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Monte Carlo simulation study of a classical spin model with Dzyalosinskii-Moriya interaction and the spin
anisotropy under the magnetic field is presented. We found a rich phase diagram containing the multiple spin
spiral �or Skyrme crystal� phases of square, rectangular, and hexagonal symmetries in addition to the spiral spin
state. The Skyrme crystal states are stabilized by a spin anisotropy or a magnetic field. The Hall conductivity
�xy is calculated within the sd model for each of the phases. Applying a magnetic field induces nonzero
uniform chirality and the anomalous Hall conductivity simultaneously. The field dependence of �xy is shown to
be a sensitive probe of the underlying magnetic structure. Relevance of the present results to several recent
experiments on MnSi is discussed.
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I. INTRODUCTION

Metallic spiral magnets such as MnSi exhibit a number of
intriguing phenomena that came into highlight in recent
years.1–7 For one, the spiral magnetic order,1,2 due to the
presence of Dzyaloshinskii-Moriya �DM� interaction in ad-
dition to the ferromagnetic exchange, undergoes a transfor-
mation into a partially ordered multiple spiral spin state, or a
Skyrme crystal state, when pressure is applied.3 A recent
neutron-scattering experiment reveals that a genuine Skyrme
crystal spin phase of hexagonal symmetry is stabilized in the
so-called A phase of MnSi,7 while under high pressure the
diffuse neutron Bragg peaks are consistent with the cubic
symmetry of multiple spiral spins.3 Furthermore, following
some earlier experiments by Ong’s group,4,5 a Hall effect of
topological origin has been identified in the A phase of MnSi
�Ref. 7� in agreement with several earlier theories relating
the topological quantum number of the underlying spin tex-
ture to the anomalous Hall conductivity of conducting
electrons.8–14

Several phenomenological theories have been advanced to
justify the stabilization of multiple spiral spin states in mag-
nets without the inversion symmetry.15–18 And a number of
papers discussed the influence of the topological spin texture
carrying nonzero Skyrmion number on the transverse con-
ductivity of conducting electrons,8,9,14,19 without addressing
the origin of topologically nontrivial spin textures. Given the
recent advances particularly with MnSi and hopefully with
other metallic chiral magnets in the near future, we believe a
comprehensive theoretical framework encompassing the ori-
gin of the stabilization of Skyrme crystal spin states and the
anomalous Hall effect due to it is called for. In this paper, we
propose such a framework wherein �i� a microscopic spin
model with the DM interaction and spin anisotropy is used to
deduce the existence of Skyrme crystal spin phases of both
hexagonal and square symmetries in the phase diagram, and
�ii� an sd Hamiltonian with the coupling of the local and
conducting electrons’ magnetic moments is used to calculate
the transverse Hall conductivity �xy of topological origin. A

significant contribution to �xy is found in the Skyrme crystal
phases whereas for a spiral spin state �xy is nearly zero. A
clear and consistent connection is drawn between the under-
lying topological spin structure, and its manifestation in an
anomalous Hall transport.

The paper is organized as follows: in Sec. II, a lattice
model containing ferromagnetic exchange, Dzyaloshinskii-
Moriya, and various anisotropy terms are written down and
its phase diagram is examined by means of classical Monte
Carlo method. A brief Ginzburg-Landau argument related to
various Skyrme crystal phases we find from Monte Carlo
study is presented. Finally, a variational energy calculation
comparing the energies of several spiral spin configurations
and the Skyrme crystal state is presented. In Sec. III, the sd
Hamiltonian is employed to compute the Hall conductivity in
the spiral spin, and various kinds of Skyrme crystal states.
Within the same Kubo-type linear-response framework, we
present the longitudinal conductivity �xx along with the Hall
conductivity �xy for comparison. In Sec. IV, we discuss the
relevance of the present results to the recent set of experi-
ments on MnSi and summarize.

II. MODEL AND ITS PHASE DIAGRAM

A. Monte Carlo calculation

A continuum Hamiltonian written by Bak and Jensen for a
prototypical chiral magnet MnSi some years ago20 is adapted
to a lattice spin model consisting of the ferromagnetic ex-
change �J�, DM interaction �K�, anisotropy �A1 and A2�, and
the Zeeman energy �H�

HS = − J�
r

Sr · �Sr+x̂ + Sr+ŷ + Sr+ẑ� − K�
r

�Sr � Sr+x̂ · x̂

+ Sr � Sr+ŷ · ŷ + Sr � Sr+ẑ · ẑ� + A1�
r

��Sr
x�4 + �Sr

y�4

+ �Sr
z�4� − A2�

r
�Sr

xSr+x̂
x + Sr

ySr+ŷ
y + Sr

zSr+ẑ
z � − H · �

r
Sr.

�1�
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We take a cubic lattice structure rather than the full B20
structure of MnSi �Ref. 21� largely for technical simplicity,
and also because our simplified model proves to be rich
enough to contain several Skyrme crystal spin phases that
have so far been missed in other microscopic models of
spins.22 The DM vector is chosen along the bond direction
rather than orthogonal to it; such a choice gives rise to a
spiral spin state for small anisotropy parameters with the
spins lying in a plane perpendicular to the propagation vec-
tor, as is experimentally the case for MnSi.

Monte Carlo �MC� simulated annealing procedure was
employed to work out the ground states for varying aniso-
tropy strengths �A1 ,A2� and the field strength H oriented
along the z direction: H=Hẑ. A number of simplifications
were made to save the computational cost. First, a two-
dimensional �2D� rather than a three-dimensional �3D� lattice
was used, based on the following Hamiltonian:

HS = − J�
r

Sr · �Sr+x̂ + Sr+ŷ� − K�
r

�Sr � Sr+x̂ · x̂

+ Sr � Sr+ŷ · ŷ� + A1�
r

��Sr
x�4 + �Sr

y�4 + �Sr
z�4�

− A2�
r

�Sr
xSr+x̂

x + Sr
ySr+ŷ

y � − H · �
r

Sr. �2�

Although the MC simulation remains tractable in 3D for a
small enough lattice size, the calculation of the �xy becomes
prohibitively demanding for a 3D lattice. Because the realis-
tic modulation period is very large and difficult to simulate,
we also choose the ratio K /J=�6 �Hereafter we will take J
�1� which would give k=2� /6 in 2D without the aniso-
tropy. Calculations were mostly carried out for 18�18 lat-
tice, with occasional checks on a 30�30 lattice to ensure
consistency. 2�105 MC steps were used at each temperature
in the annealing process. It turns out that the same ground
state is found over a widely different choices of A1, and here
we present all the results for A1=0.5 without loss of gener-
ality. Once the ground state has been obtained for a given A2
and H, we analyze its structure by making the Fourier trans-
form �Sk�=�r�Sr�e−ik·r of the averaged MC configurations
�Sr�, and looking at the intensity profile ��Sk��2. The resulting
phase diagram spanned by �A2 ,H� is shown in Fig. 1.

Occupying the small A2 part is a spiral spin �SS� state
characterized by a pair of Bragg peaks in ��Sk��2 at �k, k
= �k ,k� �	11
 spiral�. When A2 is sufficiently large, one finds
the Skyrme crystal �SC� phase constructed primarily as the
superposition of two pairs of spin spirals, one with k
= ��k ,0� �	10
 spiral� and the other with k= �0, �k� �	01

spiral�. Depending on whether the Bragg intensities are the
same or different for the two pairs, we denote them as SC1
�nonidentical� or SC2 �identical�. In practice SC1 is fragile,
occupying only a tiny fraction of the phase diagram. A third
class of SC state is found when the field strength in exceed
of a certain threshold value Hc is applied to the SS phase.
This state, denoted SCh, is characterized by three sets of
modulation vectors which are related by 120° rotations. The
phase boundaries separating SS from either SCh or SC1 are
first order.

The projection of spin patterns onto the xy plane is dis-
played in Fig. 2 for the three SC states. We introduce the
local chirality �r at the lattice site r as

8��r = Sr · �Sr+x̂ � Sr+ŷ� + Sr · �Sr−x̂ � Sr−ŷ� . �3�

It is well-known that a single localized Skyrmion would give
the uniform chirality �=�r�r equal to unity in the continuum
limit. Plots of �r in Fig. 2 for several representative SC spin
configurations clearly display the presence of Skyrmion
�bright� and anti-Skyrmion �dark� regions. The Skyrmion
density map is largely one-dimensional for SC1, checker-
boardlike for SC2, and hexagonal for SCh. Upon thermal
averaging over more than 104 spin configurations, the aver-
aged uniform chirality ��� is found to be identically zero for
all the spin states obtained at zero field at any temperature T.
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FIG. 1. Low temperature �T=0.01� phase diagram of the spin
model in Eq. �2� �2D version� with K=�6, A1=0.5, and H=Hẑ.
Phase boundaries are drawn on the basis of MC simulations at a
large number of �A2 ,H� locations. Spin configurations are abbrevi-
ated as SS �spiral spin�, and SC �spin crystal�. Full spin polarization
�SP� results at high field. The Skyrme crystal phases are further
classified as SC1 �unequal Bragg intensities�, SC2 �equal Bragg in-
tensities�, and SCh �hexagonal Bragg spots�. The corresponding
Bragg patterns are schematically shown. The Bragg peak at k=0
emerges due to the field-induced uniform magnetization. On the
vertical axis H is divided by an arbitrary energy scale 1.5A1+A2 for
improved clarity of the plot.

(a) SC1 (b) SC2 (c) SCh

FIG. 2. �Color online� A plot of the spin configuration projected
on the xy plane �Si

x ,Si
y� in the three spin crystal ground states: �a�

SC1 at �A2 ,H�= �2.0,0.0�, �b� SC2 at �A2 ,H�= �3.0,0.0�, and �c�
SCh at �A2 ,H�= �0.0,2.0�. At the bottom left of each figure are the
plots of the Bragg intensity ��Sk��2 showing two �SC1,SC2� and
three �SCh� sets of modulation vectors. Shown at the bottom right
are the plots of the local chirality �r. Bright �dark� regions corre-
spond to Skyrmions �anti-Skyrmions�.
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B. Ginzburg-Landau consideration

With the magnetic field along the z direction turned on,
the uniform chirality becomes nonzero as shown in Fig. 3. A
stark contrast in the field dependence of the chirality arises
depending on whether the one-dimensional ground state is
SS or SC. For the former, nonzero � does not appear until a

threshold field Hc is reached and the hexagonal Skyrme crys-
tal SCh state realized. For the SC ground state, however, the
onset of nonzero chirality is immediate with the field. The
same field dependence is found for the magnetic field ori-
ented away from the z direction. Hence it is seen that the
chirality and, as will be seen shortly, the anomalous Hall
conductivity, serves as a sensitive probe of the underlying
spin structure being a single or a multiple spiral. Nonzero
uniform chirality is realized when the triple product
Sk1+k2

� ·Sk1
�Sk2

becomes nonzero, Sk being the Fourier
component of the spin configuration. For the SCh the three
independent modulation vectors naturally satisfy Sk1+k2

� ·Sk1

�Sk2
�0 and give rise to the chirality. For the SC1 or SC2

states, we find that it is the triple product Skx+ky

� ·Skx
�Sky

,
with kx= �k ,0� and ky = �0,k�, which is responsible for the
chirality. The higher harmonic Skx+ky

� is induced by the mag-
netic field and its amplitude grows with H, and therefore �
�H for small H as seen in Fig. 3.

C. Variational energy calculation

A number of recipes for the realization of multiple spiral
spin structures have been proposed in the past,15–18 but none
has emphasized the possible role of the spin anisotropy such
as A2 in stabilizing SC order. We have compared the energy
of the 	11
-spiral spins with that of the 	10
-spiral spin state
as well as the SC2 state. For the two spiral spin states we use
the configuration

Sr
	11
 = �−

1
�2

cos	k�xi + yi�
,
1
�2

cos	k�xi + yi�
,

sin	k�xi + yi�
 ,

Sr
	10
 = �0,cos	kxi
,sin	kxi
� . �4�

The spin configuration for the 2D Skyrme crystal state is
chosen as the superposition of two right-handed spiral spins

Sr = A�0,cos�kxi + ��,
1

2
sin�kxi + ��

+ A�sin�kyi + ��,0,
1

2
cos�kyi + �� . �5�

The factor 1/2 in the z component is dictated by the detailed
analysis of the ground-state SC2 spin configuration obtained
from Monte Carlo study, which revealed that the z compo-
nent is only half the size of the x or the y component of the
underlying spiral spins. This should be due to the two dimen-
sionality of the lattice, which can make a distinction between
the z direction and the other two directions. For the 3D case
we do not expect such an anisotropy to exist. The factor A is
2 /�5 to ensure �1 /N��iSr

2=1. In effect, we are replacing the
local constraint Sr

2=1 by a global one in writing down the
above variational Skyrme crystal spin configuration.

With these spin configurations the energy per spin reads

E	11
 = − 2J cos k − �2K sin k +
9

16
A1 −

1

2
A2 cos k ,
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FIG. 3. �Color online� Upper panels: plot of uniform magneti-
zation �M� �blue circle� and uniform chirality ��� �red triangle� with
varying field strength H, H=Hẑ, for �a� SS at �A1 ,A2�= �0.5,0.0�,
�c� SC1 at �A1 ,A2�= �0.5,2.0�, and �e� SC2 at �A1 ,A2�= �0.5,3.0�, at
three temperatures T=0.1 �top six figures�, 0.5 �middle�, and 1.1
�bottom�. Lower panels: ��xy� averaged over 100 MC-generated
spin configurations are shown in �b�, �d�, and �f� at the correspond-
ing temperatures and field strengths. Thermal fluctuations are indi-
cated as error bars. Thermal-averaged ��xx� are shown in gray for
comparison.
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E	10
 = − J�1 + cos k� − K sin k +
3

4
A1 −

1

2
A2,

ESC2
= − J�1 + cos k� −

4

5
K sin k +

51

100
A1 −

4

5
A2. �6�

Once the energy expressions are minimized with respect to k,
we obtain

tan k	11
 =
�2K

2J + 1
2A2

,tan k	10
 =
K

J
, tan kSC2

=
4K

5J
, �7�

for the modulus of the wave vectors and

E	11
 = −��2J +
1

2
A22

+ 2K2 +
9

16
A1,

E	10
 = − J − �J2 + K2 +
3

4
A1 −

1

2
A2,

ESC2
= − J −�J2 +

16

25
K2 +

51

100
A1 −

4

5
A2, �8�

for the energies. Compared with the expressions of the en-
ergy for 	11
- and 	10
-spiral spins, the energy of the 2D SC
state decreases with A2 with the slope 4/5 which is greater
than the slope 1/2 for the spiral spins. Hence the SC phase
eventually will win out over the spiral spin states for suffi-
ciently large A2. However, the two phase angle � and � are
not fixed in this way. It is probably necessary to introduce the
fourth-order interaction terms to resolve the phase angles.

Variationally obtained energies are plotted in Fig. 4�a� for
a fixed set of J ,K ,A1 and varying A2. The energy of the
Skyrme crystal state ESC2

becomes the lowest when A2

	2.0, not far from the MC result of A2	2.25. In view of the
pressure-induced realization of the isotropic, multiple spiral
states in MnSi,3 our findings here can be interpreted as the
effect of pressure and the resulting isotropy being faithfully
reflected in our model as the increased value of A2. Realiza-
tion of SCh phase requires the magnetic field instead, and
experimentally the A phase where a similar spin structure
was found in MnSi occurs at ambient pressure, again sup-
porting the connection of A2 with pressure.

Next we turn to the 3D spiral spins oriented along 	111
,
	110
, and 	100
 directions, and calculate their energies using
the 3D spin Hamiltonian given in Eq. �1�. The spin configu-
ration for the 	111
 direction is given by

Sr
	111
 = cos	k�xi + yi + zi�
ê1 + sin	k�xi + yi + zi�
�k̂ � ê1�

�9�

where ê1 is an arbitrary unit vector lying in the plane or-
thogonal to 	111
. Spins oriented along 	100
 and 	110
 are
already given in Eq. �4�. For the 3D Skyrme crystal spins we
take the variational spin-configuration

Sr
SC3 = A	0,cos�kxi + ��,sin�kxi + ��
 + A	sin�kyi

+ ��,0,cos�kyi + ��
 + A	cos�kzi + 
�,sin�kzi + 
�,0
 .

�10�

The factor A is 1 /�3 to ensure �1 /N��iSi
2=1. With these

expressions for spins, the energies per spin can be written as

E	111
 = − 3J cos k − �3K sin k +
1

2
A1 − A2 cos k ,

E	110
 = − J�1 + 2 cos k� − �2K sin k +
9

16
A1

−
1

2
A2�1 + cos k� ,

E	100
 = − J�2 + cos k� − K sin k +
3

4
A1 − A2,

ESC3
= − J�2 + cos k� − K sin k +

1

4
A1 − A2. �11�

Once we optimize for k, the modulus of k vectors and ener-
gies read

tan k	111
 =
�3K

3J + A2
, tan k	110
 =

�2K

2J + A2/2
,

tan k	100
 =
K

J
, tan kSC3

=
K

J
, �12�

and

E	111
 = − ��3J + A2�2 + 3K2 +
1

2
A1,

E	110
 = − J −��2J +
1

2
A22

+ 2K2 +
9

16
A1 −

1

2
A2,

E	100
 = − 2J − �J2 + K2 +
3

4
A1 − A2,
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FIG. 4. �Color online� �a� Plot of the energies of spiral spins and
Skyrme crystal spins in 2D for J=1, K=�6, A1=0.5, and varying
A2. �b� Plot of the energies of spiral spins and Skyrme crystal spins
in 3D for J=1, K=3, A1=0.5, and varying A2. In both instances the
Skyrme crystal spin configuration becomes the lowest in energy for
A2 exceeding a certain critical value.
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ESC3
= − 2J − �J2 + K2 +

1

4
A1 − A2. �13�

Energies are plotted in Fig. 4�b� for a fixed set of J ,K ,A1 and
varying A2.

In both 2D and 3D calculations, we learn that the spiral
spins eventually give way to the Skyrme crystal spins in
energy for a sufficiently large anisotropy parameter A2. It
should be mentioned that although we did look for the 3D
Skyrmionic ground states in the spin model �1� in the param-
eter range where, according to Fig. 4, one might expect the
Skyrmion crystal to exist, there was no indication of such a
state being realized at low temperature. The discrepancy
might be due to the soft constraint ��iSr

2� /N=1 used in the
variational calculation that replaces the “hard constraint”
Sr

2=1 followed in the Monte Carlo simulation. We leave it as
an interesting future exercise to look for the full 3D Skyrme
crystal configuration in some sort of spin model.

III. ANOMALOUS HALL CONDUCTIVITY

Having studied the magnetic phase diagram, we turn to
the coupling of the local moments to the conduction elec-
trons that would result in the anomalous Hall effect. We
adopt the sd Hamiltonian

H = − t �
rr��

cr�
+ cr�� − ��

r
Sr · cr�

+ �����cr�, �14�

with the moment distribution �Sr� obtained from previous
MC calculation. The intrinsic anomalous Hall conductivity
�xy in the static limit is calculated from the Kubo formula23

�xy =
2�

L2 �
m�n

fn − fm

�2 + �m − n�2 Im��m�Jx�n��n�Jy�m�� �15�

expressed in units of e2 /h. The sum �m�n extends over all
nonidentical pairs of single-particle eigenstates of Eq. �14�,
fm is the Fermi function 1 / �e�m +1�, and L2 gives the num-
ber of lattice sites. Jx and Jy are the current operators. The
same temperature T is used both in the Monte Carlo genera-
tion of sample spin configurations, and in evaluating �xy.
Thermal average ��xy� was taken over 100 MC-generated
spin configurations. The relaxation rate �=0.1, and the sd
coupling �=1 were used in the calculation, with similar re-
sults at other parameter choices. Since the relativistic spin-
orbit coupling term is absent in Eq. �14�, the nonzero Hall
conductivity we will report below can only be due to the
topological Berry phase effects.

We find ��xy�=0, as well as ���=0, for all the spin con-
figurations at all temperatures when H=0. For finite fields,
on the other hand, the onset of nonzero ��xy� and nonzero ���
coincided almost perfectly, confirming the earlier theoretical
anticipation that an unconventional anomalous Hall conduc-
tivity arises as a consequence of nonzero uniform spin
chirality.8–14,19,23 We also verified ��xy�� ��� when both are
sufficiently small. Such a close tie between ��� and ��xy�
revealed in our calculation suggests that measurement of �xy
can be used as an effective probe of the underlying spin
structure.

The field dependence of uniform magnetization �M�
=�i�Si

z� /L2, along with ��� and ��xy�, are displayed in Fig. 3
for several temperatures. Under the full polarization at high
field where �M�=1, ��� and hence ��xy� must go to zero,
resulting in the characteristic dome shape of the ��xy�H��
curve. The low-temperature ��xy� can reach up to �10e2 /h,
similar to the value reported in an earlier model
calculation.14 Although the uniform chirality in the con-
tinuum limit should take on integer-only values,19 the finite-
size lattice result we present with nonsmoothly varying spins
does not have to yield a quantized ���. For the SC2 ground
state, in particular, the nonzero chirality can be phrased as
��H ·Skx

�Sky
, namely, as a quantity coupled to the vector

spin chirality.24 In Ref. 24, however, the influence of the
external magnetic field was neglected and thus they did not
obtain a nonzero Hall conductivity as we do.

For completeness, we also calculated the longitudinal
conductivity using the Kubo formula

�xx =
2�

L2 � �
m�n

fn − fm

m − n

��m�Jx�n��2

�2 + �m − n�2 . �16�

Thermal averages over 100 MC configurations are shown in
Fig. 3 along with ��xy� for comparison. The surprising and
interesting feature is that the rise of ��xy� is closely corre-
lated with a rather sharp drop in the value of ��xx�. In order
to ensure that this effect is not an artifact of the numerics, we
evaluated ��xx� and ��xy� for three different values of the
relaxation parameter �, and they all maintained the same
qualitative features. A natural explanation of the suppression
of conductivity ��xx� would be that the electronic states are
depleted near the Fermi level due to the opening of a gap.
However, an inspection of the energy levels obtained shows
absolutely no sign of a gap opening. Instead, we find almost
no variation in the electronic density of states between the
spiral spin and the Skyrme crystal spin configurations. At the
moment we suspect that the enlargement of the magnetic unit
cell from �� /a� to �� /a�2, where � /a reflects the spiral
modulation period measured in units of the lattice constant,
in going from a single spiral to a multiple spiral phase, may
explain the reduced longitudinal conductivity in the SC
phase. Further investigation of the localization properties of
the eigenstates will be required to completely resolve the
issue. In Ref. 5, a kinklike feature in the longitudinal resis-
tance coinciding with the system’s entry into the state exhib-
iting the anomalous Hall effect was observed. By converting
the calculated �xx and �xy to the resistance, we were able to
reproduce such kinklike features.

IV. CONCLUSION AND SUMMARY

Despite the considerable simplifications assumed in our
model calculation, there are a number of unmistakable simi-
larities of our results to the recent set of data for MnSi. The
first-order collapse of the magnetic ordering temperature Tc
at the critical pressure and the reorientation of the main
Bragg peak from 	111
 to 	110
 in MnSi �Ref. 3� is consistent
with the first-order change with A2 in going from SS to SC
phase and the reorientation of the primary ordering vector
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from 	11
 to 	10
 direction in our model. Through a model
calculation we showed that a more isotropic Skyrme crystal
state is favored by a larger anisotropy A2, while experimen-
tally it is the pressure that must favor the isotropic spin
states. A recent observation of the hexagonal Bragg spots in
the A phase of MnSi �Ref. 6� is clearly in accord with the
SCh found in our spin model. In both instances, a finite mag-
netic field is needed to turn a spiral spin into a triple spiral
phase. The measurement of Hall effect in the A phase was
interpreted in terms of the nonzero topological quantum
number carried by the hexagonal Skyrme crystal state.7 In
particular, the rather sharp appearance of the extra Hall sig-
nal upon entering into the A phase7 can be readily understood
by referring to the sudden rise in ��xy� as H exceeds the
threshold value Hc in Fig. 3�b�.

To summarize, a simple microscopic spin model under the
influence of spin anisotropy and magnetic field was shown to
give rise to several multiple spiral spin ground states. The
anomalous Hall conductivity for all these spin configurations
under the magnetic field was calculated using the sd Hamil-
tonian. A number of observations concerning the magnetic
structures and the anomalous Hall effect made in our paper
are found to be in good accord with the recent data on MnSi.

The strategy of our approach to chiral magnetism, of which
MnSi is one of the best examples, consists of two steps. The
first step is in writing down a reasonable effective model
which describes the known phases such as the recently ob-
served hexagonal Skyrme crystal state in the A phase of
MnSi. Our microscopic spin model successfully captures this
phase, and should be considered complementary to the phe-
nomenological approach adopted by others.6
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