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We construct an effective spin model from the coupled spin-fermion problem appropriate to double perovs-
kites of the form A2BB�O6. The magnetic model that emerges is reminiscent of double exchange and we
illustrate this “reduction” in detail for the case of perfect B-B� structural order, i.e., no antisite disorder. We
estimate the effective exchange between the magnetic B ions in terms of the electronic parameters, study the
“classical” magnetic model using Monte Carlo techniques and compare this approach to a full numerical
solution of the spin-fermion problem. The agreement is surprisingly good and promises a quick estimate of
magnetic properties when coupled with ab initio electronic structure. The scheme generalizes to the presence
of antisite disorder.
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I. INTRODUCTION

Double perovskite �DP� materials, of the form A2BB�O6,
have been of interest in recent years1,2 on account of their
magnetic, electronic, and structural properties. They promise
large magnetoresistance,3–5 potentially useful for switching
applications. The half-metallic character of some of the
members also make them attractive candidates for spintronic
devices.

One of the species, B say, is typically magnetic, a transi-
tion metal such as Fe, Co, Ni, or Cr while the B� species is
generally nonmagnetic, Mo, W, etc. The most studied mem-
ber of this series is Sr2FeMoO6 �SFMO�: it is a half-metallic
ferromagnet �FM� at low temperature and has a high Tc

�410 K. Sr2FeWO6, on the other hand, is an antiferromag-
netic �AFM� insulator. These limits illustrate the wide range
of physical properties in the DPs. While the “end points”
above are relatively easy to understand �ignoring disorder�
there are several effects where current understanding is lim-
ited.

�i� Antisite disorder. Well annealed double perovskites
tend to have an alternate arrangement of B and B� ions but
defects called “antisite” regions appear when two B or two
B� atoms occur as neighbors. These regions typically have an
AFM arrangement of the B spins and are insulating. Their
presence reduces the overall magnetization. The electronic
and magnetic properties in DPs are intimately related to the
structural order.

�ii� Phase competition. Exploration of the series6,7

Sr2FeMo1−xWxO6 reveals a FM to AFM transition and an
associated metal-insulator transition with increasing x. In the
regime of FM-AFM phase competition the compounds show
large magnetoresistance.

�iii� Magnetic B� sites. Recently, compounds where the B�
site also has an intrinsic magnetic moment have been
investigated8 and interesting compensation effects have been
observed. In particular, there are enigmatic compounds such
as Sr2CrOsO6 which are insulating �semimetallic�, but at the
same time ferromagnetic, with a very high Tc.

9 In addition,
there are spin-orbit effects10 in some DPs complicating the
magnetic state.

Issues �i�–�iii� above set the agenda in the double perovs-
kites, but approaching them directly in a finite temperature,
real-space formulation is formidable. It requires tools that
can predict magnetic properties of a double perovskite based
on electronic parameters and the structural disorder. This pa-
per is a step toward that goal where we provide a semiana-
lytic scheme for accessing the magnetic ground state and Tc

scales of a structurally ordered DP starting with a tight-
binding spin-fermion model. While our primary focus is the
FM regime, we also highlight issues of phase competition
and antiferromagnetism which are bound to be important
when doping effects are explored.

The paper is organized as follows. The next section de-
scribes the double perovskite model, following which we
summarize earlier work on this problem to place our work in
context. We then outline the different methods used in this
study. The section after describes our results, primarily
within a variational scheme and an effective exchange calcu-
lation, with Monte Carlo results for benchmark. We then
conclude, pointing out how our scheme can be extended to
the antisite disordered case.

II. DOUBLE PEROVSKITE MODEL

The double perovskite structure of A2BB�O6 can be
viewed as repetition of the perovskite units ABO3 and
AB�O3. In the ideal ordered DP the B and B� octahedra al-
ternate in each direction. In this paper we will focus on situ-
ations where only the B ion is magnetic. The superexchange
coupling between the B magnetic moments is small in the
ordered DPs and the primary magnetic interaction arises
from electron delocalization in the B-O-B� network. The im-
portant physical ingredients in this problem are: �i� a large S
core spin at the B site, �ii� strong coupling on the B site
between the core spin and the itinerant electron, strongly
preferring one spin polarization of the itinerant electron, and
�iii� delocalization of the itinerant electron on the B-B� net-
work.

The Hamiltonian for the structurally �B-B�� ordered
double perovskites is given by
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H = �B�
i�B

fi�
† f i� + �B� �

i�B�

mi�
† mi� − ��

i

�nf ,i + nm,i�

− t �
�ij��

f i�
† mj� + J�

i�A

Si · f i�
† �� ��f i�. �1�

The f’s refer to the magnetic B sites and the m to the non-
magnetic B�, and the B-B� hopping tBB�= t is the principal
hopping in the structurally ordered DPs. We will discuss the
impact of further neighbor hoppings later in the text. We
have retained only one orbital on the B and B� sites, our
formulation readily generalizes to a multiple orbital situa-
tion. The Si are “classical” �large S� core spins at the B site,
coupled to the itinerant B electrons through a coupling J� t.
This implies that the conduction-electron state at a B site is
slaved to the orientation of the corresponding B spin. The

difference between the ionic levels, �̃=�B−�B�, defines the
“bare” “charge-transfer” energy. At a later stage we will de-
fine the parameter �= ��B−JS /2�−�B� as the “true” charge-
transfer energy. nf is the B electron occupation number while
nm is the B� electron occupation number. We will assume
J / t→	 �keeping � finite�. The parameter space of the prob-
lem is defined by the electron filling, n, the ratio � / t, and the
temperature T / t. We have ignored Hubbard repulsion, B-B
antiferromagnetic superexchange, and, to start with, direct
hopping between B�-B� or B-B.

III. EARLIER WORK

Early work on the DPs was motivated by results on
Sr2FeMoO6, where electronic-structure calculations indicate
that Fe is in a 3d5 configuration �a half-filled state� while Mo
is in a 4d1 configuration. Following Hund’s rule, Fe is there-
fore in a high spin S=5 /2 state. Surprisingly, the normally
nonmagnetic Mo picks up a moment of 1/2 in the opposite
direction and reduces the moment per unit cell to �4�B. An
explanation for the induced moment on the nonmagnetic B�
species was provided by Sarma et al.,11 in terms of a “level
repulsion” between the Fe and Mo levels. Such a scenario
implies a substantial degree of hybridization between the Fe
and Mo orbitals, and assumes that the itinerant Mo electron
hops through the Fe sublattice.

Using this idea, a double exchange �DE� such as two-
sublattice Kondo lattice model was proposed for the DPs12

and solved within dynamical mean-field theory �DMFT� by
Chattopadhyay and Millis,12 assuming a “ferrimagnetic”13

state. They obtained a n-T phase diagram for different values
of �B�−�B and J and observed that the Tc goes to zero at large
filling, indicating the presence of some competing nonferro-
magnetic state.

A similar result for Tc�n� was obtained by Carvajal et al.14

using another two sublattice model and Ising spins. Here the
hopping of an electron with spin � from a B� site to a neigh-
boring B site is t if � is antiparallel to the local spin �i on
that site while it is zero if they are parallel. The authors
considered only ferrimagnetic arrangements.

Alonso et al.15 considered a variant of Millis’ model with
the coupling J→	 but with a larger number of ordering
possibilities. They also took into account possible antisite

defects, including a B-B hopping and superexchange which
are only active when two B atoms become nearest neighbors.
They considered four possible phases: �1� paramagnetic, �2�
ferrimagnetic, �3� an AFM phase, where the B spins in neigh-
boring �1,1,1� planes are antiparallel, and �4� another ferri-
magnetic phase where the B spins are aligned ferro-
magnetically if the B are in the correct positions and antifer-
romagnetically if the B ions occupy B� sites due to antisite
defects. Among other results they found that even in the
B-B� ordered case �where superexchange is not operative�
the AFM phase is preferred to the FM at high band filling.

All these studies, except the paper by Alonso et al., con-
centrate on the ferromagnetic13 phase. They observe the de-
crease in Tc at large filling but do not explore competing
phases. Second, while the DMFT approaches provide a semi-
analytic treatment of the Tc scales, in specific parts �in this
case ferromagnetic� of the phase diagram, an estimate of the
effective exchange between the B moments is not available.
The ab initio approaches have attempted such an estimate by
force fitting a “Heisenberg model.’” Unfortunately, the mag-
netic states that emerge from the DP model and the effective
exchange that stabilizes these phases arise from subtle elec-
tron delocalization physics not captured by such methods.
We also do not know of any work that allows an economical
and systematic exploration of the parameter space, n, �, and
J, of the DP model. The present paper aims to overcome
these shortcomings.

IV. METHODS

The first estimate of magnetic interactions in any material
is provided by ab initio calculations. This is typically done
by calculating the difference in ground-state energy of the
compound in spin-polarized and spin-unpolarized configura-
tions; or in different magnetic ground states corresponding to
different values of the spin-density wave vector.11 Such a
calculation involves all the relevant orbitals and their hybrid-
ization and provides a rough material specific estimate. How-
ever, for complex antiferromagnetic ground states one has to
guess such configuration beforehand or take a cue from ex-
periments. There is no a priori prescription for finding them.

Model Hamiltonian-based calculations, on the other hand,
have the obvious limitation that model parameters have to be
inferred from elsewhere, typically ab initio studies.16,17 The
advantage, however, lies in the simplicity of the resulting
model and our ability to create a qualitative understanding
using the tools of statistical mechanics. The Hamiltonian ap-
propriate to double perovskites can be studied using the fol-
lowing tools: �i� a combination of exact diagonalization and
Monte Carlo �ED-MC�, �ii� variational calculation �VC�
based on some family of periodic spin configurations, and
�iii� mapping to an effective classical spin model.

The ED-MC approach has the advantage of accessing the
magnetic structure without bias. However, due to large com-
putational cost, it is severely size limited, limiting the class
of magnetic structures which can be probed. A “traveling
cluster” �TCA� variant18 of ED-MC allows use of somewhat
larger system size. Variational calculations assuming a peri-
odic spin background can be used for very large system size
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�since there is no bulk diagonalization needed� but are re-
stricted by the choice of the variational family. While we will
use both �i� and �ii� above, our principal tool will be �iii�,
where we map on the spin-fermion problem to an effective
spin only model, with exchange calculated from the
fermions.19 We describe �i�–�iii� in more detail below.

A. Monte Carlo

One can solve the DP model on a finite lattice by direct
numerical methods, allowing for an “exact” benchmark for
approximate solutions. ED-MC is such a technique. Here, the
coupled spin-fermion problem is solved by updating the clas-
sical spins using a Monte Carlo, diagonalizing the fermion
system at each step of the MC to infer the energy cost of the
move. The method is numerically expensive and can only be
used on small system sizes, �8
8. Substantially bigger
sizes, �24
24, can be accessed using the TCA.

For the MC implementation the Hamiltonian of Eq. �1�
has to be cast into form appropriate for J→	. This is done
by performing a rotation to the local Si axis at each B site
and retaining only the electron state oriented antiparallel to
Si at that site. This gives the following Hamiltonian with
“spinless” B conduction electrons and B� electrons having
both spin states:

H = t�
�ij�
��sin	�i

2

 f i

†mj↑ − ei�i cos	�i

2

 f i

†mj↓� + H.c.�
+ �B�

i

f i
†f i + �B��

i�

mi�
† mi�. �2�

There is no longer any “infinite” coupling in the model
and the number of degrees of freedom has been reduced to
one per B site �and 2 per B��, so the Hilbert space is a little
smaller. mj↓ and mj↑ hop to different conduction-electron
projections at the neighboring B site�s� so the effective hop-
ping picks up a �i , �i dependent modulation. We will use
this form of the DP model for the Monte Carlo.

B. Variational ground state

A more analytical method used before in the double-
exchange context is to write down a family of spin configu-
rations S��, denoted S� for simplicity, and calculate the elec-
tronic energy in that background. Since the S� are usually
periodic this is effectively a “band-structure” calculation. For
a specified chemical potential one can calculate the elec-
tronic energy E�� ,S��. The configuration Smin��� that mini-
mizes E is the variational ground state. Needless to say, the
“minimum” is only as good as the starting set and in general
nonperiodic S� cannot be handled. Nevertheless, used in
combination with MC results it can be a valuable tool.

From the MC we will discover that in the structurally
ordered case the DP model has simple periodic ground states
with windows of phase separation in between. This will al-
low us to use the variational scheme, with only a few con-
figurations, to map out the T=0 phase diagram accurately.

C. Effective exchange

The complications with spin-fermion MC and the limita-
tions of VC could be avoided if one had an explicit spin-spin
interaction model deduced from the starting DP model. For-
mally such a scheme can be written down and some progress
made through approximation. Let us illustrate this “self-
consistent renormalization” �SCR� principle19 in the simpler
context of double exchange before moving to the double
perovskites.

1. Illustrative case: Double-exchange model

Consider the following model:

H = �
ij�

tijci�
† cj� − J�

i,��

Si · ci�
† �� ��ci�. �3�

Let us try to construct an approximate classical spin model in
the limit J→	. The classical model is defined by the equiva-
lence,

� DSie
−�Hef fS� =� DSi Tr e−�H, �4�

where the trace is over the fermion degrees of freedom. The
trace, in general, is impossible to compute analytically since
it involves the spectrum of fermions moving in an arbitrary
spin background S�. Nevertheless, some headway can be
made once the Hamiltonian is written in a more suggestive
rotated and projected basis as19

H = �
ij

f ijtij�eiij�i
†� j + H.c.� , �5�

where f ij =�1+Si·S j

2 , ij is a phase factor depending on Si and
S j, and the � are spinless fermion operators. This suggests
the approximation,

Hef fS� � − �
ij

Dij�1 + Si . S j

2
,

Dij = − tij��eiij�i
†� j + H.c.�� . �6�

The angular brackets indicate first a quantum average �for
fixed S�� and then thermal average over e−�Hef fS�.

Another way to obtain the same result, which generalizes
to the DP problem, is to write the action for H in a spin
background S�,

AS� = ��
n,i,j

�i�n�ij − tij f ije
iij��in

† � jn �7�

and the internal energy US�= � ln ZS�
�� =−� �A

�� �;

US� = �
ij

f ijtije
iij�

n

��in
† � jn� = �

ij

f ijtij�eiij��i
†� j� + H.c.� ,

�8�

which is simply the quantum average of the spin-fermion
Hamiltonian for a fixed S�. As before we can convert this to
an approximate spin Hamiltonian by thermally averaging the
quantity within the round brackets.
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The effective exchange depends on T but in the “clean”
problem it does not depend on the “bond” ij. Since the DE
model always has a ferromagnetic ground state, the low T
exchange can be calculated from the fermionic average in the
fully polarized state and is simply

D � �
k

�k�nk� = �
k

�knF��k� .

It was observed19 that even at finite temperature the self-
consistent average in the ferromagnetic phase remains close
to the T=0 value till very near Tc. The T=0 kinetic energy
therefore provides a reasonable estimate of effective ferro-
magnetic exchange and so the Tc. The overall scale factor
between the Tc and the exchange can be determined from a
Monte Carlo calculation.

2. Effective exchange in the double perovskites

Unlike the DE model we cannot write an effective spin
only Hamiltonian for the double perovskites purely by in-
spection since the electron motion also involves the B� sites.
We use the action formulation instead. Integrating out the B�
electrons we get an action entirely in terms of the B degrees
of freedom,

AS� = ��
n
��

k�

fkn�
† Gf f0

−1 �k,i�n�fkn� − J�
i

Si · f in�
† �� ��f in�� ,

�9�

where Gf f0�k , i�n� is the J=0 Greens function involving B
sites only �the n represent Matsubara frequencies�.

Gf f0
−1 = i�n − ��B − �� −

�k
2

i�n − ��B� − ��
. �10�

If we choose �B=0 and �B�=��0, this becomes

Gf f0
−1 = i�n + � −

�k
2

i�n + � − �
, �11�

where �k=2t�i=1
d cos kia. The poles of this Green’s function

give the band dispersion at J=0,

Ek
� =

� � ��2 + 4�k
2

2
− � . �12�

In the limit �� t, i.e., the limit of weak charge transfer, there
are two bands centered roughly on 0 and �. For �=0, there
are two bands ���k� symmetrically placed about 0.

While the first term in the action involving this bare
Green’s function conserves spin and momentum, the second
term is local in real space and typically involves spin flip. To
proceed, let us Fourier transform Gf f0

−1 �k ,�� and write the
action in real space. �k

2 generates “hoppings” �in the full B-B�
lattice� connecting sites that can either be next-nearest neigh-
bors �NN�, next-to-next-nearest neighbors �NNN�, or the
same site. In real space the action assumes the form

AS� = ��
n
��

ij�

f in�
† Gf f0

−1 �r�i − r� j,i�n�f jn�

− J�
i

Si . f in�
† �� ��f in�� . �13�

Now, an unitary transformation is performed in spin space so
that the second term in the action becomes diagonal: �in�

=��A��
i f in�. The action becomes

AS� = ��
n
� �

ij�,��

g��
ij �i�n

† Gf f0
−1 �r�i − r� j,i�n�� j�n

−
JS

2 �
i

��iun
† �iun − �iln

† �iln�� , �14�

where g��
ij =��A��

i A��
j† .

At large J one projects out the �iu states, retaining only
the terms involving the index l. Thereafter, we drop this in-
dex, redefine the B level as �B→�B− JS

2 , and obtain an effec-
tive spinless fermion model similar to the case of double
exchange,

AS� = ��
ij

gij�̄inGf f0
−1 �r�i − r� j,i�n�� jn

= ��
ij

gij��i�n + ���ij −
hij

i�n + � − �
��̄in� jn,

where gij =�1+Si·S j

2 eiij as before. hij is the Fourier transform
of �k

2 and connects sites on the B sublattice. It involves a NN
term �x̂+ ŷ in the full B-B� lattice� and a third neighbor term
�2x̂, etc., in the B-B� lattice�.

It is important we appreciate the various terms in the ex-
pression for AS� above. The “kernel” Gf f0

−1 �r�i−r� j , i�n� is
specified by the J=0 band structure of the B-B� problem,
explicit information about the spin variables is encoded in
gij, and the fermions are defined in the background S�.

We define i�n= i�2n+1��, so

AS� = �
in

�i�n + ����̄in�in − �
ijn

gij
�2hij

i�n + �� − �
�̄in� jn.

The internal energy can be calculated as US�=− � ln Z
��

=−� �AS�
�� �. Simplifying the resulting expression and using the

same principle as in DE we can write an explicit �but ap-
proximate� model purely in terms of core spins,

Hef fS� = �
ij

Dij�1 + Si . S j

2
,

Dij = hij
1

�
�

n

B�i�n��eiij��̄in� jn� + H.c.� ,

B�i�n� =
�2i�n + 2� − ��
�i�n + � − ��2 . �15�
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The effective exchange Dij can be determined at any tem-
perature by the SCR method. The couplings take two values,
D1 for NN B-B exchange and D2 for second-neighbor B-B
exchange. The low T exchange can be estimated by evaluat-
ing the fermionic average in the perfectly spin-ordered state
at T=0 �after checking that the ground state generated by the
exchange is self-consistently ferromagnetic�. The evaluation
of the Matsubara sums, etc., is discussed in Appendix A.

V. RESULTS

A. Magnetic ground state

Both ED-MC done on 8
8 and TCA done on 16
16
exhibit the presence of three phases: namely, FM �first panel
in Fig. 1�, a “linelike” antiferromagnetic phase �AFM1,
middle panel�, and the more conventional antiferromagnet
�AFM2� in the last panel. If we define the ordering wave
vector on B sublattice using axes along the diagonals, the FM
phase has order at Q= 0,0�, AFM1 has order at Q= 0,��,
and AFM2 has order at Q= � ,��. We could of course define
the wave vectors on the full B-B� lattice and use the usual x
and y axes but for the structurally ordered case the earlier
convention is simpler.

Figure 2 shows the n-T phase diagram for three values of
�. With increasing n the phases occur in the sequence FM,
AFM1, AFM2, AFM1, and FM again. The sequence as well
as the rough filling windows are similar for all three � values
�the VC, which is free of size effects, will demonstrate this
more clearly�. The Tc of the antiferromagnetic phases de-
crease more rapidly than the ferromagnetic phases. More-
over, for �=−4, the 0,�� phase is unobservable on the high
filling side while its Neel temperature, TN, is quite small

even on the low filling side. Eventually, for large enough �,
the Tc of all the phases decrease further, as seen in Fig. 2�c�.
The AFM1 phase is unobservable on even the low filling
side, possibly due to very small TN. It is to be noted that in
two-dimensional �2D� systems of this type, there is no true
long-range order and hence no Tc in the thermodynamic
limit. For finite 2D systems, however, there is a sharp cross-
over scale, a characteristic temperature Tch that reduces only
as log�1 /L�, which typically corresponds �within a prefactor�
to actual Tc’s in three dimensions �3D�.20 Hence, our plots of
n-Tc should be considered as indicative of variation in the
exchange scale with n, rather than absolute transition
temperatures.

While AFM phases driven by B-B superexchange have
been studied in the DPs, AFM phases driven by electron
delocalization have not seen much discussion. Their occur-
rence, however, is not surprising. If we were to “test out” the
feasibility of various magnetic ground states we could re-
strict ourself to a few simple collinear phases to start with.
The FM, AFM1, etc., are such examples. Let us index them
by some index �. As described before, which of these occur
at a chemical potential � can be simply checked by calculat-
ing the energy E����=�−	

� d�N�����, where N���� is the elec-
tronic density of states in the spin background �. The phase
appropriate to a particular � would be the one with lowest
energy. Even without a calculation it is obvious that the FM
state will have the largest bandwidth and would be preferred
at low n. The AFM phases have narrower bands but larger
density of states �since the overall density of states �DOS� is
normalized� and with growing � they become viable. In
what follows we quantify this carefully.

One can obtain analytic expressions for the dispersions in
the 0,�� and � ,�� phases, which are given below. In the
0,�� phase, in our J→	 limit, the structure decomposes
into electronically decoupled ferromagnetic zigzag chains
aligned antiferromagnetically with respect to each other, see
Fig. 1 middle panel. Their dispersion is one dimension �1D�
like, given by

�k =
� � ��2 + 16 + 16 cos�kx − ky�

2
. �16�

In the limit �→0, their 1D-like nature is clearly visible

�k = 2�2 cos	 kx − ky

2

 . �17�

The � ,�� phase, on the other hand, decouples into two
planar lattices where the B spins are arranged ferromagneti-
cally while these lattices are themselves aligned antiferro-
magnetically with respect to each other. The dispersion is
given by

FIG. 1. �Color online� The three magnetic
phases in the 2D model. Left: FM, center: AFM1,
and right: AFM2. These occur with increasing
electron density. The moments are on the B sites,
we have not shown the induced moments on the
B� sites.

0
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0.08

T
/t

0
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T
/t

0 1 2 3
n

0

0.04

0.08

T
/t

(a) ∆/t=0

(b) ∆/t=-4

(c) ∆/t=-10

FIG. 2. �Color online� n-T phase diagram based on TCA. �a�
�=0, �b� �=−4, and �c� �=−10. The solid �blue� lines are ferro,
dashed �red� lines are AFM1, and the dash-dot �black� lines are
AFM2. The system size is 16
16.
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�k =
� � ��2 + 16t2�cos2 kx + cos2 ky�

2
, �18�

which reduces to �2t�cos2 kx+cos2 ky when �=0. It is in-
teresting to note that the bandwidths of both 0,�� and
� ,�� phases are identical, although the detailed DOS are
different. The DOS for the three phases for �=0 are shown
in Fig. 3. We can understand the occurrence of the various
phases by integrating the DOS and comparing the energies at
a fixed �. The results are shown in Fig. 4�a� for �=0 and
Fig. 4�b� for �=−2. It is to be noted that when ��W, where
W is the width of the widest band, the three E��� curves
coincide for any choice of �. This is because, we have con-
sidered the B and B� levels to be � and 0. Hence, the total
electronic energy in all three magnetic backgrounds must
come to � �the trace of the Hamiltonian matrix� when � is
greater than the bandwidth, i.e., all levels are occupied.

As expected, at low filling the energy of the FM phase is
the lowest while for intermediate filling that of the AFM1
phase is lower than the FM phase. At still higher fillings, the
energy of the AFM2 phase is the lowest. This is repeated

symmetrically on the other side of �=0 for �=0. The den-
sity discontinuity corresponding to each transition can also
be found from the corresponding �-n curves shown in Figs.
4�c� and 4�d�. For finite �, the AFM1 phase becomes nar-
rower, especially on the high filling side. These simple varia-
tional results are corroborated by the phase diagram obtained
from the TCA calculation.

The n-� phase diagram at T=0 is shown in Fig. 5. There
are windows of phase separation where homogeneous
electronic/magnetic states are not allowed. These regions
correspond to the jumps in the n-� curve. The AFM1 phase
becomes unstable on the high filling side for large �, which
manifests itself through a merging of the phase boundaries.

B. Spin model and effective exchange

Our effective spin model is

Hef fS� = �
ij

Dij�1 + Si . S j

2
.

Using the exchange Dij calculated from Eq. �15� using a
fully ferromagnetic reference state, one can plot the nearest-
neighbor exchange DNN and the next-nearest neighbor DNNN
as a function of filling n. The results are shown in the top
panel of Fig. 6�a� for �=0. One finds that both the exchanges
change sign as a function of filling. At low filling and very
high filling, both are negative, indicating an overall ferro-
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magnetic coupling. However, for intermediate values of fill-
ing, both the exchanges become positive, giving an effective
antiferromagnetic coupling. In between, there is a small re-
gion where one of them is positive and the other negative.

Since the calculation was started using a purely ferromag-
netic spin background, such changes in sign of the calculated
exchange indicate an instability of the ferromagnetic phase at
these fillings. Where the “exchange” DNN+DNNN�0 the
ground state will no longer be FM, the result for Dij is not
self-consistent, and the quantitative values not trustworthy.
We will confine ourselves to the window where the ground
state is self-consistently ferromagnetic.

The exchange for the antiferromagnetic states and the
Neel temperature should be calculated in appropriate spin
backgrounds, i.e., 0,�� and � ,��. However, the 0,��
state, in the J→	 case, consists of disconnected chainlike
structures. While the intrachain arrangement is ferromagnetic
and the interchain arrangement is antiferromagnetic. Since
there is no hopping connectivity between the chains, the in-
terchain exchange calculated in such a spin background
would emerge to be zero. Similarly, for a � ,�� spin back-
ground, there are two sublattices such that the intrasublattice
arrangement is ferromagnetic while the intersublattice one is
antiferromagnetic. Again, since these sublattices are discon-
nected, the intersublattice hopping is zero. In these aniso-
tropic states the effective exchange �and stiffness� vanishes
along certain directions at T=0. To calculate the effective
exchange that controls the Tc in the AFM1 and AFM2 phases
we need to necessarily solve the finite temperature self-
consistency problem. This is an interesting problem but com-
putationally demanding and is left for future work.

C. n-T phase diagram from the Dij

Our previous experience with the double-exchange model
suggests19 that a reasonable estimate of Tc is provided by the
exchange calculated in the fully FM T=0 state. On this as-
sumption, one can study the effective spin model with clas-
sical Monte Carlo and calculate finite temperature properties
including Tc. The n-T phase diagram obtained this way is
shown in the bottom panel of Fig. 6. All the three phases:
FM, AFM1, and AFM2 occur in approximately the correct
filling windows. The Tc scales for the ferromagnetic phases,
which are the only ones consistent with the assumed spin
background, turn out to be reasonably correct, as we will see
in a comparison with the full TCA result. We ignore the Tc
for the AF phase since the AF exchange is not self-
consistent.

D. Properties in the ferromagnetic regime

Since much of the interest in the double perovskites arises
from ferromagnetism, we focus on this regime in what fol-
lows. In our n-T phase diagram, this FM phase at low filling
occurs up to n�0.5–0.7, which, considering the degeneracy
of the three t2g orbitals, translates to about 1.5–2.1 electrons
per unit cell. Sr2FeMoO6, which has one electron per unit
cell, falls within this regime. However, many other materials
such as Sr2FeReO6 are known, which have two or more elec-
trons per unit cell but are still ferromagnetic with a high Tc.

This discrepancy between theory and experiment was no-
ticed by many authors before us: Chattopadhyay and
Millis,12 Brey et al.,21 Carvajal et al.,14 and Alonso et al.15

They attributed it to the presence of competing antiferromag-
netic channels, an effect which we also find.

Our results on Tc�n� is similar to that obtained by others,
i.e., a reduction as n→0 as the kinetic energy and ferromag-
netic exchange weakens, and a drop also at large n due to the
presence of competing AF phases. The Tc�n� obtained from
the SCR scheme is compared to the result of full spin-
fermion Monte Carlo using TCA, Fig. 7. They seem to match
quite well, except that the SCR results calculated on a T=0
state overestimate the Tc slightly. While the actual Tc’s can
only be calculated using Monte Carlo on small systems, e.g.,
for 16
16 in Fig. 7, the average exchange calculated with a
very large k grid �1000
1000 k points�, representative of
Tc’s in the continuum limit apart from a scale factor, is
shown in Fig. 8.22 A clear correspondence with similar
Tc�n ,�� obtained from DMFT calculations of Millis et al.,
and the calculations of Carvajal et al. is observed, establish-
ing the soundness of our results.

It should be mentioned that the filling at which the ferro-
magnetic Tc vanishes is also overestimated in any calculation
such as SCR or DMFT, where the chemical potential is
eliminated between the Tc and the filling n. Such a procedure
does not capture the phase coexistence windows inherent in
first-order phase transitions, which is accurately captured in
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the variational approach using the Maxwell construction.
This is the reason for the apparent discrepancy between the
ferromagnetic filling window obtained from the variational
and the exchange calculations. While these phase coexist-
ence regions are present in ED+MC calculations, the sizes
are simply too small to make quantitative comparisons with
the bulk-limit variational calculation. Due to the proximity of
the antiferromagnetic phases, a strong renormalization of the
Tc scales obtained from the SCR exchange is expected at
finite temperature, in contrast with the simple double-
exchange case, where only the ferromagnetic phase survived
in the infinite J limit.

E. AFM phases

The AFM phases AFM1 and AFM2 occupy a large part of
the n-T phase diagram. The presence of such collinear anti-
ferromagnetic phases has been observed earlier by several
authors, notably Alonso et al.15 These phases, at least within
the J→	 model considered here, have a “lower connected-
ness” than the ferromagnetic phase. The AFM1 phase con-
sists of double staircaselike structures attached back to back
while the AFM2 phase consists of decoupled Cu-O-like lat-
tices for each B� spin channel. The DOS corresponding to
these are given in Fig. 3. The DOS for the AFM1 phase
resembles that of a 1D tight-binding lattice while the AFM2
DOS is more 2D like. It is interesting to note that there is a
dispersionless level for both the AFM phases, which gives
the jump in the �-n curve. While the effective exchange
calculation starting from a fully polarized background al-
ready produced the three phases but a truly self-consistent
calculation for the AFM phases would have to start assuming
these spin backgrounds. Such a calculation is nontrivial, as
discussed before.

VI. MAGNETIZATION AT THE B� SITES

The induced magnetism on the B� site was explained
within a local level repulsion picture by Sarma et al.11 but a
lattice-oriented approach is lacking. Some headway can be
made by exactly integrating out the B degrees of freedom
rather than the B� from the J→	 model given in Eq. �2� but
the result is in the form of an action, rather than an effective
Hamiltonian. Within second-order perturbation theory, how-
ever, it appears that an extra on-site term of the form

ztFM
2

2�
�
j���

S� j+� · mj�
† ����mj�

occurs for the B� sites �z is the number of nearest neighbors�
giving an “exchange splitting” at the B� site, with the spins
of the surrounding B sites serving as a magnetic field. The
corresponding hopping terms are given by

tFM
2

�
�

�ij�,�
mi�

† mj� +
tFM
2

�
�
�ij�

S� i+�� · mi�
† �� ��mj�

+
t2

2�
�
��ij��

S� �i−j�/2 · mi�
† ���mj�. �19�

Within a mean-field treatment of the B core spins Si��Si�
= ẑM, the effective B�-B� “Hamiltonian” can be written as

t2

�
�
�ij�

��1 + M�mi↑
† mj↑ + �1 − M�mi↓

† mj↓�

+
t2

2�
�
��ij��

��1 + M�mi↑
† mj↑ + �1 − M�mi↓

† mj↓�

+
2t2

�
M�

i

�mi↑
† mi↑ − mi↓

† mi↓� . �20�

Obviously, at T=0, M =1, and only one spin species hops.
The effective spin polarization at the B� site, which is

purely electronic, contributes to the total magnetization.
Within the TCA approach using Hamiltonian �2�, this can
simply be estimated by calculating the normalized magneti-

zation
�n↑

B��−�n↓
B��

�n↑
B��+�n↓

B��
. In Fig. 9�a�, the magnetization of the B� has

been plotted against the temperature for different fillings cor-
responding to an ED+MC simulation on a 8
8 system for
�=0, normalized by the net B� filling. It is observed that the
T dependence is very similar to that the B core-spin case. In
Fig. 9�b�, the bare B� magnetization is shown without nor-
malization: it shows that the saturation magnetization in-
creases with filling, as expected. In Fig. 10, a comparison of
the M vs T coming from the B� electron and the B core spins
is provided.
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VII. EFFECT OF B�-B� HOPPING

Inclusion of B�-B� hopping t� would result in the same
expression for the exchange calculated in the ferromagnetic
state as before �see Appendix A�, except that the � every-
where would get replaced by �+4t� cos kx cos ky while �k
=2t�cos kx+cos ky� for a square lattice. It is obvious that if
t=0, the exchange would vanish irrespective of t�, showing
that hopping across the magnetic site is crucial, as expected.
For parameter values reasonable in double perovskites, t�
�0.1–0.3t and 0���3, there is almost no change in the
n−� phase diagram, although the Tc values decrease margin-
ally when the t� is turned on. For larger values of �, the
AFM1 phase becomes unstable and the ferromagnetic win-
dow extends a bit, upto the AFM2 phase, although the Tc’s,
of course, are proportionately low.

VIII. DISCUSSION

We discuss a few issues below to connect our results to
available data on the double perovskites and also highlight a
few effects that we have neglected.

�1� Material parameters. Ab initio calculations
suggest11,12 that t�0.3–0.5 eV while t� is typically three to
five times smaller. The direct hopping between B sites is
even smaller, �0.05 eV. Estimates for the bare “charge-
transfer gap” � �in SFMO� vary between 1.4 eV �Ref. 11� to
about 2 eV.12 Hence, the parameter window we explored
seems reasonable. Our ferromagnetic Tc are typically 0.1t at
a filling appropriate to SFMO, so the absolute magnitude of
the Tc’s would be about 360–600 K, roughly the range seen
in the double perovskites.

�2� B-B hopping. While we have not considered the effect
of B-B hopping, the smallest energy scale in the problem,
explicitly in this paper, it is possible to understand qualita-
tively the effect of including this hopping. If only B-B� hop-
ping is considered, then there are two singular features in the

density of states, at �B and �B�, or alternatively, at 0 and �̃.
Inclusion of the B�-B� hopping resulted, at the zeroth level,
in the smoothening of the feature at �B�. Similarly, inclusion
of the B-B hopping will basically smoothen out the feature at
�B. However, the B�-B� hopping had a much more dramatic
consequence in terms of providing an alternate pathway for
delocalization of the B� electrons irrespective of spin, espe-
cially at large �. Second, it resulted in connecting up of the
AFM1 staircases, getting rid of their 1D character, and mak-
ing this phase unstable compared to the FM and AFM2
phases. Inclusion of a small B-B hopping in addition is not,
on the other hand, expected to have any more dramatic con-
sequences. We can readily include this in our formalism.

�3� Three dimensions. The entire analysis in this paper
was in two dimensions. Apart from simplicity, ease of visu-
alization, and computational tractability, there is a definite
argument in terms of the symmetry of the t2g orbitals as long
as nearest-neighbor interactions are considered,12,14 which
says that one can consider three independent 2D Hamilto-
nians. Other authors23,24 have also used 2D Hamiltonians.
Having said that the phases discussed here generalizes easily
to three dimensions. The AFM1 phase in the absence of

B�-B� hopping becomes 2D rather than 1D, consisting of
ferromagnetic �111� planes arranged antiferromagnetically.
Such an arrangement has been observed by authors such as
Alonso et al.15 and even in ab initio calculations.25

�4� Filling control. The n-T phase diagram that we pro-
vide is for a definite set of parameters � , t , t�, etc. While
going across the series of DP compounds Sr2FeMoO6 to
Sr2FeReO6, it is not just the filling but also all these param-
eters which are changing. A more controlled way of varying
the filling alone would probably be to dope the compounds at
the A site, namely, prepare the series Sr2−xLaxFeMoO6.
While some work has been done in this regard,26 more ex-
tensive work, probing higher doping values is necessary to
ascertain whether such antiferromagnetic phases are indeed
observed.

�5� SCR for antisite disordered case. While the clean
problem has been studied in detail in this paper, antisite dis-
order is expected to make it more interesting. Paradoxical
effects such as increase in Tc and widening of the FM region
has been suggested.15 The scheme for self-consistent renor-
malization that we have proposed can be generalized even to
the case of antisite disorder �see Appendix B�. However, the
scheme in that case becomes more numerical and the ana-
lytical handle available here would be lost even at T=0. The
formalism is presented in Appendix B and we are currently
studying the problem.
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APPENDIX A: EXCHANGE CALCULATION IN THE
DOUBLE PEROVSKITES

The effective exchange Dij can be evaluated in the per-
fectly spin-ordered state at T=0. This can be obtained by
using the known form of the Green’s function ��̄in� jn� at T
=0, namely, it is the Gf f0�r�i−r� j , i�n� obtained before, made
dimensionless by dividing by �. Hence, in the spin-ordered
case, the exchange becomes

UB�T = 0� =
1

�
�

n

�2i�n − ��
�i�n − ��2

�k
2

�i�n −
�k

2

i�n − �
�

=
1

�
�

n

�2i�n − ���k
2

�i�n − ���i�n�i�n − �� − �k
2�

. �A1�

Expanding in partial fractions, this can be written as

UB =
1

�
�
kn
� Ek+

i�n − Ek+
+

Ek+

i�n − Ek−
−

�

i�n − �
� . �A2�

Performing the Matsubara sums, this gives the final result

UB = �
k

�Ek+nF�Ek+� + Ek−nF�Ek−�� − �nF��� . �A3�
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The last term is an additional contribution obtained from
the missing B� energy. While this gives the full internal en-
ergy in the spin-polarized case, the bond-resolved exchange
Dij is given by

Dij = �
k

eik�·�r�i−r�j��Ek+nF�Ek+� + Ek−nF�Ek−�� − �nF��� .

�A4�

We need to do the k sum, which can only be done numeri-
cally for square �2D� or cubic �3D� lattices. Instead, if one
uses a Bethe lattice of infinite coordination, then the bare
density of states for nearest-neighbor hopping is semicircular
and analytic treatment is possible, at least for the DOS. In
our case, there are two bands with dispersions

Ek� =
� � ��2 + 4�k

2

2
. �A5�

The density of states for these bands is

���E� = �
k

�	E −
� � ��2 + 4�k

2

2



=� d��0����	E −
� � ��2 + 4�2

2

 , �A6�

where the bare DOS �0���=�k���−�k� is approximated by
the semicircular DOS, �0���� 2

�D2
�D2−�2. Then, the full

DOS given by Eq. �A6� becomes

���E� =
2

�D2�
−D

D

d��D2 − �2�	E −
� � ��2 + 4�2

2

 .

�A7�

This integral can be evaluated to give the following analytic
result for the DOS:

���E� =
��2E − ��

�D2

�D2 − E2 + E�

�E2 − E�


 ��D2 − E2 − E����E2 − E�� . �A8�

Obviously, this diverges at E=0 and E=�. The limits of the
DOS and hence the integral are obtained from the equations

given by the two theta function conditions: Elimit
��1��= ����2+4D2

2

and Elimit
��2��=0, �. If we take ��0, as in our case, then the

lower band lies between �+��2+4D2

2 �left edge� and � �right
edge� while the upper band lies between 0 �left edge� and
�−��2+4D2

2 �right edge�.
When D→0, i.e., t→0, the theta function conditions are

only satisfied together for E2−E�=0, i.e., at E=0 or E=�.
Thus we recover the bare levels as �-function peaks in the
DOS, as expected.

The exchange at T=0 is given in terms of this DOS as

UB =� E��+�E� + �−�E��nF�E�dE − �nF��� . �A9�

This gives UB as a function of �. One can also obtain the
total number of electrons N from the DOS as a function of �,

N =� dE��+�E� + �−�E��nF�E� . �A10�

From Eqs. �A9� and �A10�, eliminating �, one can get U vs
N.

Using the substitution �=E2−E�, the expression for the
exchange can be rewritten in a more convenient form at T
=0 as

UB��� =
2

�D2�
�
�

−D

D

d�
� � ��2 + 4�2

2


 �	� −
� � ��2 + 4�2

2




�D2 − �2 − ���� − �� . �A11�

It is to be noticed that as t→0, i.e., D→0, the exchange
goes to zero, as it should. This can be seen in two ways.
First, as t→0 and �k→0. Hence, the band dispersions Ek�

given by Eq. �A5� tends to �����
2 . This means that Ek+→0

and Ek−→�. Hence, putting in Eq. �A9�, the first term in-
volving Ek+ is 0 while the second term involving Ek− cancels
the third term involving �nF���.

The other way to observe this is to use Eq. �A11�. Here,
when D→0, then the theta function condition is only satis-
fied for �2=D2, which means that the only contribution to
the integral comes from �=0. Indeed, the bare semicircular
DOS 2

�D2
�D2−�2 being a normalized object, tends to a delta

function ��E� as D→0. Hence, the term involving + sign
gives 0 while that involving − sign gives ����−��, which
cancels with the third term.

APPENDIX B: EXCHANGE CALCULATION WITH
ANTISITE DISORDER

First, the Hamiltonian has to be written in such a way that
all the B and B� degrees of freedom are separated out in
distinct subspaces of the Hamiltonian,

H = 	HFF HFM

HMF HMM

 ,

where HFF represents the terms in the subspace of the B
degrees of freedom, while HMM represents the terms in the
B� subspace. HMF and HFM connects the two subspaces.

Following the usual “downfolding” procedure, we down-
fold the Hamiltonian onto the FF subspace. This, as before,
can only be done at the level of the action or the Green’s
function and corresponds to integrating out the entire set of
molybdenum degrees of freedom. The downfolded B Green’s
function satisfies the matrix equation

GFF
−1 �i�n� = i�nI − HFF − HFM�i�nI − HMM�−1HMF.

�B1�

Written out term by term,
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GFF
−1 �i�n� = i�n�ij − HFFij

− �
kl

HFMik
�i�nI − HMM�kl

−1HMFij
.

�B2�

Hence the action

AS� = �
in

�i�n + ����̄in�in − �
ij

�HFFij
�̄in� jngij

− �2�
kl

HFMik
�i�nI − �HMM�kl

−1HMFij
�̄in� jngij .

Now, let V be the diagonalizing matrix of HMM and its ei-
genvalues are �MM

p . Then,

AS� = �
in

�i�n + ����̄in�in

− �
ijn
��HFFij

− �2�
klp

HFMik
VkpVpl

−1HMFlj

i�n − ��MM
p �


gij�̄in� jn,

� �A

��
� = �

ij
�HFFij

− �
klp

HFMik
VkpVpl

−1HMFlj

i�n − ��MM
p

+ �2�
klp

HFMik
Vkp�MM

p Vpl
−1HMFlj

�i�n − ��MM
p �2 �gij��̄in� jn�

= − �
ij

Dijgij .

It is to be noted that in the ordered case, the Hamiltonian
matrix becomes block diagonal in k space and the elements
of the off-diagonal block HMF and HFM are simply �k, while
those of the digonalizing matrices V are eik�.�r�i−r�j�, while the
eigenvalues �MM

p are simply �Mo, i.e., �. Hence, the quantity
HFMik

VkpVpl
−1HMFlj

in the numerator simply goes over to hij,
as defined in Eq. �15�. This establishes the correspondence
between the ordered and the disordered cases.

An actual calculation using this procedure is of course, a
Herculean task. In particular, there does not seem to be any
obvious configuration, unlike the ordered case, which admits
an analytic solution for the exchanges. The numerical proce-
dure, on the other hand, is as before heavy and will be taken
up at a later date.
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