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We have examined the relationship between the variance in the atomic-level hydrostatic pressure, ��p2�1/2,
and the widths of the first peaks in the reciprocal- and real-space distribution functions for elastically deformed
metallic glasses. In situ synchrotron x-ray scattering studies performed on a binary Cu64.5Zr35.5 glass subject to
uniaxial loading reveal that the width of the first peak in the reduced-pair distribution function is dependent on
the different elastic responses of the partial-pair correlations. Molecular dynamics �MD� simulations of the
same binary glass, as well as a single-component glass, subject to hydrostatic deformation show that the widths
of the first peaks in the partial-pair distribution functions are affected by length-scale-dependent changes in the
relative atomic separation in the first nearest-neighbor shell. Moreover, the MD simulations show that the strain
dependencies of the partial-pair peak widths do not necessarily match the strain-dependence of ��p2�1/2. The
results suggest that the widths of the peaks in the reciprocal- and real-space functions are not solely dependent
on ��p2�1/2 but rather are also affected by the atomic rearrangements associated with elastic deformation.
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I. INTRODUCTION

The structural aspects involved in the elastic deformation
of metallic glasses differ from those of crystalline materials
in which the atoms are confined by the symmetry of the
lattice. Despite the disordered nature of the atomic structure
of metallic glasses, x-ray and neutron scattering can be uti-
lized to examine the atomic-scale elastic deformation behav-
ior of metallic glasses.1–5 In particular, changes in atomic
separations associated with elastic deformation of a metallic
glass can be determined from the shifts in the peaks of the
reciprocal- and real-space distribution functions. Moreover,
by utilizing a two-dimensional �2D� area detector, the atomic
separations in two principal directions �parallel and normal
to the loading axis� can be measured simultaneously. The
widths of the first peaks in the reciprocal- and real-space
distribution functions have also been reported to be depen-
dent on the applied stress.2,3 For instance, Hufnagel et al.2

examined the stress dependence of the radial distribution
function �RDF� peak width for a Zr-Cu-Ni-Al-Ti metallic
glass loaded in uniaxial compression. Using a two-Gaussian-
peak model to fit the first shell, they found that the peak
widths of the RDF corresponding to atomic correlations
along the longitudinal direction �parallel to loading axis� de-
creased with increasing compressive stress, while the peak
widths in the transverse direction �normal to loading axis�
increased with increasing compressive stress. Interestingly,
the magnitude of the increase in the peak widths in the trans-
verse direction were less than the decrease in the longitudinal
direction by a factor approximately equal to Poisson’s ratio.
Moreover, Das et al.3 examined the strain dependence of the
width of the first peak in the total structure factor, S�Q�, for
a similar Zr-based metallic glass and a ternary Zr-Cu-Al
glass loaded in uniaxial compression. From their in situ mea-
surements, they found that the width of the first peak in S�Q�
for the longitudinal direction decreased with increasing com-

pressive stress and increased, to a lesser extent, for the trans-
verse direction. In both studies, the overall decrease in peak
widths for the reciprocal- and real-space functions was attrib-
uted to a decrease in the variance of the atomic-level hydro-
static pressure distribution.

The importance of atomic-level stresses in describing the
structure of amorphous solids has been previously shown by
Egami et al.6 The local hydrostatic pressure, p, describes the
local-density fluctuations and is simply defined as

p = −
1

3
��1 + �2 + �3� , �1�

where �1, �2, and �3 are the three principal stresses.7 While
the average hydrostatic pressure, �p�, of the system tends to
zero, the variance of the local hydrostatic pressure, ��p2�1/2,
has been found to approach 6% of the bulk modulus.8 Srolo-
vitz and co-workers8 examined the relationship between the
pair-distribution function, g�r�, and the hydrostatic pressure
variance for a single-component model amorphous structure
containing 2067 atoms9 with a modified Johnson potential10

for iron. To study the effects of the local-density fluctuations
on g�r�, they divided the p distribution into three sections;
one section each for the 25% of the atoms subject to largest
compressive and tensile pressures, respectively, and the third
section corresponding to the remaining atoms with the small-
est hydrostatic pressures. To examine the effects of anneal-
ing, they excluded the atoms in the two edge sections in the
p distribution and calculated g�r� by successively centering
the origin on only the atoms that corresponded to the central
section of the p distribution. From their analysis, they deter-
mined that the width of the first peak in the g�r� decreased as
the variance in p decreased. It should be noted that the mod-
els examined in the work above were not strained, therefore,
the affects of applied strain on ��p2�1/2 and the peak widths
were not examined.
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The physical nature of the distribution-function-peak
width changes during deformation remains unclear. In the
current study, we examine the relationship between the vari-
ance in the local hydrostatic pressure and the widths of the
first peaks in the reciprocal- and real-space distribution func-
tions for elastically deformed metallic glasses. Using in situ
synchrotron x-ray scattering we studied a binary Cu64.5Zr35.5
glass subject to uniaxial compression and tension. The ex-
perimental observations were compared to molecular dynam-
ics �MD� simulations of the same binary glass subject to
uniaxial and hydrostatic deformation, as well as a single-
component glass deformed hydrostatically. From both the
x-ray and MD results we find that the widths of the first
peaks in the total-distribution functions are strongly depen-
dent on the different elastic responses of the partial-pair cor-
relations. Furthermore, we find that the widths of the first
peaks in the partial-pair distribution functions can exhibit
strain dependencies different than that of the total-pair distri-
bution function. The results suggest that the widths of the
peaks in the reciprocal- and real-space functions are not
solely dependent on ��p2�1/2. The nature of the atomic dis-
placements that result in the different strain dependencies of
the peak widths is discussed.

II. EXPERIMENTAL AND NUMERICAL TECHNIQUES

A. Sample preparation

Alloy ingots of nominal composition Cu64.5Zr35.5 were
prepared by arc melting pure elements in an Ar environment.
The ingots, which were melted and flipped several times to
promote homogeneity, were cast into a 10-mm-diameter Cu
mold.11 Approximately 12 g of the as-cast rod was cut and
melted in a graphite tube to prepare ribbons by melt spinning
using a single-roller Cu wheel with a linear surface velocity
of 10 m/s. The ribbons for the tensile experiments were ap-
proximately 4 mm wide and 100 �m in thickness. For the
compression experiments, rods were prepared by injection
casting �1 g of the cast Cu64.5Zr35.5 10 mm rod into a Cu
mold 1.2 mm in diameter and 40 mm in length. The rods
were subsequently ground to �1 mm in diameter to assure a
cylindrical cross section and cut to a length:diameter ratio of
2:1. Lastly, the ends were polished in a jig to ensure paral-
lelism.

B. In situ x-ray scattering

The in situ x-ray experiments were performed at the 1-ID
beamline of the Advanced Photon Source at Argonne Na-
tional Laboratory. Monochromatic 85.980 keV ��
=0.01442 nm� x-rays were used for the experiments per-
formed in transmission mode. The samples were loaded in a
MTS model 858 load frame mounted on a translation stage
to allow for movement of the sample in the plane normal to
the beam direction. A GE amorphous Si detector with a pixel
size of 200�200 �m was placed 362 mm downstream from
the samples to record the scattered intensity out to a Q-range
of �20 Å−1 �Q=4� sin � /��. The 2D images were azimuth-
ally binned into slices of 6° and the scattering patterns �in-
tensity versus scattering vector� corresponding to the longi-

tudinal �loading axis� and the transverse directions were
extracted by integrating the bins that fall between 	9° about
the principal axes using the software package FIT2D.12

For the tensile experiments, the samples were loaded in
increments of 50 MPa and held at each load to acquire ten
images with 1 s exposure times. The ten images for each
loading step were averaged and then integrated as described
above. To measure the macroscopic strain along the loading
axis, a strain gage was attached to the tensile samples. For
the compression experiments, the experiments were done in
real time at a constant strain rate of �2�10−4 s−1. Expo-
sures were obtained during loading at a frequency of 1 Hz.
For the high-temperature compression experiments the
samples were heated in an infrared furnace to 425 °C and
deformed at a constant strain rate of 10−4 s−1. Prior to load-
ing the samples for both the compressive and tensile tests
were annealed at 375 °C for 270 min to allow for structural
relaxation.

For the integrated diffraction patterns, I�Q�, correspond-
ing to the longitudinal and transverse directions, the scans
were corrected for absorption, polarization, multiple scatter-
ing, and Compton scattering using the PDFGETX2

software13–18 and the total structure factor, S�Q�, was calcu-
lated according to

S�Q� = 1 +
�I�Q� − �

i=1

n

ai�f i�Q��2	

 �

i=1

n

aif i�Q�
2 , �2�

where ai is the atomic fraction of each element and f i is the
Q-dependent scattering factor for each element.

The real-space reduced-pair-distribution function, G�r�,
was calculated by Fourier transforming the total structure
factor as follows:

G�r� = 4�r�
�r� − 
o� =
2

�



0

�

�S�Q� − 1�sin�Qr�dQ , �3�

where 
�r� is the atomic density at a distance r away from an
average atom located at the origin and 
o is the average
atomic density. It should be noted that Eq. �3� assumes that
the glass is isotropic, which is not the case for a glass subject
to uniaxial loading. Dmowski and co-workers19 found that
the correction is not overly large for thermomechanically in-
duced bond-length anisotropy, therefore, we did not use
spherical harmonics to calculate the distribution functions for
the longitudinal and transverse directions. Furthermore, the
cylindrical geometry of the compression samples was not
considered in the absorption- and multiple-scattering correc-
tions, however, we did check the results against selected
scans that were corrected for the cylindrical geometry and
found that the differences between the measured peak widths
using the flat plate geometry and the cylindrical geometry
were all �0.01%.

C. Molecular dynamics simulations

We performed MD simulations of two glass systems,
amorphous Cu-Zr and Al, subject to deformation. The mod-
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els of amorphous Cu64.5Zr35.5 and Cu33.3Zr66.7 alloys were
created using the interatomic potential from Ref. 20. The
details of the MD simulations can be found in Ref. 21. The
details of the creation of the one-component model described
by the Ercolessi-Adams Al potential22 and some its proper-
ties are described in Ref. 23. For the Cu64.5Zr35.5 model we
simulated uniaxial deformation for comparison with the ex-
perimental measurements. Unlike the experiments in which
there are free surfaces normal to the loading axis, it is not
reasonable to utilize free surfaces in the simulations since the
surface effect would be very large for a relatively small
model with dimensions of �4 nm. Therefore, in our simu-
lations the model had periodic boundary conditions in all
directions. The model size in the z direction was changed
according to the chosen value of the applied strain 
zz while
the model size in the x and y directions was chosen such that
�xx=�yy =0. We performed 20 000 MD steps ��40.7 ps� to

equilibrate the models. Since the applied strain is not isotro-
pic, directional-pair-distribution functions were calculated.
For the longitudinal direction only pairs with angle not larger
than 	9° from the z axis were included in the directional-
pair-distribution function and for the transverse direction
only pairs with angle not larger than 	9° from the xy plane
were included in the directional-pair-distribution function.
Thus only 1.2% and 15.6% of pairs were used to obtain the
longitudinal and transverse functions, respectively. Obvi-
ously, the statistics for the longitudinal functions are worse
than that for the transverse functions. All pair-distribution
functions were averaged during the next 200 000 MD steps
after each applied strain.

To simulate hydrostatic deformation �
xx=
yy =
zz ; 
xy
=
yz=
xz=0� in all three models, we changed the model size
according to the chosen value of 
, performed 20 000 MD
steps and then averaged the model partial-pair distribution
functions during the next 200 000 MD steps. The pair-
distribution functions were calculated using as step size
0.025 Å for both systems. The structure factor for the Al
glass was calculated via inverse Fourier transformation of the
pair-distribution function using a step size of 0.025 Å−1.

The atomic pressure, pi, in each model was calculated
according to

pi =
kTi

V/N
+

1

3V/N �
j=i+1

N

Fijrij , �4�

where k is Boltzman’s constant, Ti is the temperature of atom
i, Fij is the force acting on atom i from atom j, rij is the
distance between atom i and j, and V /N is the average
atomic volume. From this, the variance in the hydrostatic
pressure was calculated from

��p2�1/2 =� 1

N
�
i=1

N

�pi − p�2, �5�

for which p is the pressure in the model.

III. RESULTS AND DISCUSSION

A. Peak widths from in situ x-ray scattering

The first peaks of the total G�r� and S�Q� functions �lon-
gitudinal direction� measured by x-ray scattering for a
Cu64.5Zr35.5 sample under a small tensile load are shown in
Fig. 1. The shape of the peaks in both functions raises the
important question of how peak widths are measured. While
the first peak in the total S�Q� appears to be reasonably sym-
metric, it is in fact a convolution of the three partial-pair
structure factors for the binary glass. The convolution of the
three partial pairs is more clearly seen in the first peak of the
total G�r�, which corresponds to the real-space description of
Cu-Cu, Cu-Zr, and Zr-Zr bond distances within the first
nearest-neighbor atomic shell. The low-r side of the first
peak centered at �2.8 Å shows a higher intensity peak cor-
responding to primarily Cu-Cu and Cu-Zr correlations while
the shoulder on the high-r side at �3.2 Å can be attributed
to Zr-Zr correlations. The assignment of the partial-pair cor-
relations to the low- and high-r sides of the first peak is

(a)

(b)

FIG. 1. First peak in the total �a� G�r� and �b� S�Q� for the
longitudinal direction of a Cu64.5Zr35.5 alloy under small tensile
load.
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based on the MD simulations of the alloy.20 Due to the ob-
vious asymmetry of the first peak in the total G�r�, a single-
peak profile cannot be used to determine the width. One
approach is to use a three-peak model to fit the individual
partial-pair correlations but without any additional con-
straints accurately measuring small changes in the peak
widths is difficult due to the large number of variable param-
eters associated with fitting three peaks. An alternative to
fitting the data to specified peak profiles is to measure the r
values at which G�r� crosses some specified value �e.g.,
G�r�=0 Å−2�. The peak width is then simply defined as the
difference of the two intercept points. On the one hand this
method does not allow us to measure the peak widths of the
individual partial pairs. On the other hand, it is rather sensi-
tive to small changes in the peak width of the total G�r�.
Selecting the appropriate intercept points to define the peak
width should not be arbitrary, however, since the measure-
ments are dependent on which partial-pair correlations are
being sampled. For example, if the intercept points are cho-
sen where G�r�=4 Å−2, then the Zr-Zr correlations are not
likely being included since GZr-Zr�r� is lower in intensity than
GCu-Cu�r� an GCu-Zr�r�. For measuring the width of the first
peak in the total G�r� in the current study, we chose G�r�
=0 Å−2 as the intercept value since all three partial-pair cor-
relations and the total G�r� oscillate around this value. Like-
wise, the width of the first peak in the total S�Q� was defined
as the difference between the two intercept points where
S�Q�=1. The measured widths of the first peaks in the total
G�r� and S�Q� as functions of applied stress for the
Cu64.5Zr35.5 metallic glass are shown in Fig. 2. Note, the data
in Fig. 2 are a combination of measurements in uniaxial ten-
sion for the melt-spun ribbons and uniaxial compression for
the injection-cast rods. For G�r�, the peak width appears to
exhibit a more or less linear stress dependence. For the lon-
gitudinal direction �parallel to loading axis� the peak width
decreases for compressive loading and increases for tensile
loading. In contrast, the G�r� peak width in the transverse
direction �normal to loading axis� increases for compressive
loading and decreases for tensile loading. The slope of the
stress dependence of the peak widths in the transverse direc-
tion is smaller than the stress dependence in the longitudinal
direction by a factor close to the reported Poisson’s ratio for
the compositionally similar Cu66Zr34 metallic glass �0.36 vs
�=0.352 �Ref. 24��.

The measured width of the first peak in the total S�Q� also
exhibits an approximately linear dependence on the applied
stress. Similar to the total G�r�, the stress dependence of the
peak widths corresponding to correlations along the longitu-
dinal direction is larger than the stress dependence of the
peak widths for correlations along the transverse direction.
The peak widths of the total S�Q�, however, respond in an
opposite manner than the peak widths for the total G�r�; the
S�Q� peak width in the longitudinal direction increases with
compressive loading and decreases with tensile loading
while the peak width in the transverse direction decreases for
compressive loading and increases for tensile loading.

The opposite stress dependencies of the peak widths for
G�r� and S�Q� highlight the problems associated with ex-
tracting peak widths from total-distribution functions. A key
assumption for peak widths measured using the intercept

method is that all atoms, on average, respond equivalently to
an applied stress. This is highly unlikely, however, given the
variance in the bond stiffnesses for the different atoms in the
amorphous alloy. To check the validity of this assumption for
the Cu64.5Zr35.5 metallic glass, we calculated the atomic-scale
strain from the different intercept points. For the real-space
data, the strain is simply defined as


 =
ri

s − ri
o

ri
o , �6�

where ri
s and ri

o are the radial positions corresponding to
G�r�=0 Å−2 for a strained and unstrained sample, respec-
tively. For the reciprocal-space data the strain is defined as

(a)

(b)

FIG. 2. Normalized widths of first peaks in total �a� G�r� and �b�
S�Q� measured by in situ x-ray scattering as functions of applied
uniaxial stress.
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 =

1

Qi
s −

1

Qi
o

1

Qi
o

, �7�

where Qi
s and Qi

o are the Q positions corresponding to
S�Q�=1 for a strained and an unstrained sample, respec-
tively. Since there are two intercept points for the first peaks
in the distribution functions, we will refer to the intercepts at
low-Q and low-r values as Q1 and r1, respectively, similarly
the intercepts at high-Q and high-r values will be identified
as Q2 and r2, respectively, from hereon in. It should be noted
that Eqs. �6� and �7� assume that the atoms exhibit a uniform
displacement, that is, proportional to the macroscopic strain.
This however, is not very likely since relaxation events that
are not purely elastic in nature can occur during straining as
has been observed in previous computational studies.25,26

Therefore, there is no inherent reason that the atomic-scale
strain calculated from the displacement of the peaks in the
distribution functions should be equal to the macroscopic
strain. Figure 3 shows the atomic-scale strain in the longitu-
dinal direction as a function of applied stress calculated from
the G�r� and S�Q� intercepts along with the macroscopic
strain measured via a strain gage attached to the sample,
which was loaded in uniaxial tension. For the total G�r�, we
find that the strain calculated from the low-r intercept �r1�
agrees well with the macroscopic strain measured by a strain
gage, while the strain calculated from the high-r intercept
�r2� is higher than the macroscopic strain. Since the high-r
side of the first peak corresponds to Zr-Zr correlations, the
strain calculated from r2 is primarily dependent on the
change in the relative atomic separations of the Zr-Zr atomic
pairs. From our previous MD simulations we have found that
the Zr-Zr correlations are significantly more compliant than
the Cu-Cu and Cu-Zr correlations,21 which is why the strain
calculated from r2 is greater than the strain calculated from
r1. The different strain responses of the r1 and r2 intercepts
directly influence the measured peak widths for the total
G�r�. For the longitudinal direction, the higher strain calcu-
lated from r2 means the relative change in the position of the
r2 intercept is larger than that of the r1 intercept. Therefore,
the distance between the two intercepts �peak width� should
be less than in the unstrained state for compressive loading
and greater than the unstrained state for tensile loading,
which is consistent with what we observe experimentally.

For the reciprocal-space data in Fig. 3�b�, the stress de-
pendence of the strain calculated from Q1 is larger than that
of the strain calculated from Q2. From the total and partial
S�Q�s determined by MD simulations of the Cu64.5Zr35.5 al-
loy �not shown� we find that the low-Q side of the first peak
in the total S�Q� corresponds primarily to contributions from
SZr-Zr�Q� and the high-Q side of the first peak in the total
S�Q� corresponds primarily to SCu-Cu�Q�. Therefore, the
strain response calculated from Q1 should be larger than Q2
since the Zr-Zr correlations are more compliant. As with the
real-space data, the different stress dependencies of the
strains calculated from Q1 and Q2 affects the measured peak
width, however, the different strain responses of the intercept

points would cause the peak widths in the longitudinal direc-
tion to decrease for compressive loading and increase for
tensile loading, which is opposite of what we measured in
Fig. 2. This behavior suggest that there are competing factors
influencing the peak widths, which might be related to the
fact that the magnitude of peak width changes for S�Q� are
smaller than those measured for G�r�.

B. Molecular dynamics simulations of uniaxial deformation

The results in Fig. 2 show that the width of the first peak
in the total G�r� is indeed dependent on the applied stress;
however, the different strains exhibited by the two intercept
points �Fig. 3� reveal that the widths of the partial-pair cor-
relations need to be considered since the width of the total
G�r� is affected by the displacements of the partial-pair func-

(a)

(b)

FIG. 3. Atomic strains in longitudinal direction calculated from
the intercept points of the first peaks in the total �a� G�r� and �b�
S�Q�. The macroscopic strain along the loading axis, which was
measured by a strain gage, is also shown. For the x-ray measure-
ments, r1 and Q1 represent the strain calculated from the intercept
points on the left side of the peaks and r2 and Q2 represent strains
calculated from the intercept points on the right side of the peaks.

STRAIN DEPENDENCE OF PEAK WIDTHS OF… PHYSICAL REVIEW B 80, 064101 �2009�

064101-5



tions. Furthermore, the in situ x-ray measurements do not
reveal anything about the stress�strain� dependence of
��p2�1/2. Therefore, to examine the influence of elastic de-
formation on the variance in the local hydrostatic pressure
and the peak widths of partial-pair distribution functions, we
performed MD simulations of the Cu64.5Zr35.5 binary glasses
subject to uniaxial deformation. Since the atomic density is
known in the MD simulations, for each atomic configuration
it is straightforward to calculate the partial-pair distribution
functions, g���r�, which can be expressed as

g���r� =

���r�


o
=

G���r�
4�r
o

+ 1, �8�

where 
�� is the atomic density of � atoms around a central
� atom and 
o is the average atomic density. This is related
to the total-pair distribution function, g�r�, according to

g�r� = x1
2k1

2g11 + 2x1x2k1k2g12 + x2
2k2

2g22, �9�

where x� is the atomic fraction of the �th component, k is the
weighting factor of the �th component, which is defined as

k� =
f�

x1f1 + x2f2
, �10�

for which f� is the atomic scattering factor of the � compo-
nent using the Faber-Ziman formalism. For comparison with
the x-ray results, the peak width in the total g�r� as a function
of applied strain was determined by taking the difference
between the two intercept points where g�r�=1. The inter-
cept method was also utilized to measure the peak widths of
the partial-pair distribution functions since different elastic
responses should not be prevalent in the individual partial-
pair functions. Furthermore, the peaks in the partial-pair dis-
tribution functions can exhibit significant asymmetry, which
makes fitting to a single profile unreliable.

The first peak in the g�r� for the unstrained Cu64.5Zr35.5
model along with its measured width as a function of applied
uniaxial strain is shown in Fig. 4. Similar to the in situ x-ray
experiments, the width of the first peak in the longitudinal
direction decreases for compressive straining and increases
for tensile straining. For the transverse direction, the peak
widths exhibit opposite dependence on the applied uniaxial
strain and the magnitude of the changes are less compared to
the longitudinal direction, which is also consistent with the
experiments. It should be noted however, that if we plot the
peak widths as functions of the strain along the principal
directions where 
zz=
app, 
xx=
yy =−v
zz, and 
xy =
yz
=
xz=0, then we get very similar strain dependencies for the
peak widths, Fig. 4�c�. To check if the changes in peak
widths for the principal directions were dependent on the
difference in the elastic responses of the partial-pair correla-
tions, the strain from the shifts in the r1 and r2 intercepts
were calculated for the longitudinal and transverse direc-
tions, Fig. 5. As was the case for the Cu64.5Zr35.5 ribbon
tested in uniaxial tension, the strain calculated from the shifts
in the r2 intercept is larger than the strain calculated from the
shifts in the r1 intercept. As discussed above, the r1 intercept
corresponds primarily to Cu-Cu correlations and the r2 inter-
cept corresponds to the more compliant Zr-Zr correlations.

(a)

(b)

(c)

FIG. 4. �a� First peak in total g�r� �for unstrained model� from
MD simulations of Cu64.5Zr35.5 alloy. Normalized widths of first
peaks in the directional total g�r�’s as a function of �b� applied
uniaxial strain and �c� strain along the principal directions.
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Therefore, the results from the MD simulations appear to
correlate well with the experimental results, which indicate
that during straining the peak width changes in the real-space
distribution functions are dependent on the different elastic
responses of the atomic correlations.

To overcome the limitations associated with measuring
the width of the first peak in the total g�r�, we examined the
widths of the first peaks in the partial-pair distribution func-
tions, g���r�, for the Cu64.5Zr35.5 model deformed uniaxially.
The peak widths of the g���r�’s, as functions of the strain
along the principal directions for the Cu64.5Zr35.5 model de-
formed uniaxially are shown in Fig. 6. For the Cu-Cu and
Cu-Zr partial-pair distribution functions, the widths of the
first peaks decrease for tensile straining and increase for
compressive straining. For the Zr-Zr partial-pair distribution
function, the peak widths in the transverse direction appear
to increase for compressive straining and decrease for tensile
straining, while the peak widths in the longitudinal direction
do not show and clear strain dependence. The large amount

(a)

(b)

FIG. 5. Strain from r1 and r2 intercept points in the �a� longitu-
dinal and �b� transverse directions as functions of applied and Pois-
son’s strain, respectively, from MD simulation of the Cu64.5Zr35.5

model deformed uniaxially.

(a)

(b)

(c)

FIG. 6. Normalized widths of first peaks in �a� Cu-Cu, �b� Cu-
Zr, and �c� Zr-Zr partial-pair distribution functions in the longitudi-
nal and transverse direction as functions of strain along the princi-
pal directions from MD simulations of Cu64.5Zr35.5 alloy deformed
uniaxially.
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of scatter in the measured peak widths in the longitudinal
direction for gzr-zr�r� is likely due to the limited number of
atomic pairs used to calculate the distribution function. As
discussed above, only the atomic correlations that were ori-
ented within 	9° of the principal axes were used for calcu-
lating the directional distribution functions. Therefore, the
number of atomic correlations analyzed is only a small frac-
tion of the total amount of correlations. Since there is not a
large fraction of Zr-Zr correlations in the Cu64.5Zr35.5 glass,
the statistics for gZr-Zr�r� are the worst of the different partial-
pair distribution functions. The statistics should be signifi-
cantly improved for the transverse direction �normal to ap-
plied strain�, however, since the partial-pair distribution
functions are calculated along two principal axes �
xx=
yy
=−v
zz�. In addition to the peak widths for the g�r� func-
tions, we also calculated the variance in the hydrostatic pres-
sure, �p2�1/2 for the Cu64.5Zr35.5 glass deformed uniaxially.
Figure 7, which shows �p2�1/2 as a function of applied
uniaxial strain, reveals that �p2�1/2 shows no obvious strain
dependence, suggesting that the peak width changes seen in
the total and partial-pair distribution functions are not simply
dependent on �p2�1/2.

C. Molecular dynamics simulations of hydrostatic deformation

The results from the MD simulations of uniaxial deforma-
tion reveal that the widths of the first peaks in the total- and
partial-pair distribution functions exhibit strain dependence
but the variance in the local hydrostatic pressure shows little,
if any, dependence on the strain. In order to simplify the
analysis and eliminate the statistics problems associated with
calculating directional pair-distribution functions, we
strained the same Cu64.5Zr35.5 model and the Cu33.3Zr66.7
model hydrostatically. For hydrostatic deformation, the pair-
distribution functions should be the same in all three princi-
pal directions, and thus, the change in peak widths should be
isotropic. The ability to use all of the atomic correlations for
calculating the distribution functions significantly improves

the statistics compared to the model deformed uniaxially.
Moreover, utilizing hydrostatic straining ensures that the
variance in the hydrostatic pressure will change during de-
formation. For a comparison between the models deformed
uniaxially and hydrostatically, we calculated the difference in
the partial-pair distribution functions, �g�r�, for an un-
strained model �go�r�� and a strained model �g
�r��, where
�g is defined as

�g�r� = g
�r� − go�r� . �11�

Figure 8 shows the �g�r� function for the Cu64.5Zr35.5 glass
deformed both uniaxially and hydrostatically. For the uniaxal
models, the applied strain, 
zz, was −0.01 for the strained
model used to calculate �g�r� for the longitudinal direction
and 0.0244 �
xx , 
yy =−0.01� for the strained model used to
calculate �g�r� for the transverse direction. The applied
strain of 0.0244, which corresponds to a Poisson’s strain of
−0.01, is just below the yield strain determined from MD
simulations of uniaxial deformation of the Cu64.5Zr35.5 glass.
The �g�r� for the model deformed hydrostatically �
xx=
yy
=
yy =−0.01� is significantly smoother than the models de-
formed uniaxially due to the fact that all the atomic correla-
tions are included in the total g�r� calculations. While the
�g�r� function in the transverse direction for uniaxial load-
ing is qualitatively similar to the �g�r� for the hydrostati-
cally deformed model, the �g�r� in the longitudinal direction
is noisier due to the decreased statistics. The results highlight
the advantage of using hydrostatic deformation to examine
the peak width changes during straining.

Figure 9�a� shows the widths of the first peaks of the total
g�r�’s �determined by intercept method� as functions of ap-
plied hydrostatic strain for both the Cu33.3Zr66.7 and
Cu64.5Zr35.5 glasses. Similar to the x-ray measurements and
the MD simulations of uniaxial deformation of the
Cu64.5Zr35.5 metallic glass, the peak widths for both amor-
phous Cu-Zr alloys decrease for compressive straining and

FIG. 7. Variance in local hydrostatic pressure, ��p2�1/2, as a
function of applied strain from MD simulations of uniaxial defor-
mation of Cu64.5Zr35.5 alloy.

FIG. 8. Difference in total-pair distribution functions ��g�r�
=g
�r�−go�r�� for unstrained �
=0� and strained �
=0.01� models
of Cu64.5Zr35.5 deformed uniaxially and hydrostatically. For the
uniaxial model, the strain refers to the uniaxial and Poisson’s strain
for the longitudinal and transverse directions, respectively.
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increase for tensile straining. Moreover, the MD simulations
show that the peak width changes associated with hydrostatic
deformation are primarily due to the different strain re-
sponses of the atoms corresponding to the r1 and r2 inter-
cepts, Fig. 9�b�. The change in the relative atomic separa-
tions for r2 is larger than that for r1, which would cause peak
narrowing for compressive straining and broadening for ten-
sile straining, consistent with Fig. 9�a�. Therefore, we need
to examine the peak widths of the individual partial-pair dis-
tribution functions to more accurately measure any depen-
dence on ��p2�1/2. Figure 10 shows the measured widths of
the first peak in the g���r� functions �measured by intercept
method� as functions of applied hydrostatic strain for the two
Cu-Zr glasses examined by MD simulations. For the gCuCu�r�
and gZrZr�r� functions, the widths of the first peaks increase
for compressive straining and decrease for tensile straining.
The peak widths of the gCuZr�r� functions exhibit much less
obvious strain dependence. For the Cu64.5Zr35.5 alloy, the

(a)

(b)

FIG. 9. �a� Normalized widths of first peaks of total g�r�’s as
functions of applied hydrostatic strain from MD simulations of
amorphous Cu64.5Zr35.5 and Cu33.3Zr66.7 alloys. �b� Strain from r1

and r2 intercept points along with total strain as functions of applied
hydrostatic strain from MD simulations of Cu64.5Zr35.5 glass.

(a)

(b)

(c)

FIG. 10. Normalized widths of first peaks in �a� Cu-Cu, �b�
Cu-Zr, and �c� Zr-Zr partial-pair distribution functions as functions
of applied hydrostatic strain for Cu-Zr alloys examined using MD
simulations.
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peak width appears to decrease for compressive straining and
increase for tensile straining, however, the gCuZr�r� peak
widths for the Cu33.3Zr66.7 alloy do not show any definitive
trend for compressive straining. It is interesting to note that
the strain dependencies of the peak widths for the gCuCu�r�
and gZrZr�r� functions are opposite of that shown by the total
g�r� functions for the two Cu-Zr compositions. This further
illustrates that the peak width changes seen in the total g�r�
functions are strongly dependent on the relative shifts in the
positions of the partial-pair distribution functions during
straining and not necessarily representative of the peak
widths of the partial-pair functions.

From the MD simulations we find that the strain depen-
dencies of the peak widths for the gCu-Cu�r� from the
Cu64.5Zr35.5 model deformed uniaxially and hydrostatically
are the opposite of each other. The poorer statistics for the
MD simulations of uniaxial deformation compared to the
MD simulations of hydrostatic deformation might account
for their different strain dependencies. Their opposite behav-
ior might also be due to the important differences between
the two deformation schemes. For instance, assuming linear
elasticity, the change in the model volume for a given hydro-
static strain is larger than the change in volume for a uniaxial
strain of the same magnitude. Since we are examining the
partial-pair functions, we need to consider the changes in the
average bond lengths of the different partial pairs in the first
nearest-neighbor shells during straining. The peak widths
were normalized to the change in bond lengths rather than
the change in volume since the pair-distribution functions for
uniaxial loading are not isotropic. A comparison of the
widths of the first peaks in g���r� for Cu-Cu and Cu-Zr
�Zr-Zr is not included due to the limited statistics for uniaxial
deformation� normalized to their average bond lengths is
shown in Fig. 11. The results show that the strain dependen-
cies of the g���r� peak widths are not affected by normaliza-
tion to the average bond lengths at each strain level, there-
fore, the deformation mode �uniaxial or hydrostatic� might
be another factor that influences the g���r� peak width
changes during straining.

The preceding results demonstrate that with the exception
of the Cu-Zr correlations for the Cu33.3Zr66.7 alloy, the peak
widths of the partial-pair distribution functions exhibit clear
strain dependencies for the hydrostatically deformed models.
To further examine the nature of these peak width changes,
we measured the changes in the relative atomic separations
corresponding to the r1 and r2 intercepts. Using Eq. �4�, we
calculated the strain from the low-r �r1� and high-r �r2� in-
tercepts where g���r�=1 for the first coordination shell as a
function of applied hydrostatic strain for the Cu64.5Zr35.5 al-
loy, Fig. 12. We find that for all three partial-pair distribution
functions, the strain calculated from r1 is greater than the
strain calculated from r2 for both compression and tension.
Similar behavior was observed for the Cu33.3Zr66.7 alloy �not
shown�. This difference in strains measured from the inter-
cept points shows that for both compressive and tensile
straining, the atoms that are initially slightly closer to the
central atom �r1 intercepts� in the first nearest-neighbor shell
exhibit larger changes in their relative atomic separations
during straining than the atoms slightly further away from
the central atom �r2 intercepts� in the first shell. This length-

scale dependence of the strains should result in the g���r�
peak widths increasing for compressive straining and de-
creasing for tensile straining, which is indeed what we find
for the Cu-Cu and Zr-Zr correlations. The peak width
changes for the gCuZr�r� functions for the two alloys cannot
be attributed to the different strain responses of r1 and r2,
however. The results show that at least for the Cu-Zr corre-
lations, the peak widths are not solely dependent on the
length-scale-dependent atomic rearrangements.

To determine if the strain dependencies of the peak widths
shown in Fig. 10 are dependent on the variance in the
atomic-level hydrostatic pressure, we calculated ��p2�1/2 for
the two Cu-Zr glasses as a function of applied hydrostatic
strain, Fig. 13. For the Cu33.3Zr66.7 alloy, ��p2�1/2 increases
with compressive straining and decreases with tensile strain-
ing while ��p2�1/2 for the Cu64.5Zr35.5 alloy exhibits a small
decrease for compressive straining and small increase for
tensile straining. Therefore, from Figs. 10 and 13 we find
that for the Cu64.5Zr35.5 alloy, the widths of the first peaks in

(a)

(b)

FIG. 11. Change in peak widths normalized to average bond
length for Cu-Zr models deformed under applied uniaxial and hy-
drostatic strain. The normalized peak widths in �a� gCu-Cu�r� and �b�
gCu-Zr�r� as functions of strain are shown.
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the gCuCu�r� and gZrZr�r� functions show opposite strain de-
pendence than that of ��p2�1/2. The strain dependence of the
widths of the first peaks in the gCuCu�r� and gZrZr�r� functions
are the same as that of ��p2�1/2 for the Cu33.3Zr66.7 alloy but
the peak widths of the gCuZr�r� function do not appear to
exhibit the same strain dependence as ��p2�1/2. A summary
of the strain dependencies of the variance in hydrostatic pres-
sure and the distribution-function peak widths for the Cu-Zr
alloys is presented in Table I. Given the different strain de-
pendencies of the peak widths of the partial-pair distribution
functions, it appears very unlikely that the peak widths are
solely dependent on the variance in hydrostatic pressure, but
rather the length-scale dependence of the atomic strains ap-
pears to play a significant role.

The MD simulations of amorphous Cu-Zr alloys subject
to uniaxial and hydrostatic deformation reveal that the rela-
tionship between the width of the first peak in the g���r�
functions and the variance in the local hydrostatic pressure is
complicated. Clearly the partial-pair correlations are affected
differently by the applied strain. To exclude chemistry ef-
fects, we performed similar MD simulations on amorphous
Al subject to hydrostatic strain. Obviously, the fact that
amorphous Al can be obtained in the simulations highlights
the limitations of the Ercolessi-Adams interatomic potential,
but while the potential does not accurately capture the ther-
modynamic properties of real Al, it does provide a reason-
able description of the structure of a single-component amor-
phous metal.23 Since the first peak in the g�r� for the Al glass
is too asymmetric to be accurately fit with a single profile
�Fig. 14�, we used the intercept method to determine the
peak width. The measured widths of the first peaks in g�r�
and S�Q� as functions of applied hydrostatic strain are shown
in Fig. 15�a�. For the reciprocal-space data, S�Q�, the width
of the first peak does not show any obvious strain depen-
dence. It should be noted that Srolovitz and co-workers only
examined the relationship between ��p2�1/2 and the width of
the first peak in the real-space distribution functions; there-
fore, it is unclear if similar behavior should be expected in

(a)

(b)

(c)

FIG. 12. Strains calculated from r1 and r2 intercept points of �a�
Cu-Cu, �b� Cu-Zr, and �c� Zr-Zr partial-pair distribution functions
for Cu65.5Zr35.5 alloy determined by MD simulations.

FIG. 13. Variance in local hydrostatic pressure, ��p2�1/2, as a
function of applied hydrostatic strain determined from MD simula-
tions of Cu-Zr alloys.
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the reciprocal-space data where the first peak does not pri-
marily correspond to correlations in the first nearest-neighbor
shell. For the real-space data however, the width of the first
peak decreases for compressive straining and increases for
tensile straining. This behavior is opposite of the strain de-
pendence of ��p2�1/2 �Fig. 15�b��, which increases with com-
pressive straining and decreases with tensile straining. Simi-
lar to the partial-pair distribution functions for the Cu-Zr
alloys, we find that the width of the first peak in g�r� for the
Al glass is also affected by length-scale-dependent atomic
displacements. Figure 15�c�, which shows the strain calcu-
lated from the two different intercept points for the first peak
in g�r�, illustrates that the strain is not uniform among all the
atoms. The larger strain determined from the r2 intercept
compared to the r1 intercept would result in the strain depen-
dence of the g�r� peak widths that is seen in Fig. 15�a�.
Therefore, it appears that the length-scale dependence of the
strain influences the peak widths of the distribution functions
more than the variance in the local hydrostatic pressure for
the Al glass we examined.

D. Peak width changes during high-temperature deformation

The x-ray and MD results show that the peak widths of
the reciprocal- and real-space distribution functions are not
solely dependent on the variance in the local hydrostatic

pressure during elastic straining. Beyond the elastic limit,
however, the peak widths should not be significantly affected
by the different elastic responses of the partial-pair correla-
tions since any additional strain is primarily plastic. There-
fore, the peaks widths should be dependent on the structural
order of the glass during plastic deformation. To examine
this, samples of Cu64.5Zr35.5 metallic glass were homoge-
neously deformed in uniaxial compression at 425 °C at a
constant strain rate of 10−4 s−1. The measured width of the
first peak in S�Q� as a function of macroscopic displacement
is shown in Fig. 16. The cross-head displacement is plotted
since the macroscopic strain could not be accurately mea-
sured inside the furnace; the displacement, however, is di-
rectly proportional to the compressive strain. In the elastic
regime the peak width in the longitudinal direction increases,
which is consistent with what we observed for the room-
temperature measurements, Fig. 2�b�. Near the region where
macroscopic yielding can be seen in the stress-displacement
curve, the peak width exhibits a marked increase with in-
creasing displacement. The increasing peak widths corre-
sponding to yielding and subsequent flow softening can be
more clearly seen in the zoomed in region shown in Fig.
16�b�. The increase in the peak width is likely characteristic
of structural disordering associated with the creation of flow
defects. The flow softening following yielding is believed to
be associated with an increase in flow defects and excess free
volume.27,28 As the creation and annihilation of free volume
approach a dynamic equilibrium, the amount of excess free
volume remains nearly constant and the stress-displacement
�strain� response of the sample flattens out as shown in Fig.
16�a�. In this region where the stress becomes essentially
independent of strain, we see that the peak widths also show
minimal dependence on the strain suggesting that the struc-
tural order is not significantly changing.

IV. CONCLUSIONS

In situ x-ray results show that determining the relationship
between the peak widths of the reciprocal- and real-space
distribution functions and the variance in the local hydro-
static pressure for metallic glasses subject to elastic straining
is complicated. For an amorphous Cu64.5Zr35.5 alloy loaded in
uniaxial compression and tension, the widths of the first
peaks in the total G�r� and S�Q� are strongly dependent on
the elastic responses of the different partial-pair correlations.
The effects of the different bond stiffnesses are particularly

TABLE I. Summary of measured peak widths and variance in hydrostatic pressure as functions of applied
stress �strain� for the two Cu-Zr alloys. C=compressive straining and T=tensile straining.

Function

Cu64.5Zr35.5 Cu64.5Zr35.5 �MD� Cu33.3Zr66.7 �MD�

�X ray� Uniaxial Hydrostatic Hydrostatic

��p2�1/2 ↓C↑T ↑C↓T

Peak widths Total G�r�, g�r� ↓C↑T ↓C↑T ↓C↑T ↓C↑T

gCu-Cu�r� ↓C↑T ↑C↓T ↑C↓T

gCu-Zr�r� ↓C↑T ↓C↑T ?C↑T

gZr-Zr�r� ↑C↓T ↑C↓T

FIG. 14. First peak in g�r� for amorphous Al determined using
MD simulations
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important when the peak width of the total G�r� is measured
using the intercept method. The results highlight the impor-
tance of examining the peak widths of the partial-pair func-
tions.

Molecular dynamics simulations of amorphous Cu-Zr al-
loys deformed under applied uniaxial and hydrostatic strain
show that the widths of the first peaks in the total- and
partial-pair distribution functions do not necessarily exhibit
the same strain dependencies as the variance in hydrostatic
pressure. For the Cu64.5Zr35.5 model deformed uniaxially, we
find that the strain dependence of the width of the first peak
in the total g�r� is consistent with experimental measure-
ments. The variance in hydrostatic pressure, however, does
not exhibit any obvious strain dependence. For the models
that were hydrostatically strained, analysis of the strains cal-
culated from the different intercept points of the first peak in
the g���r� functions reveal that the relative atomic separa-
tions of the atoms closest to the central atom change more
than relative atomic separations of the atoms further away
from the central atom in the first coordination shell. This

(a)

(b)

(c)

FIG. 15. �a� Normalized widths of first peaks in g�r� and S�Q�,
�b� variance in local hydrostatic pressure, and �c� atomic strains
calculated from intercept points of first peak in g�r� as functions of
applied hydrostatic strain from MD simulations of Al glass.

(a)

(b)

FIG. 16. �a� Macroscopic stress-displacement �strain� curves
and normalized width of first peak in S�Q� in longitudinal direction
measured by x-ray scattering. �b� Zoomed in region showing tran-
sition from elastic to plastic flow. The dashed line indicates the
onset of plastic flow in the macroscopic stress-displacement curve
and the increase in peak width.
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length-scale dependence of the atomic displacements can
significantly affect the changes in the peak widths during
elastic deformation. For the single component Al glass we
find that the peak widths of g�r� decrease for increasing vari-
ance in the hydrostatic pressure. Similar to the binary Cu-Zr
alloys, the peak widths for the Al glass are also influenced by
length-scale dependent changes in the relative atomic sepa-
rations, however, the behavior is opposite of that exhibited
by the Cu-Zr alloys.

Lastly, we find that for Cu64.5Zr35.5 metallic glass homo-
geneously deformed at 425 °C the peak width of the total
S�Q� exhibits a marked increase in the region corresponding
to yielding and flow softening. The increase in peak widths
with increasing plastic strain is likely characteristic of struc-
tural disordering associated with an increase in flow defects.

As the concentration of flow defects approaches an equilib-
rium value, so does the measured peak width suggesting that
during homogeneous plastic flow the peak widths are prima-
rily dependent on the degree of structural order.
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