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By combining the results of both x-ray diffraction and neutron total-scattering experiments, we show that
Ni(CN), exhibits long-range structural order only in two dimensions, with no true periodicity perpendicular to
its gridlike layers. Reverse Monte Carlo analysis gives an experimental distinction between M-C and M-N
bond lengths in a homometallic cyanide framework and identifies the vibrational modes responsible for anoma-
lous positive and negative thermal expansion in the title compound.
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I. INTRODUCTION

One of the most appealing aspects of the cyanide ion as a
coordinating ligand is its ability to promote the growth of
low-dimensional crystalline phases through its linear coordi-
nation motif M—CN-M.'-8 Nickel(II) cyanide, Ni(CN),, is a
particularly topical example because it has been proposed as
an inorganic analog of graphene,’ capable of forming
intercalates'®!'! and even nanotubular structures.” Quite re-
markably, however, key aspects of its crystal structure re-
main unknown. While it has been shown that each Ni** cen-
ter is coordinated by four bridging cyanide ions to give two-
dimensional square-grid layers,” the arrangement of these
layers in three dimensions remains controversial.”'>!3 Char-
acterizing this arrangement is of critical importance because
it holds the key to understanding the weak interactions be-
tween layers. Not only do these interactions dictate the ma-
terial’s intercalation behavior!®!" but, more generally, it is
increasingly apparent that understanding and exploiting
weak interactions is a promising approach to the design of
materials with new and useful functionalities.'#~1°

From a crystallographic viewpoint, the difficulty in ob-
taining a complete structural solution from diffraction data
has always been due to the existence of both structured dif-
fuse scattering and selective peak broadening effects [Fig.
1(a)]. Neutron total-scattering methods have enabled real-
space modeling of the local structure via the experimental
pair distribution function,”!”"!8 and very good agreement in
real space was obtained for a model in which the square-grid
layers are stacked in a perpendicular direction at intervals of
3.20 A.7 The same model also accounted for the sharp dif-
fraction features in reciprocal space but was unable to repro-
duce the diffuse scattering or to predict the correct reflection
conditions [Fig. 1(b)].

In this paper, we show that traditional crystallographic
analysis fails because Ni(CN), is long-range ordered only in
two dimensions, with no true long-range periodicity along a
direction perpendicular to its gridlike layers. Instead the lay-
ers assume a disordered stacking arrangement—a type of
structural description for transition-metal cyanides that we
anticipate will help resolve a range of crystallographic am-
biguities in the field.> Our model reproduces all real-space
and reciprocal-space neutron and x-ray diffraction data for
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Ni(CN), and develops from simple chemical rules. We also
use the reverse Monte Carlo (RMC) technique!® to produce
atomistic models of Ni(CN),, from which we extract key
structural and dynamical correlations, including an experi-
mental distinction between M—C and M—-N bond lengths in a
homometallic cyanide framework. This information will pro-
vide an important constraint in the development of models of
Ni(CN),-based nanophases.” Moreover, we identify the vi-
brational modes of Ni(CN), implicated in its strong positive
thermal expansion (PTE) perpendicular to the square-grid
layers and also its negative thermal expansion (NTE) within
the layers themselves.
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FIG. 1. (Color online) (a) Experimental and [(b)—(d)] calculated
x-ray diffraction patterns for Ni(CN), [A=1.0000(1) A]: (b)
P4,/mmc model from Ref. 7; the new disordered stacking model,
(c) without, and (d) with Gaussian shear distribution perpendicular
to [001]. The superstructure and diffuse scattering peaks that arise
from the disordered stacking along ¢ are indicated by asterisks (see
Appendix for derivation).
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FIG. 2. (Color online) (a) The four possible square-grid orien-
tations referred to in the text, (b) an example stacking sequence, and
(c) the average structure I4/mmm unit cell (whose relative orienta-
tion with respect to the axes in (a) is shown in red); thermal ellip-
soids were calculated from the real-space RMC fits to the 298 K
neutron data (Ref. 7) and are shown at the 50% probability level.
Square planar Ni atoms in green; linearly-bridged C/N atoms in
purple.

II. CRYSTALLOGRAPHIC MODEL
A. General features

Our crystallographic model develops from the basic
stacking motif identified in Ref. 7; namely, that square-grid
layers stack such that cyanide ions of one layer are posi-
tioned directly above Ni** cations of the layer below. Be-
cause there are twice as many CN groups as Ni atoms, there
are two such arrangements for each pair of layers. As the
number of layers increases so too does the number of pos-
sible stacking arrangements that satisfy this basic local con-
straint. Consequently, there are a large number of essentially
degenerate structural ground states—each corresponding to a
different stacking arrangement but with almost identical lo-
cal structures (and hence lattice enthalpies). In this model,
there is no long-range stacking periodicity of the type de-
scribed in Ref. 7; instead the system is a “disordered stack”
where true periodicity is lost in one crystallographic direc-
tion.

Like many disordered solids, this disordered stack exhib-
its a characteristic short-range order that reflects certain local
constraints. First, there are only four possible orientations for
any particular sheet [Fig. 2(a)], which we term A, A’, B, and
B'. The layers A or A’ give the correct local environment
when placed above B or B’-type layers but not when above
A or A’-type layers; this gives a second constraint. So, the
model divides the structure into “even” layers, with only A or
A’-type sheets and “odd” layers containing B or B’ sheets
[an example is shown in Fig. 2(b)]. The P4,/mmc model of
Ref. 7 is also consistent with these “rules” in that it corre-
sponds to the specific four-layer repeat ABAB'.

The average unit cell for the disordered arrangement is a
tetragonal cell in space group I4/mmm [a=3.434(3) A and
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FIG. 3. (Color online) Experimental (top) and calculated x-ray
diffraction patterns for Ni(CN), using different values of the
second-layer correlation variable p.

c=6.401(2) A at 298 K], with Ni and C/N atoms of half
occupancy at (0,0,0) and (x,x,0) (x~0.38), respectively,
[Fig. 2(c); see Appendix for crystallographic derivation]. The
corresponding x-ray diffraction pattern, calculated using a
random series of 200 layers that obey the aforementioned
rules is illustrated in Fig. 1(c). One now finds the correct
number of peaks and also the key diffuse features. Moreover,
all cyanide groups are crystallographically equivalent in this
cell, consistent with spectroscopic data.?’

B. Second-layer correlations

The form of the diffuse scattering near 26=12.5° is re-
markably sensitive to correlations between second-nearest-
neighbor layers. We define a second-layer correlation func-
tion p which gives the likelihood that second-nearest-
neighbor layers are of the same type (i.e., a short-range-order
parameter). This can take the values 0=p=1, where p=0
corresponds to the unique ordering pattern [ABA'B’]AB...
(symmetry I4,/amd, a=4.9 A, ¢c=12.8 A), p=1/2 describes
a purely statistical distribution of layer pairs, and p=1 cor-
responds to the two-layer repeat [ABJAB... (symmetry
Cmmm, a=c=4.9 A, b=6.4 A).

Structural models containing 200 layers for a range of
different p values give very different x-ray powder-
diffraction patterns; this difference is most noticeable in the
form of the diffuse scattering between 26 angles of 12 and
16° (Fig. 3). At low values of p—i.e., less than 0.33—the
calculated diffraction pattern cannot reproduce the sharp
peak seen just below 12° in 26 while the bunching of diffuse
intensity near 20=12.5° is reproduced. For 0.33 <p <0.50,
the sharp feature becomes very prominent but the diffuse
scattering is increasingly spread out. At values of p greater
than 0.50, the diffuse scattering centers around a new 26
angle of about 15°. The calculated diffraction pattern that
gives the most reasonable qualitative fit to the observed data
is for p=0.33. It can be seen from Fig. 3 that the diffraction
pattern changes rapidly with p, giving a rough estimate of an
error of =0.02 on the value of p we have determined. Note
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FIG. 4. (Color online) Illustration of the sideways displacements
of Ni(CN), layers involved in the shear strain.

that the p=0.33 diffraction pattern given in Fig. 3 is pre-
cisely that shown in Fig. 1(c).

A value of p=0.33 indicates that the probability of finding
like pairs of even (e.g., A...A) or odd (e.g., B...B) layers is
0.33 while the probability of finding unlike pairs is 0.67—
about twice as great. This preference for different pairs at the
second-layer distance may arise in order to avoid cyanide
groups being bound simultaneously to Ni** centers in both
adjacent sheets. It is possible that the actual value of p for a
given sample may be highly dependent on sample prepara-
tion and history.

C. Shear displacements

To complete the modeling of the diffraction pattern in Fig.
1(a), the strong peak-broadening effects observed for general
(hkl) reflections are accounted for in terms of a shear distri-
bution perpendicular to [001]—i.e., concerted sideways dis-
placement of the layers, facilitated by the very weak inter-
layer forces (Fig. 4). Such a shear term preserves (hk0) and
(001) reflections but broadens composite (hkl) reflections—
e.g., the (112) reflection at 26=230°. Our models of shear
strain distributions use a distribution of triclinically distorted
variants of the p=0.33 disordered stacking model described
above. Unit-cell angles vary such that «=90°-4, B=90°
—g, and y=90° for a range of angles —6° < §<<6°, hence
simulating shear along the [120] direction.?! Qualitative
agreement with the experimental data is best achieved for a
Gaussian distribution in 6 with width 2.5°, corresponding to
an actual deviation of the ¢ axis of 2.8° =3° from its original
orientation and a sideways displacement of successive layers
of 0.16 A; the calculated diffraction pattern is shown in Fig.

1(d).

D. Neutron diffraction pattern

As a final check of the validity of our structural model, we
calculated the expected neutron-scattering pattern for the
same structural model (stacking sequence, shear distribution)
as that used to generate the x-ray pattern in Fig. 1(d). The
calculated and experimental neutron-diffraction patterns are
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FIG. 5. Calculated (top) and experimental (bottom) neutron-
scattering patterns.

illustrated in Fig. 5; clearly there is a good qualitative match
between the two.

III. RMC ANALYSIS
A. Methodology

Quantitative fits to both real-and reciprocal-space neutron
total-scattering data?> were obtained via RMC refinement of
atomic displacements in a large supercell of the crystallo-
graphic unit cell.'"” Parallel RMC refinements were per-
formed using starting configurations based on both the (new)
disordered stacking model and the original P4,/mmc model
of Ref. 7. Each RMC configuration contained 64 000 atoms
and represented a box approximately 100 A in each direc-
tion. The refinement process itself was driven by fitting to
both real-space and reciprocal-space neutron-scattering data
collected on the GEM instrument?? at ISIS, in the form of the
T(r) and QF(Q) functions, respectively.”> Both models are
capable of producing excellent fits to real-space data [Fig.
6(a)]; however, the quality of the corresponding reciprocal-
space fits [Fig. 6(b)] and the feasibility of the atomic distri-
butions (see below) were both improved for the disordered
stacking model. It was not computationally feasible to in-
clude the shear contribution in these calculations—this omis-
sion is responsible for some “ringing” in the QF(Q) differ-
ence curves.

A slight difference in the physical viability of the real-
space models obtained for both the “random stacking” and
P4,/mmc regimes can be seen by collapsing representative
RMC configurations onto the smallest common unit cell of
the two models: namely, the 4.9 AxX4.9 AX12.8 A cell of
the P4,/mmc model. Views of these “collapsed” configura-
tions are given in Fig. 7. What one is looking to check in
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FIG. 6. (Color online) RMC fits (red lines) to (a) D(r) and (b)
QF(Q) neutron data (black lines) using the P4,/mmc (upper set in
each panel; shifted by 12 units) and disordered /4/mmm (bottom set
in each panel) models; difference curves (data—fit; shifted by 4
units) shown in blue.

these distribution plots is whether the individual atomic dis-
tributions make physical sense. In the case of the random
stacking model, the Ni distributions are all essentially
equivalent, as are the various C/N distributions [Figs. 7(a)
and 7(b)]. For the P4,/mmc model, one finds that RMC has
been forced to introduce some spurious atomic distributions.
The C/N distributions at a cell height of 41-1 and %, for ex-
ample, adopt teardroplike shapes, that are not symmetric
with respect to the corresponding Ni(CN), layer [Fig. 7(c)].
That is, the model requires CN out-of-plane vibrations to
take different energies for translations in one direction (“up”)
than in the other direction (“down”), which is unlikely from
a chemical viewpoint. There are also clear differences be-
tween CN molecules located at different points of the unit
cell; for example, in the layer at height z=% [Fig. 7(d)] one
of the CN molecules has very isotropic C and N displace-
ments while the other CN molecule in this same layer has
highly anisotropic displacements. This again would be ex-
pected to give rise to a splitting in the CN stretching frequen-
cies, which is not observed experimentally.

Consequently, while the difference between the two mod-
els is primarily one of periodicity, these are indicators that
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FIG. 7. (Color online) RMC atomic positional distributions ob-
tained by “collapsing” equilibrium RMC configurations onto a
single cell of the P4,/mmc model: (a) and (b) are from the random
stacking model, viewed down [010] and [001], respectively; (c) and
(d) are for the P4,/mmc model viewed down [010] and [001],
respectively. In both (b) and (d) only the single sheet near z=% is
shown.

the local structure is also better represented by the disordered
model. The corresponding crystallographic parameters for
this model, obtained by collapsing the RMC configurations
onto a single /4/mmm unit cell, are summarized in Table I.
Anisotropic displacement parameters were calculated from
the observed mean-squared displacements from the average
positions; estimated standard errors were calculated from the
observed second (x) and fourth (U;;) distribution moments.>*

B. Metal-C/N bond lengths

Having shown our random stacking RMC configurations
to provide reliable atomistic models of Ni(CN),, we address
a long-standing problem in the crystallography of homome-
tallic transition-metal cyanide frameworks: namely, whether
the metal-C and metal-N bonds have different lengths.'~8
Our real-space configurations do show a reproducible differ-
ence in Ni-C and Ni-N bond lengths [1.880(9) and
1.834(9) A, respectively]. Moreover, when we interchange C
and N atoms in our configurations, further refinement also
interchanges the mismatched bond lengths so that the same
average values are obtained again on convergence (Fig. 8).

TABLE 1. I4/mmm Ni(CN), crystallographic parameters determined from RMC analysis of neutron
total-scattering data collected at 298 K. Anisotropic displacement parameters in A% Uy,=U;;; Ujz=Uxp;3=0.

Atom X y Vé Occ. Ull U12 U33

Ni 0 0 0 0.5 0.0219(3) 0 0.0493(6)
C 0.3866(19) X 0 0.25 0.0315(6) -0.0104(6) 0.0655(7)
N 0.3773(19) X 0 0.25 0.0319(6) -0.0111(6) 0.0664(7)
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FIG. 8. (Color online) Ni—C (red) and Ni-N (blue) distributions
in Ni(CN), (a) from the original RMC refinements, (b) after swap-
ping N and C atoms without further refinement, and (c) after sub-
sequent RMC minimization.

The sensitivity here comes from the different neutron-
scattering lengths of the C and N atoms, amplified further by
fitting in real space. That the M—N bond is slightly shorter is
perhaps counterintuitive but is actually in accordance with
DFT calculations for Zn(CN), and Cd(CN),.%> Our final av-
erage structure model, obtained by collapsing the RMC con-
figuration onto a single /4/mmm unit cell, gives C and N
atom positions (x,x,0) of x=0.3866(19) and 0.3773(19), re-
spectively.

These distributions also address the issue of CN ordering
in Ni(CN),. Based on the observation that all homometallic
cyanide frameworks exhibit cyanide orientational disorder,
the cyanide orientations in our RMC configurations were as-
signed randomly and the Ni-CN-Ni connectivity fixed dur-
ing RMC refinement. If the square-grid layers are, in fact,
assembled from alternating [NiC,] and [NiN,] centers, then
because our neighbor constraints in RMCProfile prevented
“flipping” of the cyanide groups, the best compromise avail-
able during refinement is to place the N atoms at the Ni—-C
distance for “[NiC4]”-type Ni atoms and the C atoms at the
Ni-N distance for “[NiN,]”-type Ni atoms. This would give
similar, bimodal distributions for the Ni—-C and Ni—N bond
lengths when averaged over the configuration, which is not
what we observe in Fig. 8. Hence, that we have distinguish-
able unimodal distributions indicates both that the RMC fit-
ting process would be sensitive CN ordering and also that no
such ordering is evident in the scattering data.

C. Lattice dynamics

Addressing now the NTE/PTE effects in Ni(CN),,” we
calculate the phonon spectrum from our RMC configurations
using the method described in Refs. 26 and 27. The lack of
periodicity along ¢ means that vibrations with ¢* wave-
vector components are not well described in terms of a clas-
sical phonon model. However the lattice vibrations of indi-
vidual layers (i.e., with periodicities confined to the (001)*
plane of reciprocal space) can certainly be determined.??’

We find a total of five dispersionless phonon modes with
frequencies below 1.0 THz (4.1 meV), each of which corre-
sponds to a localized mode of the Ni(C/N), square units
(Fig. 9). Four of these modes are rigid unit modes®® but the
existence of a fifth low-frequency mode that involves bend-
ing of the cyanide-Ni—cyanide bonds implies that the
Ni(C/N), square units are less rigid than might have other-
wise been thought. All five modes result in decreasing
Ni...Ni separations with increasing temperature and so con-
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FIG. 9. (Color online) Lowest-energy dispersionless vibrational
modes in Ni(CN),.

tribute to NTE within the square-grid layers. Moreover, the
very lowest-energy modes involve translations perpendicular
to the square-grid layers, driving the very large positive ther-
mal expansion in this direction as suggested in Ref. 7.

IV. CONCLUSIONS

In conclusion, we have determined the complete structure
of Ni(CN),, showing that the material is truly periodic in
only two dimensions; the stacking sequence of square-grid
Ni(CN), layers obeys simple chemical rules driven by apical
coordination of the d® Ni** centers but these rules are insuf-
ficient to give long-range periodicity along the stacking di-
rection. The weak interlamellar interactions give rise to two-
dimensional lattice dynamics, strong PTE along the
tetragonal axis, and facilitate the formation of intercalate de-
rivatives. We note that the availability of multiple Ni oxida-
tion states then leaves open the possibility of forming
graphenelike electronically active intercalate materials based
on Ni(CN),.
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APPENDIX: RECIPROCAL LATTICE OF THE
“DISORDERED STACKING” MODEL

An ordered stacking model in which each Ni atom of one
layer is placed directly above another Ni atom of the layer
below can be thought of as the convolution of a single
Ni(CN), square-grid layer with the set of points p(r)
=>,0(r—-We), where ¢ is the interlayer separation
(=3.2 A). For the disordered stacking model the stacking
function p(r) is given by

1
p(r) = 5[r—< —[1-(- I)W]+U—W a+0—Wb+Wc)},
W 4 2 2
(1)
where a and b are the unit-cell vectors for the square-grid

layer, and oy =0 or 1 is assigned at random. Then the Fourier
transform of the crystal F .y, (Q) is given by the expression
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Fcrystal(Q) = Flayer(Q)
X% exp{iQ- ({i[l -(-D"]+ U?W}a

+07Wb+Wc)}. (2)

Because an individual Ni(CN), layer is a primitive square
grid, then F,(Q) is a set of one-dimesional (1D) rods at
Q=ha"+kb*+xc* (h,keZ;x e R). The interesting term is
the second term on the right-hand side of Eq. (2), which we
call Fy,(Q) and expand for general Q= (hkl),

Fstack(Q) = 2 {exp(zm{g[l - (_ 1)W]}>
w

X exp(ailW)exp[ mioy(h + k)]] . (3)

If (h+k) is even then the “random” term exp[ mioy(h+k)] is
equal to unity irrespective of the individual oy, values; the
sum is well behaved and we obtain nonzero F,.(Q) values
only for & even, [ integral, or & odd, //2 odd. Note that the
existence of reciprocal-lattice points at [/2 values immedi-
ately tells us that the real-space periodicity along ¢ involves
two layers.

If (h+k) is odd then the sum is not at all well behaved and
we obtain nonzero values of Fg,.(Q) for arbitrary noninte-
gral [; the term exp[miow(h+k)] equals 1 or —1, and the
lattice sums over W no longer vanish but scale with the
square root of the number of layers. A schematic representa-
tion of the set of reciprocal-lattice points constructed in
this way is given in Fig. 10(a). The conventional indexing of
reciprocal space gives a face-centered tetragonal reciprocal
cell with reciprocal-lattice vectors a* and b* at angles of 45°
to the original choice of vectors a and b. The reciprocal-
lattice vector ¢* corresponds to a real-space “periodicity” of
two square-grid layers. Columns of 1D diffuse scattering are
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FIG. 10. (Color online) (a) Reciprocal-space and (b) real-space
unit cells in Ni(CN),. In both cases, the red cell corresponds to the
standard crystallographic setting, and the blue cell is given to coin-
cide with the primitive square lattice of an individual Ni(CN),
sheet. Columns of diffuse scattering are predicted for reciprocal-
lattice vectors Q=%(hk§) (h, k odd).

predicted to occur at Q= %(hkg) (h, k odd): these are respon-
sible for the unusual peak shapes in the powder-diffraction
pattern.’

The real-space unit cell that corresponds to this choice of
reciprocal-lattice vectors is a body-centered tetragonal cell,
again with basal-plane vectors at 45° to the Ni-CN-Ni link-
ages; the relationship is illustrated in Fig. 10(b).
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