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The equation of state P�V ,T� for solid neon is obtained from a quantum theoretical treatment using two- and
three-body forces, and an anharmonic treatment for lattice vibrations and temperature effects within the Ein-
stein approximation. Our results are in excellent agreement with experiment for the pressure and temperature
range of up to 200 GPa and 900 K. The calculated equation of state is fitted to an analytical expression for the
pressure-volume dependence P�V� of the two- and three-body terms and the Einstein frequency �E�V� with
high accuracy for a pressure range up to 500 GPa.

DOI: 10.1103/PhysRevB.80.064106 PACS number�s�: 64.30.Jk, 61.66.Bi, 62.50.�p, 63.20.D�

I. INTRODUCTION

Neon is a noble gas, has closed electron shells, and it
crystallizes only in a face-centered cubic structure. Because
of its simplicity, neon seems to be an ideal test system for
both wave-function and density-functional-based theoretical
methods.1 It is however a nontrivial task to accurately obtain
the equation of state �EOS� for any solid including neon at
any given temperature and volume up to high pressures.2–5

The usual procedure to obtain precise equations of state is to
fit results from accurate computer simulations using first-
principles quantum theoretical methods or to experimental
measurements. While accurate experimental measurements
for neon are available for pressures and temperatures up to
200 GPa and 1000 K, respectively,5–10 the simulation of the
corresponding isotherms involve a fit to empirical expres-
sions such as the Birch-Murnaghan11 or Vinet12 EOSs for
experimental data,13,14 which are not capable to reproduce
the whole pressure-volume range.

On the theoretical side, equations of state for the hard-
sphere model of solids have been derived for face-centered
cubic and hexagonal closed-packed lattices.15–18 Even
though the polarizability of neon is quite small �2.67 a.u.
�Ref. 19��, it cannot be treated within the hard-sphere model
especially at higher pressures, as the quantum theoretical
treatment of solid neon involves the correct description of
dispersive type of interactions �van der Waals�, overlap and
repulsive effects and effects resulting from the lattice
dynamics.20,21 As density-functional theory is currently not
capable to account for both dispersive type of interactions in
the long range and overlap effects in the short range to suf-
ficiently high accuracy,22,23 the quantum theoretical treatment
of rare-gas solids is restricted to wave-function-based theo-
ries. Recent developments include the method of increments
�IC� within coupled-cluster �CC� theory developed by Stoll
and Paulus,24,25 which was successfully applied to rare-gas
solids �at zero pressure and temperature� by Rosćiszewski et
al.26,27 However, the method of increments would be compu-
tationally too demanding to produce the equation of state up
to high pressures and temperatures.

Here we present a quantum theoretical treatment within a
many-body decomposition of the total interaction energy,
which includes the accurate treatment of two- and three-body

forces, to obtain the equation of state for solid neon. Our
results are within the experimental uncertainty for the avail-
able pressure-temperature range.

II. THEORY

We obtain the pressure P�V ,T� as a function of volume V
and temperature T from P�V ,T�=−dF�V ,T� /dV, with F be-
ing the Helmholtz free energy,

F�V,T� = E2�V� + E3�V� + EHZPV�V� + EAZPV�V�

+ kBT�
i

ln�1 − exp�− ��i�V�/kBT�� . �1�

The Tang-Toennis expression for the two-body interaction
energy E2�V� between two neon atoms is used, which was
recently obtained from a complete basis set limit study using
relativistic coupled-cluster theory by Hellmann et al.28 For
the three-body term E3�V� we performed CC calculations
including single and double substitutions plus noniterative
triples, CCSD�T�, using an augmented correlation consistent
quintuple-zeta basis set �aug-cc-pV5Z� for Ne3 �D3h�,29 and
subsequently adjusted our data to an extended triple-dipole
Axilrod-Teller �EAT� potential, which takes care of both at-
tractive overlap effects in the short-range region and repul-
sive effects in the long-range of the Ne3 three-body term,

E3
EAT�i, j,k� = f��c0rg

−9 + �c1 + c2rg
2 + c3rg

4�e−c4rs�

with f� = �1 + 3 cos �i cos � j cos �k� ,

rg = �rijrjkrik�1/3, and rs = rij + rjk + rik �2�

with rij being the distance between two neon atoms i and j in
the fcc crystal, and �i the corresponding angle between the
vectors r�ij and r�ik. The adjusted parameters �in atomic units�
are c0=12.9236, c1=466.449, c2=−168.680, c3=4.32545,
and c4=1.23818. The three-body EAT potential is shown in
Fig. 1 in comparison with three other potentials published
previously.30–33 As Fig. 1 clearly demonstrates the EAT po-
tential has the correct long-range behavior of the triple-
dipole AT term.

The total two- and three-body term E3�V� is obtained by
summing over all three-body interactions in the fcc crystal
considering translational symmetry,34
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E2�V� + E3�V� =
1

2�
i

N

E2�r0i� +
1

3�
i�j

N

E3�r0i,r0j,rij� , �3�

where r0i is the distance between the inner most �central
atom� and atom i in the fcc lattice for a specific lattice con-
stant a and corresponding volume V=a3 /4. We took N
=50 000 atoms in our lattice summation for the two- and
three-body forces, which is sufficient to converge the lattice
constant out to five significant digits in our optimization pro-
cedure.

EHZPV�V� in Eq. �1� is the harmonic �H� zero-point vibra-
tional �ZPV� energy which takes care of the lattice dynamics.
Here we adopt the simple Einstein �E� approximation by
moving one neon atom in the static field of all other atoms in
the fcc crystal, which gives the simple expression
EHZPV�V�=3��E�V� /2, where �E is the Einstein frequency
obtained from two-body forces only. Anharmonicity effects,
EAZPV�V�, were accounted for by using a perturbative ap-
proach �PT� within the Einstein approximation as outlined in
Ref. 34. This greatly simplifies the last Boltzmann term in
Eq. �1� leading to the expression for the thermal phonon
pressure,

Pth = − 3�exp���E�V�/kBT� − 1�−1�d�E�V�/dV . �4�

Note that Eq. �4� is not valid near the melting point, as in
the harmonic approximation �E approaches zero and the per-
turbative anharmonic treatment breaks down. This corre-
sponds to a point where symmetry breaks and the fcc lattice
becomes unstable. In our calculations this occurs at a volume
of 17.8 cm3 /mol, which results in a density of 1.14 g/mol
close to the experimental value of liquid neon �1.21 g /cm3

at 27 K �Ref. 35��. Moreover, at extremely high tempera-
tures, pressure from electronic excitations has to be consid-
ered as well, which can be neglected here for the temperature
range studied.

III. DISCUSSION

We tested our approach for the fcc lattice of the 20-Ne
isotope where experimental data are available. The results

are presented in Table I in comparison with recent calcula-
tions from other research groups.27,40–42

Taking all terms into account as shown in Eq. �1� leads to
results very close to experimental measurements. Only the
more elaborate IC coupled-cluster calculations by Rosćisze-
wski et al.27 are close to our values. It is also evident that for
the lattice constant, cohesive energy, and bulk modulus ZPV
effects need to be included. In fact, our results show that
lattice vibrations lower the cohesive energy by 28% and the
bulk modulus is basically halved. We mention, however, that
for the bulk modulus the main change comes from the in-
crease in the lattice constant due to zero-point vibrational
contributions, as this property is very sensitive to slight
changes in the lattice constant.

Included in our table are results from taking the phonon
dispersion �PD� into account as described in detail in Ref.
43. They lead to relatively small changes compared to the
Einstein approximation. Moreover, we tested the Einstein
model at small constant volumes �high pressures of 500 GPa�
which lead only to small changes in the calculated pressure.
Table I also compares our three-body term with the standard
Axilrod-Teller repulsive potential �in atomic units c0=12.02,
ci=0 for i�1 �Ref. 32�� and to the empirically fitted modi-
fied AT �MAT� potential by Freiman and Tretyak30 �c0
=11.835, c1=566.969, c2=c3=0, and c4=1.1896�.33

The calculated isotherms from Eq. �1� are shown in Fig. 2
in comparison with experimental data. In order to make the
different isotherms more visible, we also include graphs in
the low-pressure region of up to 50 GPa. Our results are

FIG. 1. �Color online� A comparison of different three-body
potentials for the equilateral triangle of Ne3 �r12=r13=r23�. AT: re-
pulsive Axilrod-Teller term �c0=12.9236�; EAT: extended AT of Eq.
�1� as used in this work; MAT: modified AT by Freiman and Tretyak
�Ref. 30�; TBE: three-body potential of Ermakova et al.�Ref. 31�
The vertical line shows the nearest-neighbor distance in fcc neon.

TABLE I. Optimized properties for fcc lattice of 20-Ne. Lattice
constant a0 in Å, cohesive energy Ecoh in cm−1, and bulk modulus
B0 in GPa. Experimental data �extrapolated to 0 K� from Refs.
36–39. See Eq. �1� for the definition of the individual interaction
terms. IC: Method of increments �Ref. 25�; L-MP2: Local second-
order Møller-Plesset; PW91+vdW: The PW91 density functional
plus van der Waals correction. HFWL: Hartree-Fock exchange plus
Wilson-Levy correlation functional.

Method a0 Ecoh B0

Expt. 4.4644 161.6�0.7 1.102�0.012

E2 4.2794 229.2 2.037

E2+E3
AT 4.2959 221.6 1.951

E2+E3
MAT 4.2807 223.6 2.010

E2+E3
EAT 4.2939 221.5 1.903

E2+E3
EAT+EHZPV

E 4.4772 162.3 0.974

E2+E3
EAT+EHZPV

PD 4.4579 164.1 1.077

E2+E3
EAT+EHZPV

E +EAZPV
PT 4.4687 157.4 1.095

E2+E3
EAT+EHZPV

PD +EAZPV
PT 4.4509 159.4 1.174

IC-CCSD�T�+EHZPV
PD a 4.468 164.8 1.09

LMP2b 4.35 165.5 0.61

PW91+vdW c 4.562 2.1

HFWLd 4.22 219.9

aReference 27.
bReference 40.
cReference 41.
dReference 42.
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again in excellent agreement with experimental data. To
make the agreement between our calculated results and the
experimental data more apparent, we show in Fig. 3 the per-
centage deviations between theory and experiment �negative
values imply that the calculated results are below experi-
ment�. We note that we are in better agreement with the data
given by Hemley et al.8 than with the newer measurements
by Dewaele et al.,9 which could be due to small deficiencies
in our three-body potential or to systematic experimental er-
rors.

In Fig. 3 we also show that three-body terms become
most important in the low-volume �high-pressure� region
�deviation from experiment using E2�V� only�, while in the
large-volume �low-pressure� region thermal contributions
seem to dominate �deviation from experiment using E2�V�
+E3�V�+EZPV�V��. Best agreement with experiment is only
achieved if all contribution as shown in Eq. �1� are taken into
account, with the exception of perhaps anharmonicity ef-
fects, which are rather small in the high-pressure regime. For
example, at a lattice constant of a=2.5 Å �V
=2.352 cm3 /mol� and a temperature of 300 K we calculate a
total pressure of Ptotal=560.7 GPa. The individual contribu-
tions from Eq. �1� are: two-body P2=735.2 GPa, three-body
P3=−184.6 GPa, harmonic ZPV correction PHZPV
=10.0 GPa, anharmonic correction PAZPV=−0.7 MPa, and
thermal correction Pth=0.2 GPa. In comparison, at a
=3.7 Å �V=7.626 cm3 /mol� we have Ptotal=6.49 GPa, P2

=4.54 GPa, P3=−0.17 GPa, PHZPV=0.70 GPa, PAZPV=
−1.8 MPa, and Pth=1.42 GPa. Our results give also support
to the fast convergence of the many-body expansion for neon
even at high pressures.44

We can now address the important problem of finding an
EOS for solid neon. As we use the Einstein approximation
we express the total pressure in functions of V ,�E�V� and T,

P�V,�E�V�,T� = P2+3�V� + PZPV��E�V�� + Pth��E�V�,T� .

�5�

Hence we only require least-squares adjustments for the
two functions P2+3�V� and �E�V�, where P2+3�V� is the pres-
sure containing the two-and three-body interaction terms de-
rived from E2�V� and E3�V� in Eq. �1�. With the two func-
tions one easily determines from Eq. �5� the complete EOS.
This, of course, cannot be done so easily if we take the full
phonon dispersion into account.

From both the particle-in-a-box and the Fermi electron-
gas model we expect that P�V−5/3.45 This term is, for ex-
ample, included in the second-order Birch-Murnaghan11

EOS. However, neither the Birch-Murnaghan nor the Vinet
EOSs gave reasonable least-squares adjustments for the
whole pressure range. We therefore use a simple exponential
expression for both P2+3�V� and �E�V� which we found to
perform best, i.e.,

f�V� = �
n=0

anV−nebnV. �6�

FIG. 2. �Color online� Calculated isotherms for solid neon up to
500 GPa �50 GPa for the bottom figure� and 1200 K. Experimental
values obtained from different research groups are shown as well.
In detail: 300 K measurements by Hemley et al.�Ref. 8�; 293 K
Finger et al.�Ref. 7�; all other measurements at different tempera-
tures by Dewaele et al. �Ref. 9�.
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FIG. 3. �Color online� Percentage deviation from the experimen-
tal pressure values �Refs. 8 and 9� at given volume and temperature.
Top: Deviations shown for individual terms used in Eq. �1�. Bot-
tom: Deviations shown for the complete sum terms in Eq. �1�.
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The adjusted parameters are listed in Table II. Anharmo-
nicity effects are within the error of our least-squares fit pro-
cedure �see mean absolute error in Table I�, and we therefore
report the adjusted parameters for the harmonic Einstein fre-
quency only. This formula is valid in the range of 0� P
�500 GPa and gives a lattice constant of a0=4.297 Å in
reasonable agreement with our E2+E3

EAT result shown in
Table I. Even for the bulk modulus we obtain 1.794 GPa in
good agreement with the value shown in Table I.

IV. CONCLUSION

In conclusion, we presented calculations for the EOS for
solid neon up to high pressures and temperatures, which are
in good agreement with experiment. Further improvements
require a more complete treatment of the three-body force
similar to the work by Røeggen46 for helium, the four-body
force, and the correct treatment of the phonon dispersion
including anharmonicity effects. Close to the melting point
dynamic effects need to be considered. We mention that we
demonstrated recently that such an approach also leads to
very accurate melting temperatures for neon and argon under
normal conditions.47,48 On the experimental side, the mea-
surements presented by different research groups can deviate
significantly �e.g., see the scatter of data in Fig. 3�, and more
accurate low- and high-pressure measurements for solid neon
are required. We expect that the method applied will lead to
similar good results for the EOS of the heavier rare-gas sol-
ids. Investigations into solid helium are currently underway.
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