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Upon application of a uniform strain, internal sublattice shifts within the unit cell of a noncentrosymmetric
dielectric crystal result in the appearance of a net dipole moment: a phenomenon well known as piezoelectric-
ity. A macroscopic strain gradient on the other hand can induce polarization in dielectrics of any crystal
structure, even those which possess a centrosymmetric lattice. This phenomenon, called flexoelectricity, has
both bulk and surface contributions: the strength of the bulk contribution can be characterized by means of a
material property tensor called the bulk flexoelectric tensor. Several recent studies suggest that strain-gradient
induced polarization may be responsible for a variety of interesting and anomalous electromechanical phenom-
ena in materials including electromechanical coupling effects in nonuniformly strained nanostructures, “dead
layer” effects in nanocapacitor systems, and “giant” piezoelectricity in perovskite nanostructures among others.
In this work, adopting a lattice dynamics based microscopic approach we provide estimates of the flexoelectric
tensor for certain cubic crystalline ionic salts, perovskite dielectrics, //I-V and II-VI semiconductors. We
compare our estimates with experimental/theoretical values wherever available and also revisit the validity of
an existing empirical scaling relationship for the magnitude of flexoelectric coefficients in terms of material
parameters. It is interesting to note that two independent groups report values of flexoelectric properties for
perovskite dielectrics that are orders of magnitude apart: Cross and co-workers from Penn State have carried
out experimental studies on a variety of materials including barium titanate while Catalan and co-workers from
Cambridge used theoretical ab initio techniques as well as experimental techniques to study paraelectric
strontium titanate as well as ferroelectric barium titanate and lead titanate. We find that, in the case of
perovskite dielectrics, our estimates agree to an order of magnitude with the experimental and theoretical
estimates for strontium titanate. For barium titanate however, while our estimates agree to an order of magni-
tude with existing ab initio calculations, there exists a large discrepancy with experimental estimates. The

possible reasons for the observed deviations are discussed.
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I. INTRODUCTION

In a continuum framework, the linear polarization re-
sponse P to a strain field € in a crystalline dielectric is typi-
cally given as

Pi=ejpej (1)

e is the third-rank piezoelectric tensor which couples strain
to polarization. e, being an odd order tensor, vanishes iden-
tically for centrosymmetric crystals and thus only those di-
electrics which possess a noncentrosymmetric crystal struc-
ture exhibit piezoelectricity.

In crystalline centrosymmetric dielectrics, where piezo-
electricity is absent (e=0), a nonuniform strain can locally
break the inversion symmetry of the unit cell, resulting in an
induced dipole moment. In such a case, the bulk contribution
to the polarization as a response to an applied macroscopic
strain gradient may be written as

Pi= pijiit; - (2)

Here u is the displacement and the commas indicate differ-
entiation with respect to the respective spatial coordinates.
The phenomenological fourth-order tensor g introduced in
Eq. (2) is known as the flexoelectric tensor and the associ-
ated phenomenon wherein a macroscopic strain gradient in-
duces a linear polarization response in a dielectric is termed
flexoelectricity.! A macroscopic strain gradient implies that
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the gradient in strain exists over a macroscopically large
length scale L>a (where a is the characteristic length scale
of the material). In crystals a can be taken to be the lattice
parameter.u, being a tensor of even order, is nonzero for
crystals of any symmetry. Therefore the polarization re-
sponse to an applied deformation in a dielectric may be re-
written as

Pi=ejjeji+ Mijit; k- (3)

The phenomenon of flexoelectricity in crystalline dielectrics
was first predicted by Maskevich and Tolpygo;> a phenom-
enological description was later proposed by Kogan® who
included a term coupling the polarization and the strain gra-
dient in the thermodynamic potential of the form

SijaP it - (4)

More recently, Tagantsev*> has investigated this phenom-
enon in detail and has clarified several issues regarding the
bulk nature of flexoelectricity and contributions due to sur-
face and dynamic effects. The fourth-order tensor f intro-
duced in Eq. (4) can be related to the flexoelectric tensor u
in Eq. (3) and it symmetries are now well known. Kogan®
estimated the flexoelectric constants w;j; to be of the order
of e/a, where e is the electronic charge and a, the lattice
parameter. Multiplication by the dielectric constant was later
suggested which appears to have been confirmed experimen-
tally in a series of studies by Cross and co-workers.®~
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Yet another body of work, which parallels the theory of
flexoelectricity in some ways, is the polarization-gradient
theory due to Mindlin.!? Based on the long-wavelength limit
of the shell model of lattice dynamics, Mindlin'® found that
the core shell and the shell-shell interactions could be incor-
porated phenomenologically by including the coupling of po-
larization gradients to strain and the coupling of polarization
gradients to polarization gradients, respectively, in the ther-
modynamic potential [Egs. (5a) and (5b)]

dijiP; jen (5a)

bijiaP; jPr- (5b)

Material property tensors d and b are constants introduced
by Mindlin in this polarization-gradient theory. The
polarization-gradient strain coupling (represented by tensor
d) and the polarization strain-gradient coupling (represented
by tensor f) is often included in the energy density expres-
sion as a Lifshitz invariant''"'? as shown in Eq. (6) on ac-
count of the fact that total derivatives cannot occur in the
expression for energy.

Rijra(uiiPry = Pratij) (6)

h is yet another material property tensor and is given by a
combination of tensors d and f. The symmetries of the ten-
sors d and b are known.'” Under the framework of Mindlin’s
polarization-gradient theory, Askar et al.'3 arrived at theoret-
ical estimates of tensors d and b by relating them to shell-
model parameters for the cases of NaCl, Nal, KI, and KCI.

It can be seen that the dispersive contributions due to the
terms in Egs. (4) and (5a) are of the same order in the wave
vector K. Askar et al.'> used a lattice-dynamical method to
theoretically estimate the numerical values of the material
property tensor d which occurs in Mindlin’s polarization-
gradient theory (which does not include flexoelectric terms)
for certain cubic crystalline materials. However, since the
dispersive contributions due to the polarization-gradient
terms of the form of Eq. (5a) and the flexoelectric terms of
the form of Eq. (4) are of the same order in the wave vector
k, the values estimated in Ref. 13 are more likely a combi-
nation of components of tensor d and those of the tensor f.

In addition to the arguments presented above, yet another
motivation to include higher-order gradients of strain and
polarization in the formulation of a continuum theory for
crystalline dielectrics appears while investigating dynamic
phenomena. Classical electromagnetism may be safely ap-
plied to excitations belonging to any part of the spectrum
whereas classical linear elasticity (wherein the elastic energy
involves only the first derivatives of displacement) is a
“long-wavelength theory” and designed to be applicable only
in a certain frequency regime. Therefore a hybrid electrome-
chanical theory is limited in its applicability due to its elastic
part. The inclusion of gradients of strain and polarization
along with higher-order inertia terms to the elastic part of the
free energy can extend the applicability of a hybrid electro-
mechanical field theory to frequencies in the region of 1 THz
(far-infrared region) where dispersive effects become
significant.'*!> It should be noted that while the flexoelectric
effect introduces spatial dispersion, polarization gradients
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(and polarization-inertia effects) can model frequency disper-
sion effects.

The phenomenon of flexoelectricity in crystalline dielec-
trics has been experimentally observed in a variety of con-
texts: bending of crystal plates'® and measurements of thin
films.!” We note that the term flexoelectricity originated in
the liquid crystal and biological membrane literature to de-
scribe curvature induced polarization in flexed membranes of
orientable molecules. In this work however, we concern our-
selves with flexoelectricity in crystalline dielectrics only. It
has also been variously invoked to explain the anomalous
capacitance of thin dielectric films!” and the weak size-
dependent piezoelectric behavior of carbon and boron-nitride
nanotubes.'$!® Macroscopic electromechanical effects in dis-
located diatomic crystals of nonpiezoelectric dielectrics,
wherein large strain gradients in the vicinities of dislocations
lead to induced polarization,?® may also be explained using
flexoelectricity. Some works have reported large flexoelectric
effects in low dimensional systems such as nanographitic
systems?!' and two-dimensional (2D) boron-nitride sheets.??
In addition, some recent theoretical works seem to suggest
that flexoelectric effects can assume importance in various
nanoscale electromechanical phenomena, especially in high-
dielectric materials e.g., “giant” piezoelectricity in perovskite
dielectric nanostructures, piezoelectric composites without
using piezoelectric materials among others.?>2® However,
very few atomistic investigations to estimate the flexoelectric
constants exist in the literature. Experimental determination
of flexoelectric constants for some perovskite dielectrics
have been carried out by Cross and co-workers®™ and Zubko
et al.”’ while from a theoretical viewpoint, Sahin and Dost?®
provided some estimates for KTaO; predicated on phonon-
dispersion data. In the present work, using an approach out-
lined by Tagantsev,*> we employ a lattice dynamics based
method to extract the flexoelectric coefficients for certain
representative ionic salts NaCl and KCl, I1I-1V semiconduc-
tors GaAs and GaP, /1-VI semiconductors ZnO and ZnS, and
finally high-dielectric constant perovskites BaTiO;(BTO),
SrTiO5(STO) and PbTiO5(PTO) in their cubic phases. We
report estimates for the flexoelectric constants from both
density-functional theory (DFT) based ab initio lattice dy-
namics and empirical shell models. Wherever possible, we
compare our results with previously published theoretical
calculations or experimental results. Flexoelectric coeffi-
cients of perovskite dielectric materials are of particular
interest—large flexoelectric effects have been consistently
observed in experimental studies on bent thin films of high-
permittivity perovskite dielectric materials®® as well as ato-
mistic simulations on bent nanostructures.?"-?*> This has im-
portant ramifications in perovskite dielectric thin-film/
nanostructure-based technologies such as nanocapacitors and
energy harvesting applications.?3-2>2

The outline of our paper is as follows. In Sec. II, we
present a brief overview of a continuum theory involving the
first gradients of strain and polarization. We show how inclu-
sion of appropriate terms in the electroelastic energy density
can lead to a linear polarization response to an applied strain
gradient i.e., flexoelectricity. In Sec. III, a microscopic lattice
dynamics based analysis is carried out which identifies the
atomistic origins of flexoelectricity. Certain subtleties associ-
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ated with this phenomenon are also discussed. Section IV
outlines a recipe*’ to calculate bulk flexoelectric constants
for crystalline dielectrics from lattice-dynamical data. In Sec.
V, we bring out some differences between the approach of
Tagantsev to calculate flexoelectric constants and that of
Askar et al.’s'3 to calculate Mindlin’s polarization-gradient
constants. The numerical values of the flexoelectric constants
for some selected materials presented in Sec. VI. Finally we
discuss the physical reasons responsible for the high flexo-
electric constants displayed by perovskite dielectric materials
in Sec. VII as well as the reasons for the observed discrep-
ancies between our theoretical estimates the available limited
experimental data.

II. CONTINUUM FLEXOELECTRICITY: LINEAR
POLARIZATION RESPONSE DUE TO A
STRAIN GRADIENT

The general formulation of an electromechanical theory
involving first gradients of strain and polarization has been
discussed elsewhere.?® Here we provide a brief summary. If
one includes terms involving gradients of strain and polar-
ization in the thermodynamic potential, then a hybrid internal
energy density function can be written of the form

1 1
3= EaklPkPl + hijp PPy + eijPigji + Ebijklpi,jpk,l

1
5 CikiiE dijiaP; je 1+ fijkaP ity k1 + Tijiim® iU im
+ gijklmnui,jkul,mn' o (7)

a, e, and c are the familiar second-order reciprocal dielectric
susceptibility tensor, third order piezoelectric tensor and the
fourth-order elastic constant tensor respectively. f is the
fourth-order flexoelectric tensor introduced in Eq. (4) while
b and d are fourth-order tensors from Eq. (5). The third-
order tensor h couples the polarization to its gradient while
the fifth order tensor r couples strain and strain gradient.
Tensor r is sometimes referred to as the acoustic gyroscopic
tensor. Tensor g represents elastic nonlocality and dictates
the strength of the biquadratic strain-gradient coupling:'*! it
also serves the purpose of smoothing out distribution of
fields.

Balance equations and constitutive relations for the elec-
tromechanical stresses can be derived by carrying out a
variational analysis of the Lagrangian derivable from Eq. (7).
The interested reader is referred to the paper by Sahin and
Dost?® wherein this variational analysis has been carried out
in exhaustive detail.

In the absence of an external electric field and free
charges, the following expression involving the polarization
and its gradient can be deduced from the balance equations
and constitutive laws

-1
(aij +& 51‘_/')Pj = dijklakl,j - (eijksjk +fzj/'kﬂ4j,k1)
+hip(Pyj = Pjg) + bijPryj- (8)

For a centrosymmetric material, the third order tensors in Eq.
(8) vanish
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-1
(aij +& 5ij)Pj = dijklskl,j _fijkluj,kl + bijklPk,lj~ )

The above expression shows that following the energy den-
sity expression of Eq. (7), the polarization response is lin-
early related to the strain gradient.

From a microscopic point of view, the terms involving
polarization gradients in the expression for the internal en-
ergy density in Eq. (7) can be shown to bear analogs to
certain interaction energy terms occurring in a shell-type
lattice-dynamical model. In particular, the shell-shell interac-
tions can be modeled through the biquadratic coupling of
polarization gradients to themselves while the core-shell in-
teractions can be modeled via the coupling of polarization
gradients to strain. Using this approach, Askar et al.'3 carried
out explicit calculations to estimate the independent compo-
nents of the tensors b and d for NaCl and KClI in terms of
corresponding shell-model parameters. On the other hand, as
discussed in references,*’ a simple rigid-ion model, which
approximates atoms as consisting of ionic cores devoid of a
shell of electrons, suffices to make the connection with the
phenomenological flexoelectric coupling. In the following
section, we will outline Tagantsev’s approach to calculating
the flexoelectric constants using a simple rigid-ion model for
lattice dynamics. Further, we will also bring out some impor-
tant differences between Tagantsev’s approach to capture
flexoelectricity induced spatial dispersion using a rigid-ion
model and Askar er al.’s'® approach to capture polarization-
gradient induced frequency dispersion using a shell-type
lattice-dynamical model. In doing so, we also hope to make
physically transparent, the microscopic origins of both flexo-
electricity and polarization-gradient effects.

III. POLARIZATION DUE TO A UNIFORM STRAIN
GRADIENT: MICROSCOPIC ANALYSIS

In the following, parts of this section and the next sum-
marizes Tagantsev’s work* to aid the reader. Consider a uni-
form strain gradient in a macroscopically large (but finite)
crystal

(3’8,“
g;;(x) = £;(0) + 0.)_'ka' (10)
Xk
Integrating both sides of Eq. (10)
3 3 98 1
g (x)d’x= | &;(0)d"x + 5 xpdx. (11)
Xk

S . deij .
If the gradient is uniform, then ﬁk‘ is constant and [x;d’x
=0 (if one assumes that the crystalline structure under con-

sideration is centered at the origin). Therefore,

Here x; are the Cartesian coordinates of a point inside the
undeformed crystal.

In the presence of a strain given by Eq. (12), a particle
initially at R is shifted to position R’

R =R +r. (13)

Here r is
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10
ri=g;(0)R; + Z—LR Ry + u(l)(R) + u(z)(R) (14)

uV(R) and u?(R) are the linear response of the internal
strain to the macroscopic strain g;; and its gradient - %ii Fol-
lowing the assumption of hnearlty, u and u® can be cast
in the form

(1) = Ak (R); 2)(R) u(2)

u"(R) = BNPE(R),

ip ]k l[)o—,

(15)

u'? denotes the sublattice shift of the p™ atom in the unit cell
under the influence of a uniform strain; this quantity vanishes
for all atoms in a centrosymmetric unit cell. On the other
hand, u s1gn1ﬁes the internal displacement of the p™ atom
in response to the applied strain gradient and is nonzero in
principle for crystals of any symmetry.

Following the displacements of Eq. (15), the polarization
change due to such internal motions is given by

SP=(V)'Z QRIR - (V)X QRR.  (16)
R’ R
V and V' are the volumes of the crystal before and after
deformation and Q(R) Q(R) is the charge of the particle at
R. From Egs. (15) and (16),
8P, = £;(0)P] - £;;(0) P} + WM"Y oRuM(R)
N ]
e

Spontaneous Polarization Piezoelectric Contribution

Contribution

1 Jg;; I de
-2 2By R)u!”(R
6ij[?xk 2& V) EQ( Ju;”(R).
)

Y
Flexoelectric Contribution
contribution
(17)

Quadrupole moment

In Eq. (17), P? is the spontaneous polarization of the crystal
in the undeformed conﬁguratlon and Q;Q is the average
quadrupole moment density. P°, 0;;Q, and I are defined as

P’= (V)Y QR)(R), (18a)
R
=W)X QR)BRR; - 5,;R?), (18b)
R
(18¢)

I=(V)'Y OR)R%.
R

As argued in Ref. 4, to estimate the flexoelectric response
under an applied strain gradient, the polarization induced
should be measured under the conditions of zero macro-
scopic electric field ensuring the elimination of spurious
spontaneous polarization and surface polarization effects.
The macroscopic electric field is associated with the nonana-
Iyticity of the lattice-dynamical matrix at near zero wave
vectors. Therefore, while investigating flexoelectric coeffi-
cients using lattice-dynamical methods, the nonanalytical
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FIG. 1. (Color online) (a) Shows the undeformed stress-free
configuration of a portion of a 2D diatomic ionic solid. (b) shows
the deformed configuration wherein each atom is subjected to an
inhomogeneous displacement of the form u(r,)= cr where r, is the
x coordinate of the position vector of that atom.

contribution to the dynamical matrix should be removed.
This point will be further elaborated in Sec. III. Under such
conditions, the spontaneous polarization P° and the quadru-
pole moment density Q;/Q both vanish. Further, the induced
polarization caused due to internal displacement of atoms
ugl)(R) in response to a macroscopic strain corresponds to
the piezoelectric effect. Thus, the induced polarization due to
flexoelectricity can be isolated as

I de;; L 0E;
Py=——d gyl gk 19
fli 2 &xj Qp ip O“Xl ( )

v is the volume of the unit cell while 0,0, is the effective
charge of the p™ atom. The first term on the right-hand side
of Eq. (19) can be identified as the surface flexoelectric
contribution!? while the second term can be identified as the
bulk flexoelectric contribution.

Thus the bulk flexoelectric tensor w;;; can be identified
from Eq. (19) as

Mijk1 = 1Qp BN, (20)

For materials with cubic symmetry Fm3m or Pm3m, the
bulk flexoelectric tensor u has the following decomposition:!

Oj+ 6y6j).
(21)

Mij = (1 = fio = 2 has) Sijia + 12030 + pio( O

Here, &, is 1 for all indices equal and zero otherwise. It
may be noted from Eq. (19) that polarization due to flexo-
electricity is induced as a consequence of internal shifts
among atoms within a unit cell due to an applied strain gra-
dient; i.e., a dipole is created within a unit cell when atoms
carrying opposite charges suffer a net displacement with re-
spect to each other leading to a macroscopic polarization.
Therefore, for flexoelectricity to exist, it is imperative that a
strain gradient exists at the level of a unit cell; i.e., there is a
spatial variation of strain within the unit cell.

Yet another subtlety relates to the distinction between sur-
face and bulk flexoelectricity. The phenomenon of flexoelec-
tricity is pictorially explained as follows. Consider again an
arrangement of atoms which form a part of periodic 2D ionic
crystalline solid as shown in Fig.1(a). For convenience, we
only depict two unit cells.

In the equilibrium stress-free configuration of Fig. 1(a),
the centers of positive and negative charges coincide and
there is no net dipole moment. Now if an inhomogeneous
displacement of the form u(r,)=cr?, where r, stands for the x
coordinate of an atom and c is a constant, is applied to the
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stress-free configuration of Fig. 1(a) and the atoms are
clamped, then dipoles are created in each unit cell as is
shown in Fig. 1(b). However, this induced polarization is a
result of surface flexoelectricity and corresponds to the first
term on the right-hand side of Eq. (19). If, under the condi-
tions of an inhomogeneous stress, the atoms are
“unclamped” and allowed to relax, they undergo further in-
ternal shifts corresponding to the displacements u 2 of Eq.
(15). Tt is the additional polarization created due to these
internal shifts which corresponds to the bulk flexoelectric
effect corresponding to the second term on the right-hand
side of Eq. (19).

Another point deserves mention. Even though, flexoelec-
tricity in principle can be observed in all materials, one can
see from the discussion above that in materials where effec-
tive charges of atoms Q,, are zero, say for example a single
element material like graphene where no effective charges
can be assigned to atoms in the unit cell, the bulk flexoelec-
tric constant of Eq. (20) becomes zero. However, flexoelec-
tricity can still occur in such materials purely due to elec-
tronic wave-function overlap effects. Indeed, Dumitrica et
al.'® demonstrated the presence of flexoelectricity induced
polarization in curved carbon nanoshells. The rigid-ion
model can however not take into account such effects and
this is indeed a limitation of the approach we adopt in this
paper. In the following section we will outline an approach to
calculate B’le [Eq. (15)] and subsequently the flexoelectric
constant [Eq (20)] from harmonic lattice dynamics.

IV. DETERMINATION OF FLEXOELECTRIC
CONSTANTS: A LATTICE DYNAMICS APPROACH

Consider an acoustic wave traveling in an effectively in-
finite crystal with wave vector k such that |k|™" is much less
than the crystal dimensions but much larger than the lattice
parameter a. The displacement of the p™ atom in the n™ unit
cell associated with such a wave can be written as

= pe’(k‘RZ_“”). (22)
The amplitude of displacement u,, corresponding to the ph
atom of a unit cell corrected to include first-order spatial and
frequency dispersion effects can be written from Eq. (14) as

kk B{ plWJkkkl

G ww. (23)

=w; + A i pWj@

Uip ipWi
In Eq. (23), w is the amplitude of the pure acoustic wave.
For a pure acoustic phonon mode (k— >0), the amplitude of
displacement u; , is independent of p i.e., all atoms oscillate
with the same amplitude of vibration. Physically speaking,
this corresponds to a uniform deformation in classical con-
tinuum elasticity. The remaining terms on the right-hand side
of Eq. (23) correspond to internal shifts which occur because
of the inherent discreteness of the crystal. The operator G
corresponds to frequency dispersion corrections to the dis-
placement amplitude and can be shown to be related to
polarization-inertia effects.

Now consider the Hamiltonian of a crystal written in the
harmonic approximation
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1 1 ,
— — nyN2 nn
H—q)0+22mp(ri,p +2 E q)lplprlprl’p’
nip nip
rer oy

n'i'p

(24)

Here, ®, is the static (equilibrium) potential energy of the

crystal and CD:':l,p, constitute the elements of the so-called

force-constant matrix. In particular,

I’H‘l, éﬂ(b
o, = —— (25)
(9ri!p d Tirp' ) o

Here, @ is the total potential energy of the crystal assumed to
be some function of the instantaneous positions of all the
atoms.

Now the equations of motion for the lattice can be derived
as

myi; =— = > D i Tir - (26)

P ip n i'p'

d ip i [7’ P
The equations of motion [Eq. (26)] form an infinite set of
simultaneous linear differential equations. Their solution can
be simplified by exploiting the periodicity of the lattice if we
choose as a solution to Eq. (27) a function of the form

r = ;e KRy, (27)

After substituting the expression for r from Eq. (27) into Eq.
(26), one can arrive at

2 . .
@ (R, (Kj) = 25 Copirpr (K (Kj). (28)
i/p!
C is related to the dynamical matrix and can be written in
terms of the force constants as

Cip,i’p’(k):z q)?p"lp o[-k (Ry-R) )] (29)
The set of equations given by Eq. (28) can be solved in a
perturbative manner for small k by the method of long
waves. We will accordingly expand all the quantities appear-
ing in Eq. (28) in powers of k up to second order.

(0) (1)j (2)j1
l])lp(k) C,p,pl+2 C ] k+2y2 C ] kkl+

ip,i'p'™] ip,i'p'™J
(30a)
u; p(Kj) = u)(kj) +uf)(kj) +ul)(kj) + - (30b)
(k) = 0\ (k) + 0P (k) + - (30¢)

In case of ionic materials, the perturbative expansion of Eqs.
(30a)—(30c) presents problems because even the lowest-order
term in the expansion of the dynamical matrix diverges be-
cause of long-range electrostatic forces. This is dealt with by
separating the electrostatic field at a point into a local
Lorentzian field plus a global macroscopic electric field. Fur-
ther, the contribution of the macroscopic field to the dynami-
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cal matrix can be identified with the nonanalytical terms of
the dynamical matrix which cause divergent behavior at near
zero wave vectors. The short-range contributions to the dy-
namical matrix due to short-range forces and the Lorentz
field can then be treated in a perturbative manner. However,
as has been previously pointed out, the flexoelectric coeffi-
cients, by definition, measure the polarization response under
the application of a uniform strain gradient in the absence of
a macroscopic electric field. Thus in case of both weakly
polar materials (such as GaAs) and highly polar materials
(such as BTO), we exclude the contribution of the macro-
scopic electric field while calculating the dynamical matrix
in Eq. (30). This contribution is likely to be small for less
polar materials such as GaAs while one expects a large con-
tribution due to the macroscopic field in a highly polar solid
such as BTO.
The expansion coefficients in Eq. (30a) are given by

(0) nn'
Clpl 'p’ E] (I)ip,i’p’ (3121)

i E cbj‘;‘l,p,(R” R”) (31b)

C(Z)Jl (k,k,) —_

ipi'p’

nn’ f’l, n'
2 Dipirp (Rp = Ry) (R = Ry ).
n!

(31c)

As discussed before, the force constants occurring in Egs.
(31a)—(31c¢) are such that the macroscopic field contribution
has been excluded.

On substituting Egs. (31a)—(31c) in Eq. (28), we have

(0) (0)
Cip’i Uy = =0, (32a)
(0) n _ (1)j (0
Cl.p,l. Wit = lijZPZ Wit (32b)
o @ _ w0 ke o L a0
Clp i pr Uiy = lijlpl,p, i Clpl 1o Wiry + @ U
(32¢)
One can solve for ufg), u(l) and u(z) to obtain
u;O) =w, (33a)
uj) = 2 | p,clp ,,,p,,zk Wi, (33b)
P’
2
E Flpl prr(w /‘l’p’épp”gi’i” kkl lp/ l”p”)w a1,
(33c¢)

In Egs. (33a)-(33c), w is any arbitrary vector in space. The
matrix I" in Egs. (33b) and (33c¢) is the inverse of the singular
matrix defined in a special way. For a unit cell containing r
atoms, p varying from 0 to r—1, the 37 X 3r matrix I" in Egs.
(33b) and (33c) is defined as
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T. _ Iw(3r—3)

ipi'p" = Lipi'p!

p,p' #0=0 otherwise.  (34)

Here, I'®3) is the inverse to the (3r—3) X (3r—3) matrix
9 (p.p'=1,2,....r—1).

ip.i'p’
Further, the following definitions hold for the matrix T
introduced in Eq. (33c):

6
il _ il PI’ 4yl
Ttp i'p! sz i'p! 2 sz” i'p"s (353.)
S "no_m
P
4! (1)j (2)j1
Tlpl p Cip,l pNFIHPH l!Hp"/Cll//p//l llpl + 2Clpl [7 (35b)

From Egs. (23) and (33a)—(33c), we can conclude that

i 1)j
Af]p == 2 1—‘ip,i p’C(

i'p!p"
Jjkl _
Blp 2 Flpl p IP jP”’

Gip=—Tipjp bty

Thus we arrive at expressions for A, B, and G in terms of
matrices, which can be related to the real-space interatomic
force constants.

One can in principle generate the phonon dispersion over
a sufficiently large grid of wave vectors by ab initio or em-
pirical lattice dynamics and then do an inverse Fourier trans-
form in order to generate the interatomic force constants

(I):':l,p, up to a given number of neighbors corresponding to a
rigid-ion lattice-dynamical model. The denser the grid of
phonon wave vectors, the larger is the distance of the farthest
neighbor to an atom for which interatomic constants can be
calculated. Therefore, for a material like BTO for which
long-range interatomic forces become important, one would
be better served by generating the phonon dispersions over a

large grid of wave vectors.

V. TAGANTSEV’S APPROACH TO ESTIMATE
FLEXOELECTRIC CONSTANTS VS ASKAR et al.’S
APPROACH TO CALCULATE
POLARIZATION-GRADIENT CONSTANT

Tagantsev’s* approach to calculating flexoelectric con-
stants employs a simple rigid-ion model. The flexoelectric
polarization in this approach stems from the fact that in the
long-wavelength limit, different atoms (which correspond to
ionic cores) in the same unit cell move by different amounts
which corresponds to first-order dispersive corrections. If
one revisits the expression for the amplitude of displacement
of the p atom in a unit cell in the long-wavelength limit,
one notices that the dispersive correction term involving A
corresponds to the internal dlsplacement of the atom in re-
sponse to a uniform strain u'), while the terms involving B
and G correspond to the internal displacement of the atom in
response to an applied strain gradient ufuz)
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The flexoelectric polarization simply spawns from the di-
pole created within a unit cell due to internal displacements
of various ionic cores within the unit cell,

Pflexo,i = U_lqut(',zp)' (37)

On the other hand, Askar et al.'® uses a shell-type model to
extract the polarization-gradient constants b and d for cen-
trosymmetric crystals NaCl, Nal, KCI, and KI. In order to
illustrate their approach, consider a NaCl-like crystal with
two atoms per unit cell. In a shell-like model, the outermost
electron shell is considered to be a rigid spherical “shell,”
which can move with respect to the massive ionic “core”
which consists of the nucleus and the inner electron shells.
The position of p atom in the n" unit cell is denoted by r.
The charge of the p™ atom is given by

0p=X,+7), (38)

where X, and Y, are the charges of the core and shell of the
p™ atom respectively. The constraint of neutrality implies

> 0,=0. (39)
p

For the shell model, the positions of both the core and the
shell, before deformation are given by rl’;. Their positions
after deformation are, respectively,

nl _ _n n
Rp =r,+u,,

R =1 +u)+w. (40)

u is the displacement of the core and w is the displacement
of the shell with respect to the core.

The fact that the core and shell of each ion/atom carry
different charges and that they can be displaced with respect
to each other implies that when an effective electric field acts
on the core and on the shell, they will suffer a relative dis-
placement inducing a dipole moment at the ion/atom location
proportional to the electric-field strength. The proportionality
constant is given by the polarizability of the ion a, which
enters into the shell model as a parameter. At the same time,
even in the absence of an effective field, when two ion cores
are brought closer together, the equilibrium positions of the
centers of the corresponding shells need not coincide with
the position of the cores, so that a dipole moment is induced
on each ion/atom which is proportional to the displacement
of the core. Thus the deformability and polarizability of each
ion is included in the shell model. While in the rigid-ion
model, the dipole moment induced due to an electric field is
only due to movement of rigid ions, in case of a shell model,
additional contributions to the dipole moment arise as a re-
sult of the polarizability of the ion and also as a contribution
due to the redistribution of charge in the region of overlap
between neighboring ions. This latter contribution exists
even in the absence of the first and is present for materials
such as graphene and silicon which are made up of atoms
and not ions. This is perhaps one of the biggest disadvan-
tages of using a rigid-ion model.

Now, under the assumption of a rigid-ion model, let us
consider an acoustic wave in the crystal such that

PHYSICAL REVIEW B 80, 054109 (2009)

n_ ikr'-wi). n_ i(k.r"—ot
up—upe( P~ wp—wpe( e (41)

In the long-wavelength limit, Askar et al.,'® assumed that the
amplitude of displacement of the cores is the same, i.e., u,
does not depend on p. They neglect any internal displace-
ments among the atoms as a result of first-order dispersive
effects at low k wave vectors. Instead, they assume a one-ion
polarizable model wherein only one shell corresponding to a
highly polarizable atom is capable of displacing with respect
to its core. Say for example, in the case of NaCl, Na being
numbered 1 and Cl being numbered 2, Askar et al.'* approxi-
mated w; =0 owing to the low polarizability of Na compared
to that of Cl. Thus, in the long-wavelength limit one has

lll=ll2=ll

w; =0; w,=w. (42)

The dipole moment per unit cell (i.e., the polarization is),
1 or or 1
= —[Qlue’ T4 (Qzu + Y2W)€l : 2] = _Y2W. (43)
v v

Thus the polarization is attributed entirely to the displace-
ment of the shell of the highly polarizable atom. In this re-
gard, the displacement of the atoms u and the polarization
which is decided by w, become independent quantities. In
the rigid-ion model on the other hand, the polarization and
the displacement of atoms are inherently related since it is
the relative displacement of the atomic cores which causes a
dipole moment to arise. So in the rigid-ion model which is
devoid of shells, the approach of Askar et al.'* will yield
zero values for the polarization-gradient constants.

VI. RESULTS

In this section we present the values for the bulk flexo-
electric constants for:

(1) III-1V semiconductors GaAs, GaP and II-VI semicon-
ductor ZnS;

(ii) alkali halides NaCl and KClI,;

and iii) perovskite dielectrics BTO and STO in their
paraelectric phase.

Wherever possible we have tried to employ both ab initio
and empirical shell-model lattice dynamics to estimate the
values for the flexoelectric constants. However, in some
cases only one of these techniques is used either due to lack
of accurate shell-model potentials (for empirical lattice dy-
namics) or reliable pseudopotentials (for carrying out DFT
based lattice dynamics). Ab initio phonon dispersions of
GaAs were calculated in the local-density approximation
(LDA) using a norm-conserving pseudopotential generated
by Giannozzi et al.,*® following a scheme proposed by von
Barth and Car. A kinetic-energy cutoff of 25 Rydbergs (Ry)
was chosen and 60q points were used for the Brillouin-zone
(BZ) integration. An equilibrium lattice parameter of
5.612 A as suggested by Giannozzi et al.’® was chosen. The
dynamical matrices were generated on an 8 X 8 X8 k-point
mesh. Ab initio phonon dispersions of BTO were calculated
in the LDA using Vanderbilt ultrasoft pseudopotentials. A
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TABLE 1. Flexoelectric constants for cubic semiconductors GaAs, GaP and ZnS from shell-model lattice

dynamics
M1 M2 Maq
(1013 C/cm) (1013 C/cm) (1013 C/cm)
Ab initio Shell model Ab initio Shell model Ab initio Shell model
GaAs 0.5144 0.8512 —-0.8376 0.5107 0.2645 0.1702
GaP 0.4653 0.3128 —-0.3443
ZnS -0.311 —1.544 -0.611

kinetic-energy cutoff of 90 Ry was chosen and a Monkhorst
6 X6 X6 grid of q points were used for the BZ integration.
An equilibrium lattice parameter of 4.00 A was used. The
dynamical matrices were generated on an 8 X 8§ X 8 k-point
mesh. Ab initio phonon dispersions of STO were calculated
in the LDA using Vanderbilt ultrasoft pseudopotentials. A
kinetic-energy cutoff of 90 Ry was chosen and a Monkhorst
6 X 6X6 grid of q points were used for the BZ integration.
An equilibrium lattice parameter of 3.85 A was used. The
dynamical matrices were generated on an 8 X 8§ X 8 k-point
mesh. Parameters for the shell lattice-dynamical model for
GaAs, GaP, and ZnS have been taken from Kunc et al.3'32
Parameters for NaCl and KCI1 were taken from Askar et al.'3

In order to find out the bulk flexoelectric constants the
following methodology is used. From Eq. (20) it is clear that
the flexoelectric constants can be related to the elements of
the matrix B which in turn can be related to the real-space
interatomic force constants as discussed in Sec. IV. Explic-
itly, these relations are given by Eq. (36b). First, the phonon-
dispersion curves for the material under investigation are
generated either by ab initio means (using Quantum
ESPRESSO, a code which implements quantum-mechanical
calculations using DFT) or/and empirical shell-model lattice
dynamics. Then, in order to generate the matrix of inter-
atomic force constants (D;Z;,p,, an inverse Fourier transform
is carried out on the dynamical matrix C;,,, (k) [see Eq.
(29)]. With this matrix of real-space interatomic force con-
stants at hand, the methodology outlined in Sec. IV is used to
generate the matrix B which can be related to the bulk flexo-
electric tensor as given in Eq. (36b).

A. Semiconductors

For the case of the three semiconductors GaAs, GaP, and
ZnS, no previous estimates for the flexoelectric constants
exist. Our estimates for the flexoelectric constants are sum-
marized in Table I.

The comparison of piezoelectric constants obtained from
ab initio and shell-model lattice dynamics with experimental
values is given in Table II.

B. Alkali halides

For the case of the NaCl and KCl, we have employed only
empirical lattice dynamics to estimate the flexoelectric con-
stants. Askar et al.'® provided theoretical estimates using a
single-ion polarizable shell model employing a different ap-

proach than ours. Our estimates using a similar model com-
pare well with Askar er al.’s'3 estimates (Table III).

C. Perovskite dielectrics

For the case of the perovskite dielectrics STO and BTO
we have employed only ab initio lattice dynamics to estimate
the flexoelectric constants. Experimental estimates for the
flexoelectric constants exist due to Zubko et al.?’ (for STO)
and Ma and Cross® (for BTO) and they are compared with
our estimates in Table IV. As one can see, our estimates for
the flexoelectric constants of STO possess the same order of
magnitude as those experimentally provided by Zubko et
al.¥’ On the other hand our estimate for w;, of BTO is
smaller than that estimated by Ma and Cross by 3 orders of
magnitude. It is interesting to note that in a recent ab initio
study, scientists in Cambridge employed an alternative ap-
proach to estimate the flexoelectric constants of ferroelectric
BTO and found them to be of the same order of magnitude as
our estimates. The same group however report numbers close
to Ma and Cross’s” results for BTO while adopting an ex-
perimental approach. The possible reasons for such discrep-
ancies are discussed in Sec. VIIL

In a recent ab initio study, scientists at Cambridge®} dem-
onstrated, by employing an entirely different approach that
the flexoelectric constants for perovskite dielectric BTO and
Lead Titanate and paraelectric STO have flexoelectric con-
stants in the range of 1 nC/m which, at least to an order of
magnitude, agrees with our estimates.

VII. DISCUSSION AND SUMMARY

In light of the values obtained for the materials considered
in the previous section, it is clear that flexoelectric constants

TABLE II. Piezoelectric constants for cubic semiconductors
GaAs, GaP and ZnS obtained from shell-model lattice dynamics
compared with existing experimental values.

€14
(C/m?)
Ab initio Shell model Experiment
GaAs —-0.1464 —-0.066 -0.16
GaP -0.0744 -0.1
ZnS -0.111 -0.13
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TABLE III. Flexoelectric constants for cubic alkali halides NaCl and KC1 obtained by shell-model lattice
dynamics compared with theoretical estimates by Askar et al. (Ref. 13).

M1 M2 Mg
(10713 C/em) (10713 C/cm) (10713 C/em)
Shell model  Askar et al.*  Shell model Askar et al.*  Shell model Askar et al ®
NaCl 0.412 0.423 -0.122 -0.119 -0.212 -0.230
KC1 0.403 0.411 -0.122 -0.120 -0.228 -0.231

4Reference 13.

of perovskite dielectrics like BTO, STO are larger than those
of conventional dielectrics such as III-IV semiconductors,
II-VI semiconductors and ionic salts such as NaCl by as
much as 4 orders of magnitude. This peculiar property of
incipient perovskite dielectrics can be attributed not only to
their anomalously large born effective charges but also to the
existence of strong coupling between the transverse-acoustic
modes and the soft transverse optic modes so characteristic
of incipient perovskite dielectrics.>* This coupling lends it-
self to strong spatial dispersive effects which results in large
atomic displacement responses to a nonhomogeneous me-
chanical stimulus. Consequently, the internal sublattice shifts
for such perovskite dielectrics due to an applied strain gra-
dient may be orders of magnitude higher than those exhibited
by conventional dielectrics. The transverse-acoustic mode in
such materials is known to exhibit anomalously large disper-
sion even at small k vectors, which suggest that elastic non-
local effects in them may also be much larger than conven-
tional materials.

As already indicated in the previous section, our estimates
for STO are in the same order of magnitude as observed
experimentally by Zubko et al.’’ A few important factors
should be kept in mind while interpreting the results. Typi-
cally, experiments to measure flexoelectric constants employ
finite-dimensional cantilever beams (for dynamic measure-
ments) or thin films (subjected to static bending experi-
ments). Due to the finite dimensions of these structures, sur-
face polarization effects may affect the values of the
measured flexoelectric constants. We report the bulk flexo-
electric constants: surface flexoelectricity is omnipresent in
experiments on finite structures [which the experiments em-
ploy] and does not disappear in the absence of a macroscopic
electric field. There are indications though that surface flexo-
electric constants may be several orders of magnitude lesser
than bulk flexoelectric constants for high-permittivity mate-

rials and may not affect the values of the bulk flexoelectric
constants measured in experiments. Further, broken symme-
try at the surface of such finite structures may cause surface
piezoelectricity which may contribute to the experimentally
measured polarization. In addition as Zubko et al.?’ point
out, recent works® have indicated surface regions which are
100 ums deep with local fluctuations of the ferroelastic
phase transitions that may induce spontaneous flexoelectric
polarization in addition to that resulting from inhomoge-
neous stress caused during bending experiments. In view of
the above mentioned points, Zubko et al.?’ suggested that
their measurements should be viewed as order-of-magnitude
estimates. Considering the latter caveat, our results and those
of Zubko et al. are in broad agreement. Further, from a the-
oretical point of view, the phonon dispersions from ab initio
simulations are extremely sensitive to kinetic-energy cutoffs
and the size of the grid employed to do Brillouin-zone inte-
grations: the estimates of the unstable modes (which are im-
portant to capture the large flexoelectric constants of perov-
skite dielectrics) are therefore somewhat suspect though we
have ensured that the interatomic force constants we use are
sufficiently converged.

However, for the case of BTO, there is a large discrep-
ancy between our estimates and the experimental results of
Ma and Cross.” Another independent group of workers from
Cambridge?? have used both ab initio and experimental tech-
niques to estimate the flexoelectric constants for BTO. It is
interesting to note that while our estimates for BTO match
those of their ab initio estimates, there exists a large discrep-
ancy with their experimental results which are closer to those
published by Ma and Cross.’ The reason for this may be the
extreme sensitivity of the soft optic mode to temperature in
such perovskite dielectrics. At finite temperatures, at which
experiments are performed, a large TA-TO coupling may ex-
ist which in turn can explain the rather high value of the

TABLE IV. Flexoelectric constants for cubic perovskite materials STO and BTO from ab initio calcula-
tions compared with available experimental data [Zubko et al. (Ref. 27) for STO and Ma and Cross (Ref. 9)

for BTO].
M1 M12 M4
(10713 C/cm) (10713 C/cm) (1071 C/cm)
Ab initio Experiment Ab initio Experiment Ab initio Experiment
STO -26.4 20 -374.7 700 -357.9 300
BTO 15.0 -546.3 106 -190.4
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flexoelectric constants consistently observed by Cross and
co-workers® for several materials. Since our lattice dynam-
ics calculations assume zero temperature, there is a possibil-
ity of the existence of such a large discrepancy.

The magnitude of the flexoelectric constants are known to
scale as f=MAee/a, € being the relative permittivity of the
dielectric and N\ being a dimensionless scaling factor. While
from our results it is clear that the flexoelectric constants do
scale with the dielectric constant: small flexoelectric con-
stants are observed for conventional dielectrics with & on the
order of 10 and large flexoelectric constants are observed for
perovskite dielectrics (3 to 4 orders of magnitude larger than
conventional dielectrics) whose relative permittivity is of the

PHYSICAL REVIEW B 80, 054109 (2009)

order of 103, our results (as well as experiments by Zubko et
al.”’) suggest that the empirical scaling factor X may be of
the order of 1072 which is in contrast to Ma and Cross’ who
estimate to A~ 1
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