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The bivariate high-temperature expansion of the spin-spin correlation function of the three-dimensional
classical XY �planar rotator� model, with spatially anisotropic nearest-neighbor couplings, is extended from the
tenth through the 21st order. The computation is carried out for the simple cubic lattice, in the absence of
magnetic field, in the case in which the coupling strength along the z axis of the lattice is different from those
along the x and the y axes. It is then possible to determine accurately the critical temperature as function of the
parameter R which characterizes the coupling anisotropy and to check numerically the universality, with
respect to R, of the critical exponents of the three-dimensional anisotropic system. The analysis of our data also
shows that the main predictions of the generalized scaling theory for the crossover from the three-dimensional
to the two-dimensional critical behavior are compatible with the series extrapolations.
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I. INTRODUCTION

The three-dimensional �3D� layered magnetic spin sys-
tems, in which the strength of the interactions among the
layers is much smaller than within the layers, are often re-
ferred to as quasi-two-dimensional. Although strictly two-
dimensional �2D� magnetic systems do not exist in nature,
their statistical mechanics can be studied by experimenting
with diverse more mundane structures and in particular by
exploring how quasi-two-dimensional systems1 crossover,
i.e., change their universality class, on going from the 3D to
the 2D critical regime. From a more general standpoint, the
study of spatially anisotropic systems also provides the sim-
plest example of a wide variety of crossover phenomena2–6

of different origin which may occur near criticality.
The simplest Hamiltonian, which can model a quasi-two-

dimensional magnetic system, in the absence of a magnetic
field, is that of an N-vector spin model with axially aniso-
tropic couplings

Han�v� = − NJ1 �
nn�xy�

v��r�� · v��r��� − NJ2 �
nn�z�

v��r�� · v��r��� .

�1�

We have indicated by v��r�� an N-component classical spin
vector of unit length located at the site r� of a simple cubic
�sc� lattice. The first sum in Eq. �1� is extended to the
nearest-neighbor �nn� spin pairs within each horizontal �xy�
layer, while the second sum is over the nn spins in adjacent
layers along the z direction. We shall denote by R=J2 /J1 the
ratio of the interlayer to the intralayer coupling strength
which characterizes the spatial anisotropy of the spin cou-
plings and therefore is sometimes referred to as anisotropy
parameter. The thermodynamic quantities of the model can
be expressed as functions of the variables K1=J1 /kT and
K2=J2 /kT, with k as the Boltzmann constant. One may,
equivalently, choose either the pair of variables K1 and R or

the pair K2 and R̄=1 /R. For R→0, the system becomes a
stack of noninteracting spin layers. When R=1, the system

has directionally isotropic interactions. For R→�, or equiva-
lently for R̄→0, it reduces to an array of noninteracting spin
chains.

Only a few pioneering studies7–12 of Hamiltonian �1� by
high-temperature �HT� methods are presently available. They
were aimed at the following:

�1� A numerical test of the critical universality13 for the
anisotropic system, in particular of the R independence of the
critical exponents as long as R�0.

�2� An investigation of the change in universality class of
the critical transition as R→0, i.e., of the crossover from the
sc to the square-lattice critical behavior.

They relied on HT series expansions, in terms of the two
variables K1 and K2, computed through 11th order8 for N
=1 �the spin-1/2 Ising model� and through tenth order10 for
N=2 �the planar rotator or XY model� or N=3 �the classical
Heisenberg model� on the sc lattice. The corresponding ex-
pansions for the face-centered-cubic lattice also reached the
same orders. Altogether 78 coefficients were computed in the
sc-lattice Ising case and 66 coefficients in the other cases but,
unfortunately, no further coefficients were added since. In the
Ising case, although rather short, the expansions are suffi-
ciently well behaved that their extrapolations can support
unambiguously the simplest theoretical expectations con-
cerning the crossover. The accuracy of the first series analy-
ses in the Ising case could be only marginally improved14 by
resorting to bivariate partial-differential approximants15,16

�i.e., by approximately resumming the HT expansions in
terms of the solution of a linear first-order partial differential
equation with appropriately chosen bivariate polynomial co-
efficients� instead of using the conventional ratio or Padé
approximant �PA� methods. The reason of this failure is that
there is no substitute for significantly longer expansions.
Later on, also several Monte Carlo simulations17,18 were car-
ried out in an attempt at further clarifying the crossover be-
havior of Ising systems, but the accuracy of the results is still
subject to controversy for small positive R, i.e., in the region
of main interest. On the other hand, for the models with N
�1, the earliest HT analyses were inconclusive, thus calling
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for a substantial extension of the expansions. In particular,
the crossover issue remained to be studied because even the
existence of a critical point at nonzero temperature and the
nature of the critical singularity in the 2D limit were not yet
firmly assessed at the time of the first analyses. Also the
successive simulation studies, carried out when the critical
behaviors in 2D of the N=2 model19 �and of the N�2
models20� were better understood, probably cannot yet be
considered sufficiently accurate21,22 or are not directly
comparable23 with the series analyses.

We have been motivated by this situation to devote our
study to the N=2 anisotropic model, taking advantage of our
recent extensions through order 21 �i.e., from 66 to 253 se-
ries coefficients�, of the bivariate HT expansions for the two-
spin correlation function and its moments on the sc lattice.
Another reason of interest into this model is that it has been
suggested to provide an approximate description of layered
high-Tc superconductors.24

The paper is organized as follows. In Sec. II, we briefly
mention the algorithm adopted and specify the results of our
series computations. In Sec. III, we discuss some of the sim-
plest predictions of the extended phenomenological scaling
theory for the crossover from the 3D to the 2D �and from the
3D to the one-dimensional �1D�� critical behavior. We begin
by reviewing in some detail the well studied N=1 case only
to recall the general ideas of this approach and to contrast its
features with those of the less studied and more complex N
�2 cases. In Sec. IV, we outline our numerical analysis of
the expansions and compare the results with the theoretical
expectations.

We should finally notice that, throughout this report, for
reasons of clarity, we have used a notation sometimes differ-
ent and heavier but more detailed and perhaps more explicit
than that generally adopted in the earliest studies of the
crossover phenomena.

II. EXTENDED HIGH-TEMPERATURE EXPANSIONS

Our computation of the series coefficients was carried out
using a computerized recursive algorithm based on the
Schwinger-Dyson equations.25 This method was initially ap-
plied only to the determination of single-variable HT expan-
sions. Only recently, taking advantage of the great improve-
ments of the computer performances of the last decades, it
could be straightforwardly adapted26,27 to derive also the
more memory-demanding and computationally intensive bi-
variate expansions for a wide class of isotropic and aniso-
tropic XY models with nn and next-to-nn interactions. It
should be noted that in our approach only extended-integer
exact arithmetic is used, thus avoiding all round-off errors
which limited the precision of the preceding10 floating-point
computations. To give an idea of the performance of the
algorithm, let us note that an ordinary single-processor desk-
top personal computer �pc� can complete, in less than a sec-
ond, all tenth-order calculations for the anisotropic N=2 case
so far documented10 in the literature. The calculation of the
next nine orders takes a few days. To compute the last two
orders, we have used a pc-cluster for a time equivalent to
approximately six months of a single pc.

Fixing N=2, we have calculated the spin-spin correlations

C�0� ,x� ;N;K1,R� = �v��0�� · v��x��	 , �2�

for all values of x� for which the HT expansion coefficients
are nontrivial within the maximum order reached. As usual,
here �O	=Tr�O exp�−Han�� /Tr�exp�−Han��.

In terms of Eq. �2�, we have formed the expansions of the
lth-order spherical moments of the correlation function:

m�l��N;K1,R� = �
x�


x�
l�v��0�� · v��x��	 �3�

and, in particular, of the reduced ferromagnetic susceptibility
defined as ��N ;K1 ,R�=m�0��N ;K1 ,R�.

The second-moment correlation length is expressed in
terms of m�2��N ;K1 ,R� and ��N ;K1 ,R� as

���N;K1,R��2 = m�2��N;K1,R�/2d��N;K1,R� . �4�

where d is the lattice dimensionality, i.e., d=1 for R̄=0, d
=2 for R=0, and d=3 otherwise.

Usually, for the univariate HT expansions, the only acces-
sible validation procedure of an extended computation is the
comparison with the lower-order results that might be al-
ready known. In the case at hand, only the expansion coef-
ficients of the second moment of the correlation function are
tabulated through tenth order in Ref. 10, but they contain
small round-off errors in the eight figure at highest order.
After correction of these errors they agree with our results.
Of course, this is not a very stringent test of correctness.
However, the extended expansions can be subjected, at all
orders, to additional tests, some of which deriving from
equations of Sec. III. First, we can check that, taking R=1,
the coefficients of the single-variable expansions for the cor-
responding quantities of the isotropic 3D XY model, already
known28 through order 21, are reproduced. Moreover, we can

observe that for R=0 and R̄=0, the expansions of
��N ;K1 ,R� and m�2��N ;K1 ,R� reduce, as they should, to
those of the corresponding quantities in the 2D �Refs. 29 and
30� and the 1D XY model, respectively. Finally, we take ad-
vantage of Eqs. �15� and �23� of the next section, in the case
of the susceptibility �or Eqs. �22� and �24� for the second
moment�, to pin down two more among the r+1 series co-
efficients occurring at the rth order. The success of this va-
riety of tests, through all orders we have computed, strength-
ens the confidence that our extensions of the bivariate
expansions are correct.

Our data for the susceptibility and the second moment of
the correlation function are tabulated in an appendix reported
only in the arXiv version of this paper.

III. DIMENSIONAL CROSSOVER

For all values of N, at fixed R�0, the 3D spin models
described by Hamiltonian �1� display a conventional power-
law critical transition. As the reduced deviation ��N ;R�=1
−K1 /K1c�N ;R� from the critical point K1c�N ;R� of the 3D
system with anisotropy parameter R tends to zero from
above, for the susceptibility one has ��N ;K1 ,R�
����N ;R��−��N;R�, while for the correlation length one has
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��N ;K1 ,R�����N ;R��−��N;R�. The universality hypothesis13

dictates that, for a given value of N, the critical exponents
��N ;R� of the susceptibility and ��N ;R� of the correlation
length of the N-vector system with arbitrary finite anisotropy
should be independent of R as long as R�0 and thus should
coincide with the exponents ��N ;1� and ��N ;1� of the iso-
tropic system. The initial part of our analysis of the HT ex-
pansions in Secs. IV A and IV B will be devoted to the de-
termination of the critical temperature and exponents as
functions of R for R�0, thus making it possible to test nu-
merically the universality of the exponents with respect to R.

When R→0 the sc lattice system crosses over to a stack
of uncoupled square-lattice systems, and we expect that an
anomalous behavior at criticality indicates a discontinuous
change in universality class. The crossover behavior is de-
scribed by a phenomenological scaling theory introduced in
Ref. 4 and subsequently extended and clarified in Refs. 2, 5,
and 6. This approach, whose validity has been verified in the
mean-field approximation and in the spherical model,5,6 is
first outlined for N=1 �the Ising model� in Sec. IV A and
then generalized to cover also the case N�2 in Sec. IV B.
The predictions of the scaling theory for N=2 will finally be
compared to the HT-based approximations in Sec. IV C.

An anomalous behavior is also expected to occur in the

R̄→0 limit in which the sc lattice crosses over to the linear
lattice.

A. N=1 model

For N=1, both the 3D and the 2D N-vector models dis-
play a power-law critical behavior. As a consequence, for all
critical exponents ��1;R�, ��1;R� , . . . of the 3D Ising model
with anisotropy R, the R→0 limit exists and yields the cor-
responding exponents ��1;0�, ��1;0� , . . . of the 2D Ising
model. Thus, for R=0, one can write

��1;K1,0� � �as�1;K1,0� � �−��1;0� �5�

and

��1;K1,0� � �as�1;K1,0� � �−��1;0� �6�

in the critical region. For brevity, only in this subsection we
have set �=��1;0�=1−K1 /K1c�1;0�. The crossover from the
3D to the 2D critical behavior, as R→0, can be described in
terms of a direct generalization2–7 of the usual phenomeno-
logical scaling hypothesis valid for isotropic systems. Spe-
cifically, it is assumed that, for sufficiently small � and R, the
scaling form of the singular part f�1;� ,h ,R� of the free en-
ergy in a field h embodies also the anisotropy parameter R as
follows:

f�1;�,h,R� � �2−	�1;0�F�h�−
�1;0�−��1;0�,R�−�� , �7�

where F is a universal function. The exponents 	�1;0� and

�1;0� refer to the specific heat and the magnetization of the
2D Ising model. The quantity �, called crossover exponent,
is universal and must coincide7,31–33 with ��1;0�, the expo-
nent of the susceptibility of the 2D Ising model. Taking two
derivatives with respect to h in Eq. �7� one obtains that the
susceptibility in zero field is given by

��1;K1,R� � A�0��−��1;0�X�0��B�0�R�−�� , �8�

where X�0��x�, called universal susceptibility crossover-
scaling function is uniquely defined by choosing the normal-
ization X�0��0�=dX�0��0� /dx=1. A�0� and B�0� are nonuniver-
sal scale factors. Here and in what follows, a superscript zero
is attached to all quantities related to the zeroth moment of
the correlation function.

Scaling forms �7� and �8� provide an interpolation be-
tween the critical behaviors in 2D �i.e., for R=0� and in
3D for small nonvanishing R and thus can describe both of
them. In particular, by the normalization of X�0��x�, Eq. �8�
is consistent with the 2D critical behavior Eq. �5� of the
susceptibility in 2D. On the other hand, the consistency of
Eq. �8� with the 3D critical behavior ��1;K1 ,R�
� Ã�0����1;R��−��1;R� is achieved by assuming that X�0��x� is
singular as K1→K1c�1;R� and, for x in a vicinity of ẋ, has
the structure

X�0��x� �
Ẋ�0�

�1 − x/ẋ���1;R� , �9�

with

ẋ = B�0�R��R�1;0��−��1;0� �10�

and �R�1;0�=1−K1c�1;R� /K1c�1;0�. Due to the universality

of X�0��x�, also the constants Ẋ�0� and ẋ are universal.
For small positive R, the solution of Eq. �10� yields the

reduced shift of the critical temperature of the 3D Ising sys-
tem with anisotropy R from the critical temperature of its 2D
limit, which has the following asymptotic behavior

K1c�1;0�/K1c�1;R� − 1 � R1/�, �11�

with �=��1;0�. Therefore this important result is a simple
consequence of the crossover-scaling ansatz Eq. �8� and of
Eq. �5�, the critical behavior of ��1;K1 ,0�.

The validity of the extended scaling assumptions Eqs. �7�
and �8� can be further tested by a numerical HT analysis of
the asymptotic behavior as �→0 of the successive partial
derivatives

�s
�0��1;K1,0� =  �s��1;K1,R�

�Rs �
R=0

�12�

of ��1;K1 ,R� with respect to R, evaluated in the R=0 limit.
The critical behavior of these quantities is defined by the
asymptotic form

�s
�0��1;K1,0� � Cs

�0��1��−s �13�

as �→0. By the extended scaling hypothesis Eq. �8� the
exponents of divergence s should satisfy the relation

s = ��1;0� + s� = �s + 1���1;0� . �14�

For s=1, Eq. �14� can also be seen as an immediate conse-
quence of the relation

�1
�0��N;K1,0� = 2K1���N;K1,0��2 �15�

proved in Ref. 7 for N-vector models with arbitrary N.
For N=1 and s=2,3, the validity of Eq. �14� is confirmed

using the inequalities
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8K1
2���1;K1,0��3 � �2

�0��1;K1,0� � 4K1
2���1;K1,0��3,

�16�

48K1
3���1;K1,0��4 � �3

�0��1;K1,0� � 8K1
3���1;K1,0��4.

�17�

A proof7 of Eqs. �16� and �17� is based on classical correla-
tion inequalities known to hold in the N=1 case. Some gen-
eralization of Eqs. �16� and �17� might still be valid also for
models with N�1.

For the lth moment of the correlation function, one can
assume the validity of the extended scaling form

m�l��1;K1,R� � A�l��−��1;0�−l��1;0�X�l��B�l�R�−��1;0�� . �18�

As a consequence, a generalization of Eq. �14� is thus ob-
tained also for the exponents of divergence �s of the succes-
sive R derivatives

�s
�2��1;K1,0� =  �sm�2��1;K1,R�

�Rs �
R=0

�19�

of the second moment of the correlation function
m�2��1;K1 ,R�, which are defined by the asymptotic behavior

�s
�2��1;K1,0� � Cs

�2��1��−�s �20�

as �→0. From Eq. �18� it follows that the exponents �s
should satisfy the relation

�s = 2��1;0� + �s + 1���1;0� . �21�

For s=1, the validity of Eq. �21� is immediately proved7 by
using an analog of Eq. �15� for the second moment
m�2��N ;K1 ,R� of the correlation function:

�1
�2��N;K1,0�

= 2K1����N;K1,0��2 + 2��N;K1,0�m�2��N;K1,0�� .

�22�

Notice that, as for Eq. �15�, also the validity of Eq. �22� is
not limited to the N=1 model.

For s=2 and 3, inequalities analogous to Eqs. �16� and
�17� can be derived7 also for �s

�2��1;K1 ,0�, thus justifying
Eq. �20�. A numerical test7,10,11 of Eqs. �13�, �14�, �20�, and
�21� gave support to the crossover-scaling ansatz for N=1.

As a final remark, let us point out that, using the variables

K2 and R̄=1 /R, more convenient in the R→� limit in which
the system becomes an array of one-dimensional spin chains,
also the following relations, valid for arbitrary N, are ob-
tained:

 ���N;K2,R̄�

�R̄
�

R̄=0

= 4K2���N;K2,0��2, �23�

 �m�2��N;K2,R̄�

�R̄
�

R̄=0

= 4K2����N;K2,0��2 + 2��N;K2,0�m�2��N;K2,0�� .

�24�

Here ��N ;K2 ,0� and m�2��N ;K2 ,0� indicate, respectively, the
susceptibility and the second moment of the correlation func-

tion of the anisotropic N-vector model for R̄=0, i.e., in 1D.
Equations �15� and �22�–�24� are quite helpful also to vali-
date the computation of the bivariate series expansion.

It is now also clear5,6 how to compute an expansion of the
universal susceptibility crossover-scaling function X�0��x� in
powers of x. Observing that the critical amplitudes Cs

�0��1� in
Eq. �13� are expressed in terms of X�0��x� as

Cs
�0� = A�0��B�0��sdsX�0��x�

dxs �
x=0

�25�

and that the dependence on the nonuniversal quantities A�0�

and B�0� disappears from the ratios

Qs =
Cs−1

�0� Cs+1
�0�

�Cs
�0��2 , �26�

the expansion of X�0��x� for small x can be written in the
form

X�0��x� = 1 + x +
Q1

2
x2 +

Q1
2Q2

3!
x3 +

Q1
3Q2

2Q3

4!
x4

+
Q1

4Q2
3Q3

2Q4

5!
x5 +

Q1
5Q2

4Q3
3Q4

2Q5

6!
x6
¯ �27�

which is universal, i.e., the coefficients are independent of
the lattice structure. The calculation of X�0��x� can be numeri-
cally extended to the whole interval �0, ẋ� by Padè approxi-
mants. This approximation can be shown to yield an
asymptotic description of the properties of ��1;K1 ,R� which,
in the range of validity of the crossover-scaling ansatz, is
consistent with those obtained from other approaches.

B. N�2 models

A slightly different formulation of the extended phenom-
enological scaling is necessary in the N�2 cases that will be
considered in this subsection simply because the asymptotic
relations Eqs. �7� and �8�, and therefore Eqs. �11�, �13�, and
�20� cannot be valid anymore. Before introducing this issue,
it is convenient to make a brief digression to recall how the
critical behavior in 2D has been characterized19 in the N=2
case. As K1→K1c�2;0� from below, the divergence of the
correlation length of the 2D XY model is dominated by an
exponential singularity

��2;K1,0� � �as�2;K1,0� = D exp�b�−�� . �28�

In this and the following sections, for brevity, we have set
�=��2;0�=1−K1 /K1c�2;0�. The universal exponent � is ex-
pected to take the value �=1 /2, while b is a nonuniversal
positive constant. The critical behavior of the singular part of
the free energy is predicted to be
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fsing�2;K1,0� � fas�2;K1,0� = F̃��as�2;K1,0��−2, �29�

with F̃ as a nonuniversal amplitude, while for the suscepti-
bility one has

��2;K1,0� � �as�2;K1,0� = A�0��−�� exp��2 − ��2;0��b�−��
�30�

as K1→K1c�2;0� from below. For K1�K1c�2;0� both � and
� are infinite. The quantity ��2;0�=1 /4 is the exponent
characterizing the large-distance behavior at criticality of the
spin-spin correlation function for the 2D XY model. In Eq.
�30�, the presence of a multiplicative correction to the lead-
ing singular behavior by a power of the logarithm of �
�equivalently by a power of �−�� and the value of the expo-
nent � are still controversial. A rediscussion34 of the
renormalization-group approach indicates that �=0, while a
recent high-order HT study30 and a high-precision Monte
Carlo study35 support the estimate ��1 /16. However, the
precise value of � is practically irrelevant in our discussion
of scaling. The numerical value of the susceptibility critical
amplitude A�0� depends on the value assumed for �, but it is
also irrelevant in the determination of the crossover-scaling
function X�0��x�.

Let us now return to the scaling issue and make the natu-
ral assumption that the crossover-scaling ansatz, introduced
in the Ising case for the singular part of the free energy in an
external field of modulus h, can be simply generalized to the
XY model case as follows:

f�2;�,h,R� � ��as�2;K1,0��−2F�h�as�2;K1,0�

���as�2;K1,0��1/2,R�as�2;K1,0�� �31�

for sufficiently small positive R and �. Taking two deriva-
tives with respect to the field, we get the generalized scaling
form for the susceptibility in zero field

��2;K1,R� � �as�2;K1,0�X�0��B�0�R�as�2;K1,0�� . �32�

Here X�0��x� is a universal crossover-scaling function that can
be uniquely defined assuming that X�0��0�=dX�0��0� /dx=1.
B�0� is a nonuniversal scale factor.

The generalized crossover-scaling forms �31� and �32� are
immediately shown to reduce to Eqs. �7� and �8� in the N
=1 case by using Eqs. �5� and �6� and the scaling laws.
However, for N=2, these forms have the additional virtue of
correctly allowing for the fact that the critical singularities in
2D are not powerlike since the exponents ��2;R� and ��2;R�
�as well as 	�2;R� and 
�2;R�� are ill-defined in the R→0
limit and also no crossover exponent � exists.

By the normalization of X�0��x�, scaling form �32� is con-
sistent with the 2D critical behavior; since for R=0 and �
→0, one has ��2;K1 ,0���as�2;K1 ,0�. On the other hand,
for small but nonvanishing R, the conventional 3D critical

behavior ��2;K1 ,R�� Ã�−��2;R� as ��2;R�→0 is recovered
by assuming that X�0��x� has the same singularity structure as

in Eq. �9�, i.e., that X�0��x�� Ẋ�0� / �1−x / ẋ���2;R�, when x is in
a neighborhood of ẋ, with

ẋ = B�0�R�as�2;K1c�2;R�,0� . �33�

As in the N=1 case, by solving Eq. �33�, we can obtain the
small-R asymptotic behavior of the reduced critical-
temperature shift of the anisotropic 3D model from its 2D
limiting value

K1c�2;0�/K1c�2;R� − 1 � V/�ln�R/W��2. �34�

Here V= �2−��2;0��2b2 and W= ẋ /BA�0� are nonuniversal
constants. The higher-order corrections to the leading behav-
ior in Eq. �34� are also expressed in terms of inverse powers
of 
ln R
 and possibly of ln
ln R
, depending on the value of
the exponent �. It is interesting to point out that the original
argument36,37 for Eq. �34� relied on approximate
renormalization-group ideas rather than being a simple con-
sequence of the generalization of the crossover-scaling an-
satz and of the exponentially singular critical behavior of the
XY model.

As a further immediate consequence of our scaling as-
sumption Eq. �32�, the divergence of the successive R deriva-
tives of the susceptibility turns out to have the structure

�s
�0��2;K1,0� � Cs

�0��2���as�2;K1,0��s+1

� ����s+1� exp��2 − ��2;0��b�s + 1��−��
�35�

as �→0, which can be seen as a natural generalization of Eq.
�13�. For s=1, the validity of Eq. �35� is an obvious conse-
quence of Eq. �15�. For s=2 and 3, it might follow from
some extension of the inequalities Eqs. �16� and �17�. Equa-
tion �35� will be numerically tested in Sec. IV C by studying
the behavior of �s

�0��2;K1 ,0� as K1→K1c�2;0� for the first
six values of s.

By assuming for the second moment m�2��2;K1 ,R� of the
correlation function the crossover-scaling form

m�2��2;K1,R� � mas
�2��2;K1,0�X�2��B�2�R�as�2;K1,0�� ,

�36�

where mas
�2��2;K1 ,0�=4��as�2;K1 ,0��2�as�2;K1 ,0�, the ana-

log of Eq. �20� is obtained

�s
�2��2;K1,0� � Cs

�2��2���as�2;K1,0��2��as�2;K1,0��s+1.

�37�

By Eq. �22�, this equation is certainly valid for s=1, and we
shall suppose that it is true also for s�1. Also Eq. �37� will
be tested numerically in Sec. IV C by the same method used
for Eq. �35�.

The HT expansions of �s
�0��2;K1 ,0� and �s

�2��2;K1 ,0�
can be immediately read from our tables of the series coef-
ficients of ��2;K1 ,K2� and m�2��2;K1 ,K2�, respectively. The
expansion in powers of x of the universal scaling function
X�0��x� can be computed by the same procedure already out-
lined for the N=1 case.

A generalized scaling assumption can be made also to
describe the crossover of the 3D system to a set of one-
dimensional noninteracting XY chains as R→�. It is now

convenient to shift to the variables K2 and R̄=1 /R. One has

simply to observe that in this case K2c�2; R̄�→� as R̄→0
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and that, at criticality, the divergence of the susceptibility in
one dimension is

��2;K2,0� � �as�2;K2,0� = Ā�0�K2
2. �38�

Then it is natural to introduce a universal susceptibility scal-

ing function X̄�0��x�, normalized like X�0��x� and with the
same singularity structure and assume that

��2;K2,R̄� � �as�2;K2,0�X̄�0��B̄�0�R̄�as�2;K2,0�� . �39�

It follows that

K2c�2;R̄� � R̄−1/2 �40�

as R̄→0. Moreover, predictions for the R̄ derivatives of the
susceptibility, similar to those mentioned above for the R
derivatives, are easily obtained along the same lines.

Let us finally point out that generalized crossover-scaling
assumptions of the same form as Eqs. �31� and �32� can be
written down also for the N-vector spin models with N�2.
The main difference is that for these models, K1c�N ;R�→�
as R→0 and that, in 2D, the critical divergence of the
correlation-function moments and of the correlation length is
exponential in K1. As a result, we can conclude that for small
R, we have K1c�N ;R��
ln R
, by the same scaling arguments
used above. Here, we shall not further investigate the models
with N�2, but only note that a general discussion38 of the
numerical difficulties of the HT-expansion approach to the
N-vector models in 2D suggests that a HT study of the cross-
over might also meet with similar problems caused by the
unphysical singularities in the complex inverse-temperature
plane revealed by a large-N study.39

IV. NUMERICAL ANALYSIS

We shall now turn to an analysis of our HT expansions to
study the crossover behavior Eq. �34� of the critical inverse-
temperature K1c�2;R� as R→0 or R→�, to check the uni-
versality with respect to R of the critical exponents of the
anisotropic system, to test the validity of the consequences
Eqs. �34�, �35�, �37�, and �40� of the crossover-scaling as-
sumptions Eqs. �32�, �36�, and �39� and finally to obtain an
approximation of the susceptibility scaling function X�0��x�.

A. Estimates of the critical temperature as function of R

Let us first study the behavior of the susceptibility
��2;K1 ,R� as function of K1 at fixed values of R to deter-
mine the critical locus. We shall later use these results to bias
the computation of the critical exponents of the susceptibility
and of the correlation length and verify that they satisfy the
universality hypothesis, as long as R�0. For simplicity, we
have analyzed the behavior of our expansions as functions of
K1 at fixed values of R �or as functions of K2 at fixed values

of R̄�, using the conventional single-variable methods16 of
series analysis, namely, PAs or inhomogeneous differential
approximants �DAs�. It may be helpful to recall that in the
DA approach a �single-variable� power series is resummed
by expressing it as the solution of a linear �first- or higher-

order� differential equation with polynomial coefficients and
inhomogeneous term, appropriately defined in terms of the
coefficients of the given series. We believe that taking advan-
tage of the large number of series coefficients presently
available, also more complex methods of series analysis,
such as multivariate PAs �Ref. 40� or partial-differential
approximants,15 become now worth exploring. However, we
have not yet thoroughly pursued these approaches.

In our computation of the critical temperature, for R
�0.05, we have used second-order DAs and have considered
the class of �k , l ,m ;n� DAs restricted by the conditions: 13
�k+ l+m+n�19 with k�3; l�3;m�3. Among these, we
have selected the DAs with the additional properties of being
defect-free, i.e., having sufficiently isolated physical singu-
larities, and of being near-diagonal, i.e., such that 
k− l
 , 
l
−m
�2, 1�n�4. Finally, we have not “biased” the DAs,
i.e., we have not discarded the approximants yielding critical
exponents with values outside appropriate limits. Here we
are using the standard notation in which k , l ,m ,n denote the
degrees of the polynomial coefficients and of the inhomoge-
neous term of the differential equation defining the DA.
These rather technical specifications are given only to make
our results completely reproducible. However, we have al-
ways made sure that our final estimates, within a fraction of
their uncertainties, are essentially independent of the precise
definition of the DA class examined. At a given value of R,
our central estimate of K1c�2;R� is the sample mean of the
locations of the singularities in this class of DAs, taken after
dropping evident outliers. A small multiple of the spread of
the reduced sample is taken as an estimate of the uncertainty.
Possible residual unsaturated trends of the central estimates,
as the number of series coefficients used in the calculation is
increased, have been accounted for by attaching generous
error bars to the final estimates. Sometimes we have made
small corrections of these central estimates �always well
within the uncertainties� suggested by a comparison with the
sequence of Zinn-Justin modified-ratio16,41 estimates.

Coming to the numerical results, let us first note that, for
R=1, our estimate K1c�2;1�=0.22710�3� compares well both
with our older estimate28 K1c�2;1�=0.227095�10� obtained
from HT expansions of order 21 for the isotropic 3D XY
system and with the much more precise42 recent determina-
tion K1c�2;1�=0.2270827�5�, obtained from a high- accu-
racy Monte Carlo simulation.

The determination of the line of critical points K1c�2;R�
for very small values of R, as required for a numerical test of
the predicted crossover behavior Eq. �34�, is a delicate task
both by series study and by simulation. The progressive de-
coupling of the horizontal layers as R→0 makes a reliable
extrapolation of the susceptibility to its genuinely 3D critical
behavior possible only from a closer and closer vicinity of
the critical point. �See also the comments to Fig. 5 in the
next subsection.� As a consequence, the precision of the es-
timates of the location of the critical point and of the critical
exponents tends to deteriorate as R→0. We have observed
that, for R�0.05, a reasonable increasing behavior of
K1c�2;R� is still obtained simply by assuming what will be
actually borne out by our analysis, namely, that the critical
exponent of the susceptibility is universal, to a good approxi-
mation, all along the critical locus for R�0 and thus by
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imposing also a “weak” bias on this exponent when comput-
ing K1c�2;R�. This simply amounts to discard from the
sample of our data the critical temperature estimates ob-
tained from DAs whose exponent at the singularity differs by
more than 10% from the expected value of ��2;1�. Even
after this simple improvement of the analysis, for R�Rmin
�0.0015, our expansions do not anymore seem to be long
enough to locate the critical point with acceptable accuracy.
Therefore we shall not report estimates for R�Rmin. Our
results for the reduced shift S=K1c�2;0� /K1c�2;R�−1 of the
critical temperature from its 2D limiting value are plotted vs
R2/3 in Fig. 1. The value K1c�2;0�=0.56000�5� of the critical
inverse temperature of the 2D XY model on the square lattice
has been taken from recent29,30,35 high-precision studies. A
short list of our numerical DA estimates of K1c�2;R� for
0.005�R�3.4 can be found in Table I.

It should be noticed that the critical curve must be sepa-
rately symmetric under the transformations K1→−K1 and

K2→−K2. Therefore the ferromagnetic phase diagram, so far
represented, should be completed by the remaining branches
of the critical locus.

In Fig. 1 we have also shown that S has a very simple
dependence on R, valid to a high accuracy over a wide range
of intermediate-large �but not too large� values of R. The
expression f�R�=aRg+c, with a�1.245, g�0.661, and c
�0.221 interpolates quite accurately our data points for S in
the interval 0.025�R�2.9, visibly departing from them
only for small R, i.e., in the region where the crossover is
expected to occur. The value of the exponent g justifies our
choice to plot S vs R2/3. It would be interesting to look for an
analytic explanation of this purely empirical remark.

It is interesting to remember that a not very different R4/7

law was conjectured43 to describe the R dependence of the
critical temperature over the region 0.01�R�0.7, while for
R�0.7, a linear law was proposed. This suggestion was
based on a self-consistent mean-field approximation, which
is probably not very accurate for small R and is certainly
inaccurate for intermediate-large R.

Let us now turn to the small-R region to study the features
of the crossover behavior. Figure 2 is a blowup of the lower
left corner of Fig. 1 showing our estimates of the critical
temperature for R�0.13. We can notice that they clearly
depart from the simple R2/3 behavior indicated by a long-
dashed line. A continuous line indicates the result of a fit of
the asymptotic expression V / �ln�R /W��2 of Eq. �34� pre-
dicted by the crossover-scaling theory to describe the behav-
ior of the reduced temperature shift in the crossover region.

FIG. 1. The quantity S=K1c�2;0� /K1c�2;R�−1, which repre-
sents the reduced shift of the critical temperature of the system with
anisotropy R from its 2D limit, is plotted vs P=R2/3. A continuous
line interpolates our estimates, whose error bars are smaller than the
width of the line, except for very small R. The dashed line �hardly
visible except for small R�, which is superimposed to the continu-
ous one, is the result of a fit of the expression f�R�=aRg+c to our
data for 0.05�R�3.4. The values of the fit parameters are a
�1.245, g�0.661, and c�0.221.

TABLE I. Estimates of the critical inverse temperatures of the
anisotropic system for various values of R. Only the two smallest-R
estimates are biased, the remaining ones being unbiased.

R K1c�2;R� R K1c�2;R� R K1c�2;R�

3.4 0.13901�6� 1.3 0.20727�3� 0.15 0.3562�3�
3.0 0.14724�6� 1.0 0.22710�3� 0.1 0.3776�5�
2.6 0.15693�6� 0.8 0.24394�3� 0.075 0.391�2�
2.2 0.16861�5� 0.6 0.26537�3� 0.05 0.409�3�
1.9 0.17914�5� 0.4 0.29460�6� 0.0125 0.454�4�
1.6 0.19176�4� 0.2 0.3395�2� 0.005 0.473�4�

FIG. 2. A blowup of the lower left corner of Fig. 1, showing the
plot of the reduced critical-temperature shift S
=K1c�2;0� /K1c�2;R�−1 vs P=R2/3. The continuous line is a fit of
the expression V / �ln�R /W��2 to our estimates of S �circles� for
0.005�R�0.15. The values of the parameters are V�11.34 and
W�12.7. The short-dashed line is the result of a fit of the expres-

sion f̃�R�=aRg�, with a�1.08 and g��0.354, to the same set of
data. The long-dashed line is the result of the same fit as in Fig. 1 of
the expression f�R�=aRg+c, with parameters a�1.245, g�0.661,
and c�0.221, to all data for 0.05�R�3.4. The triangles are
small-R estimates of S taken from the simulation of Ref. 21.
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Restricting the fit to the critical-temperature estimates which
fall within the window �0.0025, Rmax=0.1�, we determine the
values of the parameters V�11.34 and W�12.7. In the same
figure, for comparison, we have reported also some old
Monte Carlo estimates21 of K1c�2;R� in the small R range. In
spite of their order-of-magnitude agreement with our series
estimates, these simulation data seem to suggest a qualita-
tively different behavior as R→0. We must therefore sup-
pose that they are affected by large errors �unfortunately not
assessed in Ref. 21� from underestimated finite-size effects
because the volume of the simulated system was small �at
most 203� and no finite-size-scaling analysis was performed.
A more recent simulation,22 also carried out with 203 sized
systems and extending to much smaller values of R, is likely
to suffer from similar problems although its results seem to
show a better agreement with ours.

Some remarks have to be made on Fig. 2. First, one
should be aware that a logarithmic behavior is quite difficult
to identify numerically by using data which refer to only a
two-decade variation in the independent variable since, over
a restricted range, it can also be well represented as a power-
law behavior with a small exponent. Moreover the choice of
the window of values of R to be studied is a delicate issue
because the upper end of the window should be sufficiently
small that both the crossover-scaling assumptions and the
asymptotic behavior Eq. �34� apply with small corrections,
while the lower end should be sufficiently large that our es-
timates of the critical temperature are not too uncertain. In
our case the value of Rmax can be varied by a factor of two or
more, still obtaining good fits of the same functional form,
with not very different values of the parameters V and W.
Finally, we observe that the best-fit value of V is not very
different from its expected value �2−��2;0��2b2�9.5, while
the value of W is much larger. It is reasonable to interpret
these results as an indication that Rmin is still too large and
therefore the higher-order corrections to asymptotic form
�34�, suppressed only by inverse powers of 
ln R
, are still
important so that V and W can only be effective parameters.
To conclude, in spite of the notable extension of the HT
expansions we have analyzed, these results still can give
only a suggestive indication that our estimates of the critical
temperature for small R are compatible with the predicted
asymptotic behavior Eq. �34�.

On the other hand, one might wish to describe also this
crossover behavior by a power law and fit an expression

f̃�R�=aRg�, of the same form as Eq. �11� valid in the N=1
case, to the same small-R sample of our data points. We then
find the following values of the parameters: a�1.08 and
g��0.354. We have displayed also this fit in Fig. 2. Thus, if
for consistency we describe also the critical behavior of the
2D XY model in terms of conventional power laws, this re-
sult suggests an unusually large susceptibility exponent, i.e.,
��2;0�=1 /g��2.8. We can also observe that, subdividing
the small-R range into two intervals, this kind of fit would
yield a smaller exponent g� in the leftmost interval. This
suggests that even smaller values of the exponent g� �and
thus larger values of the susceptibility exponent� are likely to
be found if it were possible to further reduce both ends of the
window of values of R under consideration, for example, by

using future significantly longer HT expansions. It is then
reasonable to believe that this power-law crossover is only
apparent because the exponent is R dependent and vanishes
as R→0 and hence that we are actually representing a genu-
ine logarithmic behavior as a power-law behavior.

In Fig. 3, we have plotted �2K2c�2; R̄��−1 vs R̄2/3. The

behavior of the curve as R̄→0 also gives some support to the
validity of Eq. �40� and therefore it confirms the generalized
scaling approach to the crossover from 3D to 1D.

B. Universality of the critical exponents with respect to R

Unfortunately, so far we have computed expansions only
for the sc lattice structure and therefore our verification of
the universality of certain quantities does not include their
lattice independence but is limited to a test of their indepen-
dence on R.

In the range R�0.05, in which our computation of the
critical temperature was completely unbiased, we have also
evaluated both the critical exponents ��2;R� and ��2;R� by
using second-order DAs, chosen in the above specified class
and biased with our estimates of K1c�2;R�. We have also
determined, by simple first-order DAs, the ratio of the loga-
rithmic derivatives of m�2��N ;K1 ,R� /K1 and ��N ;K1 ,R�,
whose value at K1c�2;R� yields the ratio ��2;R� /��2;R�. In
Fig. 4, we have plotted vs R our estimates of these exponents
and of their ratio normalized to our estimates of ��2;1�
=1.328�10�, ��2;1�=0.679�8�, and ��2;1� /��2;1�
=0.5099�6�, respectively. The central values of our estimates
of the normalized exponents and of the exponent ratio are
very near to unity and fairly independent of R within �0.5%,
over a range wider than that shown in the figure, except for
very small or large R, due to the expected crossover. These
results support the universality with respect to R of the criti-
cal behavior for the anisotropic 3D model. It is fair to note
that, while the deviations of our exponent estimates for the
anisotropic system from those for the R=1 system are uni-

FIG. 3. A plot of SB=1 /2K2c�2; R̄� �circles� vs PB= R̄2/3 in the

small R̄ region. A continuous line interpolates our estimates.

P. BUTERA AND M. PERNICI PHYSICAL REVIEW B 80, 054408 �2009�

054408-8



formly very small, our estimates of ��2;1� and ��2;1� are
larger, by �1%, than the most recent41,44 estimates ��2;1�
=1.3178�2� and ��2;1�=0.67155�27�. On the contrary, the
deviation of our estimates of the exponent ratio from its re-
cent determination ��2;1� /��2;1�=0.5096�3� is quite small.
Substantially longer series or improved methods of exponent
determination26,41,44 might be necessary to remove the dis-
crepancy in the exponent estimates, which certainly can be
ascribed to the residual influence of the corrections to scal-
ing.

In Fig. 5 we have plotted, for various fixed values of R,
the effective exponent4,45 �ef f�2;K1 ,R� of the susceptibility

�ef f�2;K1,R� = −
d ln ��2;K1,R�

d ln ��2;R�
. �41�

Roughly speaking, this quantity represents the local value of
the critical exponent which would be inferred by a measure
of the susceptibility in a neighborhood of K1 and only in the
critical limit it coincides with the asymptotic critical expo-
nent. By showing how the local critical behavior changes,
this quantity is helpful to describe the crossover phenomena.
The curves shown in the figure are obtained simply by form-
ing the highest-order, defect-free, diagonal, or near-diagonal
PAs of the HT expansion of the right-hand side of Eq. �41�.
The figure illustrates the narrowing down of the genuinely
3D critical region as R→0 that was already discussed in the
preceding subsection. More precisely, when R is not too
small, the effective exponent is approximately independent
of the temperature and stays close to its 3D asymptotic value.
On the other hand, going to sufficiently small R, the effective
exponent becomes increasingly temperature sensitive: in
most of the HT temperature range it takes rather large values,

which somehow reflect the exponential 2D critical singular-
ity, and only as K1 gets very close to the critical value, it
approaches the 3D asymptotic value.

In Fig. 6 we have plotted, for various fixed values of R̄,

the effective exponent �ef f�2;K2 , R̄� of the susceptibility, de-
fined in strict analogy with Eq. �41� to describe the crossover
from 3D to 1D. Also in this case, the curves indicate a tran-
sition from a region of very high values of the effective
exponent, reflecting the critical divergence of the susceptibil-
ity of the 1D system, to the asymptotic region where the 3D
critical behavior is attained.

FIG. 4. Estimates of the exponents ��2;R� �circles�, ��2;R� �tri-
angles�, and of the ratios ��2;R� /��2;R� �rhombs� plotted vs the
anisotropy parameter R. All these quantities are computed by DAs
biased with the critical temperature and they are normalized to our
estimates of their values at R=1. The horizontal lines are bands of
0.5% deviation from our estimates of ��2;1�, ��2;1�, and
��2;1� /��2;1�.

FIG. 5. The effective exponent �ef f�2;K1 ,R�, computed by PAs,
for the susceptibility of the anisotropic system is plotted vs
��2;R�=1−K1 /K1c�2;R� for various fixed values of R indicated on
the corresponding curves.

FIG. 6. The effective exponent �ef f�2;K2 , R̄�, computed by PAs,

for the susceptibility of the anisotropic system vs ��2; R̄�=1

−K2 /K2c�2; R̄� for various fixed values of R̄ indicated on the corre-
sponding curves.
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C. Critical behavior of �0
(0)(2;K1 ,0): An approximation of the

susceptibility crossover-scaling function X(0)(x)

As sensitive and specific indicators to test the critical be-
havior Eq. �35� of the successive R derivatives of the suscep-
tibility �s

�0��2;K1 ,0�, we have formed the normalized ratios
of their logarithmic derivatives

Gs
�0��K1� =

1

s + 1

d ln��s
�0��2;K1,0��/dK1

d ln��0
�0��2;K1,0��/dK1

. �42�

If Eq. �35�, showing the critical behavior of �s
�0��2;K1 ,0�, is

valid, the quantities Gs
�0��K1� are expected to tend to unity, as

�→0, independently of s. This result is obvious for s=1,
thanks to the exact relation Eq. �15�, but for s�1 it ought to
be numerically tested. We have used near-diagonal first-order
DAs of the HT expansions of Gs

�0��K1� to estimate the limits
of these quantities as K1→K1c�2;0�. Our results, summa-
rized in Table II, support the validity of the asymptotic rela-
tion Eq. �35� to a good approximation when s=2,3 ,4 ,5 ,6
and therefore lend support to the validity of the generalized
crossover-scaling assumption Eq. �32�. In general, it should
not be surprising that the precision of these, as well as of the
following estimates, is smaller than that reported in previous
studies of much shorter series in the N=1 case, in which the
critical singularities are powerlike, because of the more com-
plex structure of the critical singularity in the 2D XY model.
One should also notice that the number of nontrivial expan-
sion coefficients of the R derivatives of the moments of the
correlation function and hence the precision of the numerical
approximation for the quantities related to them, decreases as
s increases. Therefore these tests are less reliable for values
of s larger than those examined here.

A completely parallel study of the indicator Gs
�2��K1�, a

strict analog of Gs
�0��K1� for the quantity �s

�2��2;K1 ,0� /
���2;K1 ,0��2, which can be associated to the R derivatives of
the second moment of the correlation function, also leads to
results in agreement with Eq. �37�, albeit slightly less pre-
cise, because of the known slower convergence of the second
moment expansion. Thus also the validity of Eq. �36� is con-
firmed. Our estimates of the limits of the quantities Gs

�2��K1�
as K1→K1c�2;0� are also reported in Table II.

Let us now turn to the study of the universal crossover-
scaling function X�0��x� of the susceptibility, following the
procedure5,6 described above in detail for the N=1 case at
the end of Sec. III A. As a first step, we have to determine
the critical amplitudes Cs

�0��2� of �s
�0��2;K1 ,0�, defined in

Eq. �35� by the limit of the effective amplitudes
Cs

�0��2;K1 ,0�=�s
�0��2;K1 ,0� /�s�2;K1 ,0� as K1→K1c�2;0�.

The amplitudes Cs
�0��2� are then used to form the universal

ratios Qs, defined by Eq. �26�. Alternatively, the ratios Qs can
also be determined directly and perhaps more accurately by
extrapolating the HT expansions of the effective ratios

Qs�2;K1,0� =
�s−1

�0� �2;K1,0��s+1
�0� �2;K1,0�

��s
�0��2;K1,0��2 �43�

to K1=K1c�2;0�. The estimates so obtained for the universal
quantities Qs=limK1→K1c

Qs�2;K1 ,0� are reported in Table
III.

The coefficients of the small-x expansion of X�0��x� are
finally expressed in terms of the Qs, as indicated in Eq. �27�

X�0��x� = 1 + x + 0.792�3�x2 + 0.600�5�x3 + 0.44�1�x4

+ 0.32�1�x5 + 0.23�2�x6 + 0.16�3�x7 + ¯ . �44�

Having assumed that X�0��x� is singular at ẋ and has the form

X�0��x�� Ẋ�0� / �1−x / ẋ���2;R� in a vicinity of ẋ, we can give a
reasonably good estimate of ẋ by locating the nearest pole of
the highest-order defect-free near-diagonal PAs of the expan-
sion of �X�0��x��1/��2;R�. Choosing ��2;R�=1.3178�2� and al-
lowing for the uncertainties of the expansion coefficients in
Eq. �44� and the spread of the PA singularities, we can esti-

mate ẋ=1.475�15� and Ẋ�0�=1.154�15�. A direct estimate of
ẋ, by extrapolating to R=0 the argument
BR�as�2;K1c�2;R� ,0� of the scaling function, fails to yield a
more accurate result because of the extrapolation uncertain-
ties.

Let us represent the scaling function simply as X�0��x�
= P�x / ẋ��1−x / ẋ�−��2;R�, where P�x / ẋ� is some function inter-
polating between the small x and the large x behavior of
X�0��x� and therefore taking the values P�0�=1 and P�1�
= Ẋ�0�. It turns out that the simple linear expression P�x / ẋ�
=1+ �Ẋ�0�−1�x / ẋ is a quite accurate approximation of the
regularized scaling function X�0��x��1−x / ẋ���2;R�. We have
then used this approximate form of the crossover-scaling
function to compute the effective exponent

�ef f�2;R� =
K1c�2;R�
K1c�2;0�

��2;R�
���2;0���+1b��1 + zP��z�

P�z�

+
��2;R�
1 − z

�� , �45�

with z=x / ẋ. The effective exponent computed using Eq. �45�
is plotted vs ��2;R� in Fig. 7, in which we have shown the
curves corresponding to the eight smallest values of R cho-
sen in Fig. 5. The agreement between Figs. 5 and 7 can be
considered as another satisfactory confirmation of the valid-
ity of the crossover-scaling ansatz if one observes that the
former is a good PA representation of the effective exponent

TABLE II. Estimates, by first-order DAs, of the critical values
Gs

�0� of the normalized ratios Gs
�0��K1� as K1→K1c�2;0�.

Critical value G1
�0� G2

�0� G3
�0� G4

�0� G5
�0� G6

�0�

1 1.00�1� 1.01�1� 1.00�2� 1.02�8� 0.95�15�

Critical value G1
�2� G2

�2� G3
�2� G4

�2� G5
�2� G6

�2�

1.04�5� 0.99�4� 0.99�1� 0.99�1� 0.99�3� 0.98�13�

TABLE III. Estimates of the universal ratios Qs computed by
extrapolating first-order DAs of the effective ratios in Eq. �43�.

Q1 Q2 Q3 Q4 Q5 Q6

1.584�6� 1.436�2� 1.287�9� 1.24�1� 1.18�1� 1.12�9�
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on the whole interval 0�K1�K1c�2;R�, whereas the curves
of Fig. 7 can be quantitatively reliable only in the small
range of validity of the crossover-scaling form �32�, for ex-
ample, when ��2;R��0.05 and R�0.05.

V. CONCLUSIONS

We have added 187 coefficients to the already known 66
coefficients of the bivariate HT expansion for the spin-spin

correlation function of the 3D XY model, with directionally
anisotropic couplings, on the sc lattice. Analyzing these data
by PA and DA methods, we have determined to a good pre-
cision the critical locus of the system in the ferromagnetic
region and checked to a fair accuracy the universality of the
critical exponents of the susceptibility and the correlation
length with respect to the anisotropy parameter R. We have
also shown that the main predictions of the extended scaling
theory for the crossover from the 3D to the 2D critical re-
gime, concerning both the behavior of the line of critical
points K1c�2;R� in the limit of small R and the critical diver-
gence of the successive R derivatives, at R=0, of the suscep-
tibility and of the second moment of the correlation function
are compatible with the numerical extrapolations of our ex-
tended expansions. Finally, combining the HT expansions
with the crossover-scaling ansatz, we have obtained a con-
crete approximate representation of the crossover-scaling
function X�0��x� for the susceptibility and have shown that it
reproduces, in an appropriately restricted temperature range,
the effective exponent as computed by PAs on the HT side of
the critical point.
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