameters �1�, �1�, �2, 	, and C at T=0, we
have the sum rule �11�, the isotropy condition �12�, and the
LRO condition �Q=0. As the two additional conditions for
fixing the free parameters, we assume 	�0� to be equal to the
FM value, i.e., 	�0�=2− 1

S , and adjust the ground-state en-
ergy u�0� to the expression given by the linear spin-wave
theory �LSWT�, u�0�=uLSWT�0�=−S�S+1��2J� +J��
+ S

N�q
�2J� +J��2− �2J��q+J�cos qz�2. At finite tempera-

tures, besides Eqs. �11� and �12�, and �Q=0 �for T�TN�, we
take Eq. �18� with ���T� replaced by �1��T� and the analo-
gous condition �cf. Refs. 18 and 22�

r��T� 	
�2�T� − 1

�1��T� − 1
= r��0� . �19�

III. RESULTS

As described in Sec. II, the quantities of the RGM deter-
mining the thermodynamic properties have to be numerically
calculated as solutions of a coupled system of nonlinear al-
gebraic self-consistency equations. For example, considering
the antiferromagnet at T�TN, we have 11 equations for C100,
C001, C110, C200, C101, C002 �appearing in Eqs. �6�–�9� and
calculated by Eq. �13��, �1�, �1�, �2, 	, and C. To solve this
system of equations, we use Broyden’s method,31 which
yields the solutions with a relative error of about 10−7 on the
average. The momentum integrals occurring in the self-
consistency equations are done by Gaussian integration.

A. Two-dimensional S�1 magnets

To test the quality of the approximations made in the
RGM, in particular the assumptions about the vertex param-
eters introduced in the decouplings �3� and �4�, we consider
some correlation functions and thermodynamic properties of
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2D S�1 magnets in comparison with ED and QMC data. To
provide a better comparison of the RGM with ED results, we
apply the RGM also to finite systems with periodic boundary
conditions proceeding as in Ref. 27. In Table I our RGM and
ED results for several correlation functions of the 2D anti-
ferromagnet at T=0, also obtained by the RGM for a N=4
�4 square lattice, are presented. Determining the parameters
�see Sec. II� for the finite system with N=16, as an input we
take the ground-state energy in the LSWT that is also evalu-
ated for N=16. Let us consider the NN correlator C10�0�
determining the ground-state energy u�0�=3J�C10. The
LSWT and ED results are in a good agreement �for S=2 they
differ by only 0.1%�. This provides some justification for
using the LSWT data for u�0� as an input also in the 3D AF
case. Note that the LSWT input is of advantage as compared
with the choice made in Ref. 22, where u�0� is composed
approximately from 1D and 2D energy contributions which
is justified for J� /J� �1 only. The further-distant correlators
listed in Table I and calculated by the RGM for N=16 agree
remarkably well �with an average deviation of 0.2%� with
the ED results.

Considering the 2D S=1 ferromagnet, in Fig. 1 the tem-
perature dependence of C10, �, and CV is plotted. For the
finite lattice with N=8, a very good agreement of the RGM
and ED data is found. The comparison with the RGM results
for N→� demonstrates the finite-size effects.

Next, we consider the 2D antiferromagnet at finite tem-
peratures. Since the case S=1 /2 was intensively studied by
the RGM in previous work,18,20 we compare our results for
S=1 with available QMC data.32 As can be seen in Fig. 2, we
obtain a surprisingly good agreement of the RGM with the
QMC results �note that the QMC data for the correlation
length agree with the SE results of Ref. 33�. This agreement
is much better than for the S=1 /2 antiferromagnet.18 Corre-
spondingly, for S=1 we can give a rather reliable value for
the zero-temperature susceptibility, ��0�=0.07197.

As outlined in Sec. II, in our approach more vertex pa-
rameters are introduced as independent equations for them
can be provided by the RGM. Therefore, we have to formu-
late appropriate additional conditions for their determination.
Let us discuss, in comparison to the choice fixed in Sec. II,
two alternate choices of the parameters �2 and 	 for the 2D
S=1 antiferromagnet �in two dimensions we omit the index
�= �, e.g., �1,2� =�1,2�, which are analogous to the choices
made previously for the S=1 /2 antiferromagnet,18 and the
S�1 ferromagnet.19 �i� If we choose �2=�1, the parameter
	�0� can be calculated �note that �2 and 	 only appear in the
combination given by 
� and used in Eq. �18�. Then, we find
the finite-temperature results to be not in such a good agree-
ment with the QMC data as the results obtained by the pa-
rameter choice with �2��1. This corresponds to the findings

TABLE I. Correlation functions CR of the 2D antiferromagnet at T=0, as obtained by the RGM in the thermodynamic limit and for a
finite system with N=16, denoted by RGM�16�, in comparison with the ED data for N=16.

R�

S=1 S=3 /2 S=2

RGM RGM�16� ED RGM RGM�16� ED RGM RGM�16� ED

�1,0� −0.7720 −0.7947 −0.7980 −1.6579 −1.6920 −1.6954 −2.8773 −2.9227 −2.9261

�1,1� 0.5985 0.6156 0.6169 1.3977 1.4230 1.4242 2.5303 2.5638 2.5650

�2,1� −0.5406 −0.6032 −0.6029 −1.3109 −1.4040 −1.4035 −2.4146 −2.5383 −2.5376

�2,2� 0.5077 0.5649 0.5689 1.2616 1.3462 1.3503 2.3488 2.4611 2.4651
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C
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4

χ-1
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T~
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0.6

0.8

C
V

FIG. 1. 2D S=1 ferromagnet: NN correlation function C10, uni-
form static susceptibility � �upper inset�, and specific heat CV

�lower inset� as functions of T̃=T / ��J��S�S+1��, where the results of
the RGM in the thermodynamic limit �solid lines� and for N=8
�dashed lines� and the ED data ��, N=8� are shown.

0 1 2 3
T~

0.06

0.08

0.1

0.12

χ

0 0.5 1 1.5
T~

0

0.2

0.4
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1

ξ-1

0 1 2 3

T~

1

10

100

C
Qzz

FIG. 2. 2D S=1 antiferromagnet: Correlation length , uniform
static susceptibility � �upper inset�, and staggered structure factor

CQ
zz= 1

2CQ �lower inset� as functions of T̃=T / �J�S�S+1��, where the
RGM results �solid lines� are compared with the QMC data of Ref.
32 ���. For comparison, the results of a simplified version of the
RGM with 	�T�=	�0� �see text� are depicted �dot-dashed lines�.
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for the S=1 /2 antiferromagnet18 and may be understood as
explained in Sec. II. Therefore, we discard the choice �2
=�1. �ii� If we adopt �2��1, but neglect the temperature
dependence of 	, i.e., 	�T�=	�0�=2− 1

S �as was assumed for
the FM case in Ref. 19�, the results appreciably deviate from
the QMC data, as is demonstrated in Fig. 2 �dot-dashed
lines�. This gives strong arguments for taking into account
the decrease in 	�T� with increasing temperature �e.g., for
S=1, we have 	�0�=1 and 	�=0.625� and for our choice of
the parameters for the antiferromagnet outlined on Sec. II.
Note that for the S=1 ferromagnet, where �2=�1, the results
shown in Fig. 1 only slightly improve those obtained by the
assumption 	�T�=	�0�.

B. Transition temperatures

An important problem in the study of layered ferromag-
nets and antiferromagnets is the calculation of the transition
temperature TM�M =C ,N� as a function of the interlayer cou-
pling J� and of the spin quantum number S. From the ex-
perimental side, the knowledge of the dependence TM�R ,S�
with R=J� /J� is useful to estimate the interlayer exchange
coupling from measurements of TM. To test the quality of
analytical approaches, the precise results of numerical meth-
ods, such as the QMC6 and SE data,8 should be used as
benchmarks. Considering the 3D isotropic model �R=1�, we

have the inequality8 TN�TC. Moreover, T̃M 	TM / ��J��S�S
+1�� is found to increase with increasing values of S.6,8 Con-
sidering, for example, the RPA, those results are not repro-

duced, instead we have T̃N
RPA= T̃C

RPA, where T̃M
RPA is indepen-

dent of S.11 For layered magnets with R�1, QMC and SE
data in the FM case are still missing, so that there are no
precise statements about the relation between TN and TC as
function of the interlayer coupling. With respect to the agree-
ment with the QMC and SE data, our approach represents an
important improvement as compared, e.g., to the RPA, which
is outlined in the following.

For the 3D ferro- and antiferromagnets, the solution of the
RGM self-consistency equations yields the magnetization
m�T� with m�TM�=0 at the second-order phase transition
temperature TM, where limJ�→0TM =0 is in agreement with
the Mermin-Wagner theorem.34 In Fig. 3 and Table II our

results for T̃M as functions of R and S are presented, where in

Fig. 3 the Néel temperature T̃N is compared with the QMC
data of Ref. 6 and other approaches. For the S=1 antiferro-
magnet we get a very good agreement with the QMC results,
as was also found for the 2D model �see Fig. 2�. Remarkably,
the RPA results for both the S=1 �Ref. 11� and S=1 /2
models10,11 are in a rather good agreement with the QMC
data. Considering the case S=1 /2 �inset of Fig. 3� and R
�0.04, we ascribe the reduction of TN found by the RGM as
compared to the RPA and the mean-field approaches of Refs.
13 and 15 to an improved description of strong AF quantum
fluctuations at low temperatures counteracting the formation
of LRO. For further comparison, the Néel temperature given
very recently14 by the interlayer mean-field approach within
the Schwinger-boson mean-field theory is depicted for S
=1 /2. The marked difference to the other curves �also found

for S=1� might be due to the asymmetry between intralayer
and interlayer correlations introduced in this approach.

Next, we consider the transition temperatures T̃M for ar-

bitrary values of S. The RGM yields T̃C�S�� T̃N�S�, as can be
seen in Table II, which is in accord with the QMC and SE
data, but in contrast to the RPA result �see above�. In passing

to the classical limit S→� we find limS→�T̃M = T̃M
RPA for all

values of R. This may be understood as follows. The RGM is
a second-order theory that goes one step beyond the RPA
and, therefore, provides a better description of quantum fluc-
tuations. Their vanishing for S→� may be reflected in the
equality of the transition temperatures.

We compare our results for the 3D isotropic model
�R=1� with the SE8 and QMC data6 for different spins. For

the ferromagnet, the Curie temperatures T̃C deviate from the

SE values,8 T̃C=1.119 �1.2994, 1.37� for S= 1
2 , �1, 3

2 �, by 10%
�0.5%, 4%�. For the antiferromagnet, the deviations of the

Néel temperatures T̃N from the SE values8 �agreeing with the

QMC values for S=1 /2 and S=1 �Ref. 6��, T̃N

=1.259�1.3676,1.404� for S= 1
2 , �1, 3

2 �, amount to 14%,
�0.6%, 4%�. From the experimental point of view, for the fit
of exchange coupling parameters, deviations in the magni-
tude of transition temperatures of up to about 10% are con-
sidered as a reasonable accuracy. In both the FM and AF

cases the RGM yields the best values of T̃M for S=1. For any
spin, we get the correct relation TN�TC, where the ratio Q
=TN /TC=1.17�1.05,1.02� for S= 1

2 , �1, 3
2 � agrees well with

the SE values Q=1.13�1.05,1.03�. That means, concerning
the difference between TN and TC, the RGM yields good
results for all values of S. Considering the dependences

T̃M�S�, the increase in T̃C with increasing S is in qualitative

agreement with the SE data. For the antiferromagnet, T̃N de-
creases with increasing S being opposite to the behavior of
the SE8 and QMC data.6 This is connected with the inequal-
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FIG. 3. Néel temperature T̃N=TN / �J�S�S+1�� as a function of
the interlayer coupling R=J� /J�. The results of the RGM �solid
lines� and of the empirical formula �20� �dashed lines� are compared
with the QMC data ��, Ref. 6�, the RPA �dotted lines, Ref. 11�, and,
for S=1 /2 �inset�, with the mean-field theories of Refs. 13 ���, 15
�dot-dashed line�, and 14 �dot-dot dashed line�.
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ity T̃N�S= 1
2 �� limS→�T̃N=1.3189, whereas the QMC data6,35

yield T̃N�S= 1
2 �� T̃N�S=��=1.443 �note that in the classical

Heisenberg model35 the spins are taken of unit length, and
the exchange interaction Jcl is related to J	J�=J� by Jcl

=JS�S+1��. Looking for the origin of the inequality found by
the RGM, we consider the Néel temperature of the S=1 /2
antiferromagnet for R=1 �see also the inset of Fig. 3�. We

have T̃N
RGM=1.4382� T̃N

RPA=1.3189� T̃N
QMC=1.259. Here,

the RPA yields a better value of T̃N than the RGM, which is

not expected. If the inequality T̃N
RGM�S=1 /2�� T̃N

RPA

�S=1 /2�= T̃N
RGM�S=�� would hold, T̃N would increase with

increasing S, in accord with the SE and QMC data.
Let us consider the anisotropic magnets �R�1�. For S

=1 /2 and R�0.01 we find TN�TC, and for R�0.01 we
have TN�TC. In the cases S=1 and S=3 /2 we get TN�TC
for all values of R. The peculiarity in the relation between TN
and TC for S=1 /2 may be explained by the presence of
strong AF quantum fluctuations at low temperatures which
may suppress the AF LRO.

For the discussion of experimental data it is convenient to
use an analytical expression for TM�R ,S�. Our RGM results

for the dependence of T̃M on R may be well fitted by the
empirical formula proposed in Ref. 6,

T̃M =
A

B − ln�J�/J��
, �20�

where the values of A and B are listed in Table III. The

concrete values of the coefficients slightly depend on the
choice of data points used for the fit. Since TM reveals the
strongest increase with R for R�1, in this region we take
points lying more dense than for moderate interlayer cou-
plings. The values given in Table III are obtained by choos-
ing points within the interval R=10−4 to 10−2 and R=10−2 to
1 in steps of 
R=10−4 and 
R=10−2, respectively. Then, a
good fit in the whole R region can be achieved in all cases,
except for the S=1 /2 antiferromagnet, where a reasonable fit
by Eq. �20� is obtained for R�0.1 �see Fig. 3�.

C. Specific heat

The temperature dependence of the specific heat CV is
characterized by a cusplike singularity at the transition tem-
perature TM determined by J� and, for sufficiently low inter-
layer couplings, by a broad maximum above TM that is
mainly determined by J�. For the 3D isotropic magnets, CV is
plotted in Fig. 4. Considering the S=1 /2 ferromagnet �see
inset�, above TC we obtain an excellent agreement with the
SE data of Ref. 9. For the S=1 /2 antiferromagnet, the agree-
ment of the RGM with the QMC results7 is very good at
temperatures sufficiently below and above TN, whereas near
TN the height of the cusp is underestimated. Considering the
S dependence of CV in the LRO phase, with increasing S the
slope of the CV curves near TN decreases, and the cusp de-
velops to a kink �see Fig. 4�. The analogous tendency is
found in the FM case. This behavior may be considered as a
deficiency of the RGM, because in the classical Heisenberg

TABLE II. Transition temperatures T̃M =TM / ��J��S�S+1�� of the ferromagnet �T̃C� and antiferromagnet

�T̃N� calculated by the RGM for different spins S and interlayer couplings J� /J�.

J� /J�

Ferromagnet Antiferromagnet

S=�S=1 /2 S=1 S=3 /2 S=1 /2 S=1 S=3 /2

0.0001 0.2457 0.3243 0.3542 0.1589 0.3393 0.3681 0.3305

0.0005 0.2928 0.3758 0.4041 0.2150 0.4014 0.4170 0.3785

0.001 0.3184 0.4027 0.4298 0.2498 0.4331 0.4421 0.4039

0.005 0.3961 0.4803 0.5035 0.3694 0.5195 0.5133 0.4784

0.01 0.4403 0.5226 0.5436 0.4430 0.5640 0.5521 0.5200

0.02 0.4935 0.5725 0.5911 0.5311 0.6150 0.5986 0.5698

0.05 0.5826 0.6552 0.6706 0.6681 0.6979 0.6776 0.6538

0.1 0.6699 0.7368 0.7503 0.7870 0.7800 0.7583 0.7378

0.5 0.9953 1.0571 1.0694 1.1655 1.1121 1.0884 1.0667

1.0 1.2346 1.3063 1.3208 1.4382 1.3762 1.3478 1.3189

TABLE III. Coefficients of the empirical law �Eq. �20�� for the transition temperatures of the ferro- and
antiferromagnet.

Ferromagnet Antiferromagnet

S=�S=1 /2 S=1 S=3 /2 S=1 /2 S=1 S=3 /2

A 3.15 4.00 4.27 1.95 4.36 4.34 3.96

B 2.50 3.08 3.27 0.01 3.21 3.27 3.01

JUHÁSZ JUNGER, IHLE, AND RICHTER PHYSICAL REVIEW B 80, 064425 �2009�

064425-6



model �S→�� the QMC data of Ref. 36 yield evidence for a
cusplike structure of CV at TM.

Next, we consider the specific heat of quasi-2D magnets.
In the ferromagnet a broad maximum, in addition to the
phase-transition singularity, appears at R�0.035�R�0.015�
for S=1 /2�S=1�, as can be seen in Fig. 5. The analogous
behavior is found for the antiferromagnet, as shown in Fig. 6.
Here, the broad maximum occurs at R�2−3�R�0.015� for
S=1 /2�S=1�, which agrees with the S=1 /2 QMC data of
Ref. 5. As for the isotropic S=1 /2 antiferromagnet �cf. Fig-
ure 4�, the RGM agrees well with the QMC results at low
and high temperatures. Again, the height of the cusp is un-
derestimated, where the relative deviation of CV�TN� from
the QMC values increases with decreasing R.

Recently, specific heat data for the quasi-2D S=1 /2 anti-
ferromagnet Zn2VO�PO4�2 were presented.37 Taking TN
=3.75 K and J� =7.41 K from Ref. 37, by Eq. �20� and

Table III we get R=5.8�10−2. Calculating the specific heat,
we obtain a broad maximum at Tm=5.9 K with CV�Tm�
=0.45 which corresponds to the measured broad hump at
Th=4.5 K with the height CV�Th�=0.45 agreeing with the
theoretical value of CV�Tm�. At TN, the experiment shows a
pronounced cusp with CV�TN��0.6. As discussed above �see
Fig. 6�, this feature cannot be reproduced by the RGM, in-
stead we get a small spike at TN with CV�TN��0.3.

D. Correlation length

The intralayer and interlayer correlation lengths �,
��= � ,�� for R�0 diverge as T approaches TM from above.
In the vicinity of TM, �

−1, and �
−1 behave as T−TM �corre-

sponding to the critical index �=1� also found by previous
mean-field approaches.15,16 This can be seen in Fig. 7 that

shows �
−1 versus T̃=T / ��J��S�S+1�� of the S=1 /2 and S=1
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ferromagnet. The curves for the antiferromagnet look similar.
At fixed R�1 and S we have ��� which corresponds to
the weaker interlayer as compared to the intralayer correla-
tions. Considering the S dependence of � for the ferromag-

net, we have T̃C�S=1 /2�� T̃C�S=1� �see Fig. 7 and Sec.

III B� which implies, at fixed T̃� T̃C and R, the inequality
��S=1 /2����S=1�. Note that recently, an analogous S de-
pendence for the longitudinal correlation length zz of the 2D
ferromagnet in a small magnetic field was found, also by

QMC,25 i.e., zz�S=1 /2��zz�S=1� at fixed T̃.
Let us compare our results for the intralayer correlation

length � with the neutron-scattering data on the S=1
quasi-2D antiferromagnet La2NiO4.3 Taking TN=327.5 K
and J� =28.7 meV from Ref. 3, by Eq. �20� and Table III we
obtain R=3.5�10−3. In Fig. 8 the experimental data are plot-
ted in comparison to the QMC data for R=0 �Ref. 32� and
the RGM results for R=0 and R=3.5�10−3, where a satis-
factory overall agreement with experiments is found. At

fixed temperature, the correlation length for R�0 is larger
than for R=0, because � diverges at TN. To explain the
neutron-scattering experiments, in Ref. 3 a small Ising aniso-
tropy in the strictly 2D model was considered which leads to
a finite transition temperature somewhat below TN. Such an
easy-axis anisotropy was also discussed in Ref. 17 to explain
the experiments. However, as was shown in Ref. 32, the
experimental data with exp�QMC �see Fig. 8� are incompat-
ible with the QMC results obtained for the 2D model with a
small Ising anisotropy, since it even enhances the correlation
length at low temperature. In our approach, the finite value
of TN is ascribed entirely to the interlayer coupling which
gives �QMC. To improve the agreement with experiments,
let us point out, that in our calculations a simple cubic lattice
was taken, whereas in the orthorhombic structure of La2NiO4
the interlayer coupling is frustrated. As was shown in Ref.
29, in the J1−J2 model, frustration may appreciably reduce
the correlation length. The influence of frustration on the
transition temperature and correlation length of quasi-2D
Heisenberg magnets will be left for further study.

IV. SUMMARY

In this paper, the thermodynamics of layered Heisenberg
magnets with arbitrary spin S is systematically investigated
by a spin-rotation-invariant Green-function method and by
exact diagonalizations on finite 2D lattices. The main focus
is put on the calculation of the Curie temperature TC and the
Néel temperature TN in dependence on the interlayer cou-
pling J� and the spin quantum number. From the numerical
data we obtain simple empirical formulas for TC,N�J��. A
good agreement of our results, in particular on the relation
between TC and TN, with available quantum Monte Carlo and
series-expansion data is found. The comparison to experi-
ments on the quasi-2D antiferromagnets Zn2VO�PO4�2 and
La2NiO4 yields a reasonable agreement. From our results, we
conclude that the application of the second-order Green-
function approach to extended layered Heisenberg models
�frustration, anisotropy in spin space� may be promising to
describe the unconventional magnetic properties of real low-
dimensional quantum spin systems.
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