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It is shown that the semimetallic state of the two-dimensional honeycomb lattice with a pointlike Fermi
surface is unstable toward a canted antiferromagnetic insulator upon application of an in-plane magnetic field.
This instability is already present at the mean-field level; the magnetic field shifts the up- and the down-spin
cones in opposite directions thereby generating a finite density of states at the Fermi surface and a perfect
nesting between the up- and the down-spin Fermi sheets. This perfect nesting triggers a canted antiferromag-
netic insulating state. Our conclusions, based on mean-field arguments, are confirmed by auxiliary field pro-
jective quantum Monte Carlo methods on lattices up to 12�12 unit cells.
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I. INTRODUCTION

Graphene, or the physics of electrons on the honeycomb
lattice, has recently received tremendous attention due to its
semimetallic nature with low-energy quasiparticles behaving
as massless Dirac spinors; a recent review can be found in
Ref. 1. A crucial point is the stability of this semimetallic
phase to particle-hole pairing. In particular, research activi-
ties have been devoted to the investigation of magnetic field
induced transitions as a function of magnetic fields2–4 and
electronic correlations.5–8 The vanishing density of states at
the Fermi energy protects the semimetallic state against weak
correlations. Notably, a finite critical value of the repulsive
Hubbard interaction U / t is required to destabilize the semi-
metallic state in favor of an antiferromagnetic Mott
insulator.5–7

In this paper, we will argue that the semimetallic state is
unstable against the application of an in-plane magnetic field.
The mechanism behind this instability can be understood al-
ready at the mean-field level.9–11 The magnetic field gener-
ates a finite Fermi surface density of states. A Stoner insta-
bility for arbitrarily small values of the Coulomb repulsion
arises from the perfect nesting of the spin split Fermi sheets.
This triggers antiferromagnetic order with staggered magne-
tization perpendicular to the applied magnetic field and the
opening of a charge gap. That the application of an in-plane
magnetic field in the continuum limit facilitates a spontane-
ous symmetry breaking has already been pointed out in Ref.
4. The purpose of this paper is to show that those mean-field
arguments indeed capture the correct physics, since exact
quantum Monte Carlo �QMC� simulations on the honeycomb
lattice compare favorably with those mean-field results.

The outline of the paper is as follows. In Sec. II the model
Hamiltonian is introduced and its mean-field solution is dis-
cussed. The projective QMC �PQMC� method for ground-
state properties and numerical results are presented in Sec.
III. The last section, Sec. IV, contains the summary and the
conclusions, also with respect to the experimental relevance
of our findings.

II. MODEL HAMILTONIAN AND MEAN-FIELD
TREATMENT

Our starting point is the Hubbard model on the honey-
comb lattice shown in Fig. 1,

H = H0 + HU + HB,

H0 = − t �
i,r,�

�âi,�
† b̂i+r,� + b̂i+r,�

† âi,�� ,

HU = U �
l=a,b

�
i

�n̂i,l,↑ − 1/2��n̂i,l,↓ − 1/2� ,

HB =
g

2
�BB �

l=a,b
�
i,�

p�n̂i,l,�. �1�

The electron operator âi,�
† �b̂i,�

† � creates an electron on the
orbital a �b� in the unit cell i and the associated electron-

density operator is n̂i,�
l = âi,�

† âi,� �b̂i,�
† b̂i,��, for l=a �b�. Owing

to the bipartite nature of the lattice, hopping with matrix
element t occurs only between the a and the b orbitals of unit
cells related by lattice vector r in the three directions �0 ,a1
−a2 ,−a2�. The on-site electron-electron repulsion is denoted
by U�0 and p�= �1 for �= ↑ ,↓. In the present case of half
filling the chemical potential vanishes. In the following, we
set �g /2��B�1. We have included only a Zeeman coupling
to the magnetic field. Hence, for comparison with experi-
ments, we can only consider setups with magnetic field ori-
entations parallel to the lattice plane since only in this case
we can neglect the orbital coupling.

The Hamiltonian H0 gives rise to two bands,

FIG. 1. �a� Real and �b� reciprocal space lattice vectors of the
honeycomb lattice, a1=a0�0,1 ,0�, a2=a0�0,1 /2,�3 /2� and b1

=2� /a0�0,1 ,−1 /�3�, b2=2� /a0�0,0 ,2 /�3�, with a0 being the lat-
tice constant. The unit cell with the orbitals a and b is indicated by
the dashed diamond shape. Filled �empty� circles denote sites on the
same sublattice.
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�n�k� = pn�t�
r

e−ik·r� , �2�

with pn= �1 for n=1,2, respectively. At half-band filling the
Fermi surface consists of two points, K ,K� in Fig. 2, with
density of states

	�
� =
1

N
�
k

��
 − �1	k
� . �3�

Here, N corresponds to the lattice size and linearization of
the dispersion relation around K and K� yields 	�
��
 / t2

for 

 t.
Prior to examining the mean-field Hamiltonian, we dem-

onstrate the instability of the noninteracting system when
turning on the magnetic field. Consider the transverse mag-
netic susceptibility tensor

��aa
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Here, �l,l�
+− �q�=
0

�d��Sl
+�q ,��Sl�

− �−q ,0�� and the indices l , l�
=a ,b label the sublattices. � corresponds to the inverse tem-
perature and the spin raising and lowering operators read
Sa

+�q�= 1
�N

�ie
−iq·iâi,↑

† âi,↓ and Sa
−�q�= 1

�N
�ie

−iq·iâi,↓
† âi,↑, respec-

tively. Similar definitions hold for the b sublattice. The
eigenvectors of the magnetic susceptibility tensor are given
by

�FM
+− �q� = �d

+−�q� + �o
+−�q� ,

�AFM
+− �q� = �d

+−�q� − �o
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and correspond, respectively, to the ferromagnetic and the
antiferromagnetic alignments of spins within the unit cell.
Nesting occurs at q=Q= �0,0� and leads to a logarithmic
divergence of the antiferromagnetic mode at finite values of
the magnetic field �Fig. 3�
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In the above,

�n,��k� = �n�k� + p�B �7�

are single-particle states of H0+HB and f�
�= 1
1+e�
 is the

Fermi function. In the low-temperature limit, one can ap-
proximate the integral of Eq. �6b� to obtain

�AFM
+− �Q� � �	�B�ln� W

2kBT
� , �B� � 0

const, B = 0,
� �8�

where W corresponds to the bandwidth. Clearly, the diver-
gence of the transverse susceptibility in the antiferromag-
netic channel stems from the nesting property, �1,↑�k�
=−�2,↓�k�. At zero magnetic field, this instability is cut off
by the vanishing density of sates 	�
��
 / t2. At B�0 the
low-energy density of states is finite thereby revealing the
nesting instability.

Given the above instability, the mean-field Hamiltonian is
derived by assuming the magnetization m to be alternating
on the sublattices: ml= (0,m��−1�l ,m�) with the index l
=0,1 referring to the orbitals in the unit cell. That is, the
magnetization m has a constant component m� parallel to the
field axis and a staggered component m� in the plane per-
pendicular to the field.

FIG. 2. �Color online� Visualization of the nesting of spin-up
and spin-down Fermi surfaces. In case of �a� B=0 the spin bands
collapse onto each other, whereas for �b� B�0 the bands are shifted
by virtue of the magnetic field leading to the nesting relation
�1,↑�k�=−�2,↓�k�.
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FIG. 3. �Color online� �Anti�ferromagnetic susceptibilities
��A�FM

+− �Q� for the magnetic fields B / t=0.01, . . . ,1.0.
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To decouple the interaction part of the Hamiltonian, we

rewrite it as HU=− 2
3U�l=a,b�iŜi,l

2 , with Ŝi,l being the spin-1/2

operator, and the fluctuation term of Ŝi,l
2 = 	ml+ �Ŝi,l−ml�
2 is

omitted. With this ansatz, the mean-field Hamiltonian mixes
the up- and the down-spin sectors thereby yielding four qua-
siparticle bands:

HMF = �
k

�
n,m=1

2

En,m�k��̂n,m,k
† �̂n,m,k +

4

3
UN�m�

2 + m�
2 � ,

�9�

with

En,m�k� = pm
�	�n�k� + Beff
2 + ��

2 . �10�

Here, pm= �1, Beff=B−��, �� =
2
3Um�, and ��= 2

3Um�.
Minimizing the free energy with respect to m� and m� yields
the gap equations
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Our mean-field results are plotted in Figs. 4, 6�a�, 6�c�,
and 6�e�. At zero magnetic field, we observed as a function
of U / t the expected transition from the semimetallic state
�m=0� at U / t�Uc / t�3.3 to the antiferromagnetic Slater
insulator characterized by �m���0. The semimetallic state at
B=0 is characterized by the spin degenerate dispersion rela-
tion �n,��k� as shown in Fig. 6�a�. Ramping up the magnetic
field lifts this degeneracy thereby producing nested Fermi
sheets of opposite spin indices. Hence, and irrespective of
the magnitude of U�Uc, energy can be gained by ordering

the spins in a canted antiferromagnet. The energy gain cor-
responds to the gap which in the weak-coupling limit, and by
virtue of Eq. �11a�, takes the form

�� � We−3/2U	�Beff�. �12�

The dispersion relation of this canted antiferromagnetic state
is plotted in Fig. 6�c�. To compare at best with the QMC
simulations, we consider the quantity

A↑�k,
� = −
1

�
Im	Gaa

↑ �k,
� + Gbb
↑ �k,
�
 �13�

with a finite broadening. As apparent, the features with domi-
nant weight follow the dispersion relation �1,↑�k� and �2,↑�k�
and a gap at the Fermi level is apparent. Due to the trans-
verse staggered moment, mixing between the up and the
down dispersion relations occurs thereby generating shadow
features following the dispersion relations of �1,↓�k� and
�2,↓�k�. The intensity of the shadow features tracks m�. As
apparent from Fig. 4 the growth of m� as a function of the
magnetic field is countered by the polarization of the spins
along the magnetic field. It is interesting to note that irre-
spective of U / t the maximal value of m� and hence of the
magnetic field induced gap is at B=1 corresponding to an
energy scale matching the position of the Van Hove singu-
larity in the noninteracting density of states. At this point a
maximal amount of energy can be gained by the opening of
the gap.

Particle-hole symmetry can be exploited to map the repul-
sive Hubbard model onto an attractive Hubbard model where
U�0 tunes the transition from a semimetal to an s-wave
superconductor.12 The external magnetic field driving the
semimetal to a canted antiferromagnet in the positive-U
model translates to doping the negative-U model, which trig-
gers a transition to a uniform superfluid phase with s-wave
pairing, accordingly.13 In the case of B=0 the self-consistent
equation for the staggered magnetization, Eq. �11a�, is iden-
tical to the BCS gap equation for the attractive-U case at half
filling.

III. PROJECTOR QUANTUM MONTE CARLO METHOD

To confirm our mean-field results, we have carried out
projector auxiliary field QMC calculations. This PQMC al-
gorithm is based on the equation
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FIG. 4. �Color online� �a� Parallel magnetization m� and �b� staggered magnetization m� vs U and B, obtained by numerically solving the
gap equations �11�.
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��0�A��0�
��0��0�

= lim
�→�

��T�e−�HAe−�H��T�
��T�e−2�H��T�

. �14�

The trial wave function ��T� has to be nonorthogonal to the
ground-state wave function, ��T ��0��0, and the ground
state is assumed to be nondegenerate. For the details of the
formulation of this approach, we refer the reader to Ref. 14.
In this canonical approach, we fix the magnetization

M =
N↑ − N↓

N↑ + N↓
�15�

rather than the magnetic field �just as a magnetic field would
induce a magnetization�. The magnetization M in the QMC
algorithm corresponds to the mean-field magnetization m�.
N� corresponds to the total number of electrons in the spin
sector �. Furthermore, due to the particle-hole symmetry,
which locks in the signs of the fermionic determinants in
both spin sectors, one can avoid the so-called negative sign
problem irrespective of the choice of the magnetization. In
practice, for each finite system, we choose a value of the
projection parameter � large enough so as to guarantee con-
vergence within statistical uncertainty.

To detect transverse staggered magnetic order under an
applied magnetic field, we have computed the spin-spin cor-
relation functions

S+−�q� =
1

N
�
i,j

e−ıq�i−j��Sa
+�i�Sa

−�j� − Sa
+�i�Sb

−�j�� . �16�

If long-range staggered magnetic order perpendicular to the
applied field direction is present, then

� lim
N→�

S+−�Q�
N

= m�
QMC �17�

acquires a finite value. We have computed this quantity on
6�6, 9�9, and 12�12 lattices, and our results are plotted
in Fig. 5 both for U�Uc and U�Uc. At U / t=2�Uc / t and
zero magnetization, M =0, our results are consistent with
m�

QMC=0 whereas, at M =2 /6, m�
QMC takes a finite value.

Although we cannot reproduce the essential singularity of
the mean-field calculation at U�Uc, the overall form of the
transverse staggered magnetization compares favorably with

the mean-field results 	see Figs. 5�a� and 5�b�
 both at U
�Uc and U�Uc.

Within the PQMC, the zero-temperature single-particle
Green’s function along the imaginary time axis can be com-
puted efficiently with methods introduced in Ref. 15. From
this quantity, we can obtain the spectral function of Eq. �13�
with the use of a stochastic formulation of the maximum
entropy method.16,17 The so obtained results for A↑�k ,
� are
plotted in Figs. 6�b�, 6�d�, and 6�f�. As apparent the features
in the QMC calculation which are associated with substantial
spectral weight are well reproduced by the mean-field calcu-

lation. The particle-hole transformation, âi,�
† → âi,−� and b̂i,�

†

→−b̂i,−�, leads to the relation

A↑�k,
� = A↓�k,− 
� . �18�

At finite magnetic fields or equivalently at finite magnetiza-
tions, the staggered transverse order leads to a gapless Gold-
stone mode of which the quasiparticle can spin-flip scatter.
As a consequence, and as already observed in the mean-field
calculation, the features of the down spectral function should
be visible in A↑�k ,
�. Upon inspection of Fig. 7 one will
observe that for each dominant low-energy peak at 
�k� in
A↑�k ,
� a shadow feature at −
�k� is present.

IV. SUMMARY AND CONCLUSIONS

In conclusion, we have carried out mean-field calculations
and projective quantum Monte Carlo simulations for the
Hubbard model on the honeycomb lattice in a magnetic field
oriented parallel to the lattice plane. With this setup, only the
Zeeman spin coupling is present. Our results show the inher-
ent instability of the semimetallic state to a canted antiferro-
magnet upon application of the magnetic field. Ramping up
the magnetic field generates nested up and down Fermi sur-
faces with finite density of states. As a consequence, the
onset of canted antiferromagnetic order opens a charge gap
and provides an energy gain irrespective of the magnitude of
the Hubbard repulsion.

Experimentally, such a transition could be observed by
magnetoresistance measurements. The transition to the
canted antiferromagnet breaks a U�1� symmetry and hence
occurs at finite temperatures TKT in terms of a Kosterlitz-

0 0.2 0.4 0.6 0.8 1
M

0

0.05

0.1

0.15

mean-field, L = 300

L = 9
L = 12

U/t = 2

0 0.2 0.4 0.6 0.8 1
M

0

0.05

0.1

0.15

0.2

0.25

0.3 mean-field, L = 300 L = 9
L = 12

U/t = 5

0 0.05 0.1 0.15 0.2
1/L

0

0.01

0.02

0.03

0.04

0.05 U/t = 2, M = 0
U/t = 5, M = 0
U/t = 2, M = 2/6

(b)(a) (c)

FIG. 5. �Color online� Staggered magnetization �S+−�Q� /N �a� below and �b� above the critical interaction strength. �c� Finite-size
extrapolation of S+−�Q� /N. In the semimetallic phase, U / t=2, the data are consistent with the onset of transverse staggered order at finite
magnetization M. For comparison, we have plotted the U / t=5 data in the absence of a magnetic field. This value of the Hubbard interaction
places us in the antiferromagnetic Mott insulating state.
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Thouless transition. Below TKT the power-law decay of the
transverse spin-spin correlation function should suffice to
produce a visible pseudogap in the charge sector and hence
an increase in the resistivity as a function of decreasing tem-
perature. The primary issue to observe the transition is the
magnitude of the required magnetic field so as to obtain a
visible gap. With t�2.5–3.0 eV and U�10–16 eV,18 one
can readily see that very large magnetic fields will be re-
quired to obtain charge gaps in the meV region. In particular,
in Fig. 8 we plot the charge gap in meV as a function of B in
tesla for values of the Coulomb repulsion close to Uc. The g
factor has been set to the �approximate� free-electron value,
g=2. As apparent, depending on U, values on the order of
B�102–103 T are required to obtain an acceptable gap.
Clearly those numbers imply that the only feasible manner to
observe this effect would be to grow graphene directly on a
magnetic substrate.

With those numbers in mind, we can now consider mag-
netoresistance experiments carried out in layered highly ori-
ented pyrolitic graphite.3 For magnetic fields perpendicular
to the plane and at low temperatures, an insulating state as

characterized by d	
dT is observed at B�0.1 T. For fields par-

allel to the plane, intensities of roughly B�10 T are required
to observe the insulating behavior in the magnetoresistance.
Given this data, it is clear that the dominant effect of the
magnetic field stems from the orbital coupling rather than
from the Zeeman spin coupling.19 The authors of Ref. 3 ac-
count for the parallel field data by mentioning deviations
from perfect alignment between the graphene plane and the
magnetic field. Given our estimate of the required magnetic
field to achieve a charge gap for the parallel field configura-
tion, we can only confirm this point of view.

k

ω
/t

U/t = 2, M = 0

ΓMKΓ
-8
-6
-4
-2
0
2
4
6
8

k

ω
/t

U/t = 2, M = 0

ΓMKΓ
-8
-6
-4
-2
0
2
4
6
8

k

ω
/t

U/t = 2, M = 2/6

ΓMKΓ

-6
-4
-2
0
2
4
6
8

k

ω
/t

U/t = 2, M = 2/6

ΓMKΓ

-6
-4
-2

8
6
4
2
0

k

ω
/t

U/t = 2, M = 4/6

ΓMKΓ

-6
-4
-2
0
2
4
6
8

k

ω
/t

U/t = 2, M = 4/6

ΓMKΓ

-6
-4
-2

8
6
4
2
0

(b)(a)

(c) (d)

(f)(e)

FIG. 6. �Color online� Single-particle spectral function A↑�k ,
�
at U / t=2, based on the mean-field �left� and the QMC �right� cal-
culations, respectively. The magnetization M takes the values of 0,
2/6, and 4/6 �from top to bottom�. For the intermediate value of the
magnetization, one can clearly see the opening of a quasiparticle
gap and the avoided level crossing as m� acquires a finite value. In
general, the magnitude of the gap tracks m� 	Fig. 5�a�
. The QMC
spectral functions were obtained via analytical continuation of the
Green’s functions with the stochastic maximum entropy method.
For the QMC calculations, the lattice size was set to 12�12 unit
cells. The legends at the top indicate the false color values.
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FIG. 7. �Color online� The plot directly compares the QMC
�red� spectral intensity profiles A↑�k ,
� against the mean-field so-
lution �blue, dotted�. Same parameters as in Fig. 6.
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FIG. 8. �Color online� Charge gap �� as a function of the ap-
plied magnetic field for t=2.5 eV, obtained by numerically solving
the gap equations �11�.
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