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Graphene antidot lattices have recently been proposed as a new breed of graphene-based superlattice struc-
tures. We study electronic properties of triangular antidot lattices, with emphasis on the occurrence of disper-
sionless �flat� bands and the ensuing electron localization. Apart from strictly flat bands at zero energy �Fermi
level�, whose existence is closely related to the bipartite lattice structure, we also find quasiflat bands at low
energies. We predict the real-space electron density profiles due to these localized states for a number of
representative antidot lattices. We point out that the studied low-energy localized states compete with states
induced by the superlattice-scale defects in this system, which have been proposed as hosts for electron-spin
qubits. Furthermore, we suggest that local moments formed in these midgap zero-energy states may be at the
origin of a surprising saturation of the electron dephasing length observed in recent weak localization mea-
surements in graphene antidot lattices.
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I. INTRODUCTION

Investigations of the electronic properties of graphene
constitute a relatively new and thriving subarea of
condensed-matter research.1 After the first successful fabri-
cation of graphene monolayers2—by means of a mechanical
exfoliation of graphite—this two-dimensional semimetallic
material has ignited tremendous experimental3–5 and
theoretical6–15 interests. From a fundamental standpoint, one
of the main incentives for studying graphene stems from
emergent analogies between the low-energy physics of the
material and relativistic quantum mechanics.16–18 Graphene
is just as interesting from a practical point of view: owing to
its exceptional properties—the extremely high mobility,
chemical inertness, atomic thickness, and easy control of
charge carriers by applied gate voltages—it holds a great
promise for a carbon-based “post-silicon”
microelectronics.19–22

Aside from simple graphene monolayers, patterning of
monolayer films by nanolithography methods23—allowing
feature sizes as small as tens of nanometers—has led to the
demonstration of nanostructures such as Hall bars,24–26 quan-
tum dots,27 nanoribbons,28–30 and Aharonov-Bohm
interferometers.31 Another family of graphene-based struc-
tures has recently been proposed—triangular superlattices of
holes �antidots� cut in a graphene sheet, known as antidot
lattices.32,33 Unlike pristine graphene which is semimetallic,
graphene antidot lattices are semiconducting, with a direct
band gap that depends on the antidot size. Square antidot
lattices have been studied experimentally quite recently, cor-
roborating the existence of a transport gap.34,35 In addition,
the weak localization correction to the conductance and a
surprising saturation of the electron dephasing length at the
superlattice scale have been observed in these experiments.

In a recent work,32 antidot lattices have been proposed as
a platform for quantum computation, with defects in this
system envisioned as hosts for electron-spin qubits. While
the proposal of Ref. 32 focuses on localized states due to

defects on the superlattice scale �such as missing antidots�,
their counterparts on the lattice scale �such as vacancies or
adatoms�, essentially unavoidable along the antidot edges of
experimental samples, are known to give rise to midgap
�bound� states as well.36,37 One may thus expect that the two
types of defects compete. In addition, midgap states caused
by lattice-scale defects might provide a plausible explanation
of the maximal dephasing length observed in the experiment
of Ref. 35: for sufficiently large charging energies, such mid-
gap states can host local �spin� moments at the antidot edges
that are known to be a very effective source of electron
dephasing.38 This motivates us to systematically study mid-
gap states in graphene antidot lattices, with a focus on their
spatial profile and the corresponding dispersionless �flat�
bands.

On bipartite lattices �such as graphene� which have an
excess of atoms on one of the two sublattices, zero-energy
states are expected on very general grounds.39,40 As a conse-
quence, midgap states may exist even in perfectly symmetric
and periodic antidot lattices. This was put forward by Shima
and Aoki41 in a general symmetry-based classification of su-
perhoneycomb systems �i.e., triangular superlattices based on
an underlying honeycomb lattice�. Generically, however,
midgap states will be introduced by irregularities in the
shape of the antidot lattice on the atomic scale, which are
unavoidable in present-day experiments. We analyze the re-
sulting band structure and the spatial profile of the corre-
sponding wave functions for a number of representative an-
tidot lattices. Furthermore, we determine low-energy
tunneling-current distributions that can be compared with
scanning tunneling microscopy �STM� measurements. Our
estimates for the charging energies of the predicted zero-
energy states indeed suggest that for typical experimental
parameters such states can form local moments and thus pro-
vide strong dephasing upon electron scattering from the an-
tidot edges.

The remainder of the paper is organized as follows. In
Sec. II, we first briefly introduce the graphene superlattices
of interest, accompanied by the notation and conventions to
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be used throughout �Sec. II A�, and then lay out the frame-
work for calculating their band structure �Sec. II B� and the
tunneling-current distribution �Sec. II C�. The obtained re-
sults are presented and discussed in view of the generic prop-
erties of the superhoneycomb and bipartite systems in Sec.
III. Finally, we summarize our findings and conclude in Sec.
IV.

II. DESCRIPTION OF ANTIDOT LATTICES

A. Structure and nomenclature

To set the stage, in this section we introduce graphene
antidot lattices. A segment of a typical antidot lattice with a
circular perforation is depicted in Fig. 1�a�, with lattice-basis
vectors denoted by a1 and a2. Its unit cell is a hexagon with
an antidot in the center �Fig. 1�b��. We characterize the struc-
ture by the dimensionless side length of the hexagonal unit
cell �L� and the radius of the antidot �R�, both expressed in
units of the graphene lattice constant a=2.46 Å. �Note that
while L is an integer, R can also take noninteger values; a
=acc

�3, where acc=1.42 Å is the distance between nearest-
neighbor carbon atoms.� Therefore, we use the notation
�L ,R� to specify antidot lattices with circular perforations.
The unit cell of an antidot lattice with a triangular perfora-
tion, which can be characterized by �L ,D� �where D is the
side length of the triangle�, is shown in Fig. 1�c�. The num-
ber of carbon atoms �hereafter C atoms� per unit cell of an
antidot lattice will henceforth be denoted by NC.

If we take a C atom on sublattice A at the origin, its
nearest neighbors are determined by vectors �1= ��3 /2,
−1 /2�acc, �2= �0,1�acc, and �3= �−�3 /2,−1 /2�acc �see Fig.
1�. Alternatively, for a C atom on sublattice B at origin, the
corresponding vectors are −�1, −�2, and −�3.

B. Method for band-structure calculation

Given the large size of the unit cells in our superlattice—
that in the cases of practical interest, with antidot diameter
larger than about 10 nm, have numbers of C atoms in excess
of several thousands—a band-structure calculation using the
standard ab initio methods based on the density functional
theory �DFT� is not feasible. We thus compute the electronic
band structure of graphene antidot lattices within a �-orbital

tight-binding model. This method is known to reproduce
very accurately the low-energy part of the DFT band struc-
ture of pristine graphene.42

The tight-binding Hamiltonian of an antidot lattice reads

Ĥe = −
t

2 �
R,m,�

�âR+dm+�
† âR+dm

+ H.c.� , �1�

where vectors R designate unit cells �in total N of them�,
dm�m=1, . . . ,NC� specify positions of C atoms within a unit
cell, � stands for nearest neighbors of a C atom at position
R+dm, and t	2.8 eV is the nearest-neighbor hopping ma-
trix element, while the factor 1/2 is needed to correct for
double counting. After Fourier transformation to momentum
space, the band-structure calculation amounts to a sparse-
matrix diagonalization problem of dimension NC.

The Bloch wave functions corresponding to the energy
eigenvalues En��k� are given by �nk��r�=�mCm

�nk���mk�r�,
where �mk�r�=N−1/2�Reik·R��r−R−dm�. Here n enumerates
energy bands �with possible additional degeneracy labeled
by �� and ��r� denotes the 2pz orbital of a C atom. The

energy-eigenvalue problem Ĥ
�k�=E
�k� reduces to
det�H�k�−ES�k��=0, with matrices H and S given by

Hmm��k�= ��mk
Ĥ
�m�k� and Smm��k�= ��mk 
�m�k�, respec-
tively. In the nearest-neighbor approximation,

Hmm��k� = − t��dm,dm��
+ �

R
eik·R��dm,dm�+R�� , �2�

where the summation runs over superlattice vectors R
= �a1 , �a2 , � �a1−a2� �only neighboring unit cells contrib-
ute� and ��r,r��=1 if C atoms at positions r and r� are nearest
neighbors, while ��r,r��=0 otherwise. To a good approxima-
tion, the overlap of 2pz orbitals on different C atoms can be
neglected, so that Smm��k�=�mm�. This is a standard practice
in the analyses of �-electron systems.43

For later reference, we describe a construction of an or-

thonormal eigenbasis ��nk�� of Ĥ. To that end, we first note
that �mk form an orthonormal set: ��mk 
�m�k��=�mm��kk�.
�For k=k�, the orthogonality follows from Smm��k�=�mm�,
while for k�k�, it holds because �mk and �m�k� belong to
different eigensubspaces of the lattice-translation operator.�
This implies that ��nk� 
�n�k����=0 for k�k�. Therefore, to
construct an orthonormal set, we find an orthonormal basis in
the degenerate eigensubspaces of H�k�. The orthogonality of

the latter basis �m�Cm
�nk����Cm

�nk���=���� implies that
��nk� 
�nk����=�kk�����.

C. Tunneling-current distribution

STM and related techniques are known as powerful tools
for mapping out the spatial form of surface electron states.44

In order to visualize the spatial structure of the studied low-
energy states and provide the means of comparing our results
to STM measurements, we predict the tunneling-current dis-
tribution.

The tunneling current

FIG. 1. �Color online� Graphene antidot lattice: �a� Lattice struc-
ture described by the basis vectors a1 and a2, with magnitude 
a1

= 
a2
=La�3; �b� hexagonal unit cell with a circular antidot; and �c�
hexagonal unit cell with a triangular antidot. Vectors �1 ,�2 ,�3

specify positions of the nearest neighbors of a carbon atom on sub-
lattice A.
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I�r� 	 �
EF

EF+eV

dE
�r;E� , �3�

with EF being the Fermi energy and V the STM-tip bias
voltage, can be used to probe the spatial dependence of the
local density of states45


�r;E� = �
nk�


�nk��r�
2��E − En�k�� . �4�

This is a basis-independent quantity, expressed here in terms

of an orthonormal eigenbasis ��nk�� of Ĥ, constructed as
described above. In the case that only one flat band at E
=En0

falls into the energy window in Eq. �3�, we have

I�r� 	 �
k�


�n0k��r�
2

= �
k�

�
mm�

�Cm
�n0k����Cm�

�n0k��
�mk

� �r��m�k�r� . �5�

Strictly speaking, to calculate the tunneling current we
would need to use the explicit form of 2pz orbitals. However,
Eq. �5� simplifies if we assume that the 2pz orbitals are well
localized on C atoms and hence neglect the overlap of the
neighboring orbitals. After coarse graining I�r�
= �1 /�V���V�rd

3r�I�r�� in the vicinity of a C atom posi-
tioned at r=R+dm, we obtain the sought-after tunneling-
current distribution

I�r� 	 �
k�


Cm
�n0k��
2, �6�

which is a lattice-periodic quantity.

III. RESULTS AND DISCUSSION

In this section, we investigate the band structure of antidot
lattices, with emphasis on localized states at low energy. The
spatial profile of these states is characterized by a tunneling-
current distribution. We present results for both ideal lattices
and lattices with defects �vacancies and/or debonded C at-
oms�. Since we describe the system by a nearest-neighbor
tight-binding model on a bipartite lattice, the resulting en-
ergy spectrum has particle-hole symmetry.46 With this in
mind, in the following we focus on the bands above or at the
Fermi level �E=0�.

We start with an antidot lattice that is made up of perfect
circular perforations, such as those considered in Ref. 32.
The band structure of an �L=9,R=3� antidot lattice is shown
in Fig. 2. A band gap Eg opens at the � point �k=0�. For
antidot lattices with a relatively small number of removed C
atoms �Nrem� compared to the total number of atoms in the
original unit cell �Ntotal=Nrem+NC�, the band gap has been
predicted to scale as32 Eg	�Nrem /Ntotal. It has been demon-
strated that localized states with energy inside the gap can be
induced in this system by defects on the superlattice scale,
e.g., missing circular antidots in the lattice.32 Such localized
states have been proposed as hosts for local spin moments
that may be utilized for quantum computation. In the follow-
ing, we show that these midgap states appear generically in

graphene antidot lattices, even without superlattice-scale de-
fects.

In the nearest-neighbor approximation, graphene has a bi-
partite lattice, that is, a lattice that can be divided into two
sublattices A and B, where only sites at different sublattices
are connected through nonzero hopping matrix elements.
Inui et al.40 showed that in such systems one has NA−NB
zero-energy states, where NA ,NB are the total number of sites
on the respective sublattices. �This result was, in fact, implic-
itly known even earlier: it was obtained by Lieb39 as a pre-
requisite for the proof that the total spin in the exact ferro-
magnetic ground state of the Hubbard model on a bipartite
lattice is S= �NA−NB� /2.� In a graphene superlattice with nA
and nB sites per unit cell on A and B sublattices, respectively,
these states form nA−nB dispersionless �flat� bands at E=0. A
sublattice imbalance nA−nB is generically introduced at the
edges of graphene-based structures. Perhaps the most well-
known example of the corresponding zero-energy states are
the edge states in zigzag graphene ribbons that form a par-
tially flat band at the Dirac point.47,48 A pair of essentially flat
�spin-polarized� bands close to the Fermi level was found
also in a hydrogenated graphene ribbon, as demonstrated by
ab initio electronic-structure calculations.49

In antidot lattices one expects flat bands at zero energy
due to sublattice imbalances along the edges of the antidots.
The sublattice imbalance can occur even for perfect regularly
shaped antidots. As an example, we study antidot lattices
with triangular perforations �cf. Fig. 1�, which invariably
have an imbalance of nA−nB=D per antidot. Consequently, a
D-fold degenerate flat band emerges at E=0, as depicted in
Fig. 3. On the other hand, it is easy to check that antidot
lattices with perfect circular perforations always have nA
=nB. These lattices therefore do not exhibit flat bands at E
=0 �cf. Fig. 2�.

As pointed out by Inui et al.,40 the single-particle states
corresponding to the zero-energy flat bands are pseudospin
polarized—they occupy only sites belonging to a particular
sublattice. Figure 4 shows for an antidot lattice �L=10,D
=9� how this effect manifests itself in the tunneling-current
distribution, which is proportional to the on-site electron
density. Closer inspection reveals that the single-particle
states �k corresponding to the flat band at E=0 indeed leave
the B-sublattice sites unoccupied �amplitudes CBm

=0�, while
the A-sublattice sites are occupied with amplitudes CAm

�nor-

FIG. 2. �Color online� Band structure for a �9,3� antidot lattice.
Only bands above the Fermi level �E=0� are shown because of the
particle-hole symmetry. �, K, M stand for the high-symmetry points
in the Brillouin zone.
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malized as �m
CAm

2=1�, adding up to zero around each

B-sublattice site �see Fig. 4�a��. Moreover, the electronic
states corresponding to the zero-energy flat bands are pre-
dominantly localized in the vicinity of the antidot edge.50

The extent of their spatial localization is illustrated in Fig.
4�b�.

It is important to emphasize that the above results are
valid for an arbitrary system of bipartite structure, either of
infinite or of finite size, and even in the presence of off-
diagonal disorder and/or an external magnetic field.40 �In the
presence of a magnetic field, the hopping matrix elements
become complex through the conventional Peierls

substitution51 and the particle-hole symmetry is destroyed.�
Therefore, even without actual calculation, we can conclude
that the discussed flat bands at E=0 in graphene antidot lat-
tices remain flat in a magnetic field. Analogous results for
finite-size graphene antidot flakes have recently been ob-
tained numerically.52

A different perspective on the problem is furnished by a
symmetry-based classification of superhoneycomb systems,
as put forward by Shima and Aoki.41 They showed that such
systems can have either semiconducting �with direct band
gap�, semimetallic, or metallic character. This classification
turns out to depend not only on the global superlattice sym-
metry, but also on the specific atomic configuration within
the unit cell. In particular, structures with 6m, 6m+2, 6m
+3, and 6m+5 �m is an integer� atoms per unit cell belong to
symmetry classes designated by A0, AC, B0, and BC,
respectively.41 The respective degeneracies of the flat bands
at E=0 in these classes are 6l, 6l�2, 6l−3, and 6l�1 �l
0 is an integer�. According to this classification, our anti-
dot lattices with circular perforations belong to the A0 type of
superhoneycomb systems with l=0, which is consistent with
the absence of flat bands at E=0.

In realistic graphene flakes, the dangling bonds along the
edges are hydrogen passivated, giving rise to an on-site po-
tential. An on-site potential can also appear in a pure carbon
system due to a weak edge magnetization induced by
electron-electron interactions.8 Since the electronic states
corresponding to the zero-energy flat bands are largely local-
ized at the antidot edges, one expects them to be strongly
affected by such an edge potential. This motivates us to study
the influence of an edge potential, hereafter denoted by Ve,
on the zero-energy states. We assume that Ve takes nonzero
values at C atoms that have only two nearest neighbors. Such
a potential breaks the particle-hole symmetry of the energy
spectrum by destroying the bipartite lattice structure, since it
couples sites that belong to the same sublattice. However, the
main effect of Ve is a lifting of the degeneracy of the zero-
energy flat bands, while their dispersionless character is
largely being preserved.53 At the same time, the effect of this
potential on the other bands is relatively small �cf. Figs. 5�a�
and 3�b��. This finding is indeed analogous to the behavior of
flat bands in nanoribbons with hydrogenated edges, obtained
using realistic first-principles DFT calculations.49 We stress
that the observed effect of the on-site potential is robust, i.e.,
changing the magnitude of Ve does not alter our qualitative
conclusions.

In what follows we point out another generic feature of
graphene antidot lattices: the occurrence of essentially flat
bands at nonzero energies �even in the absence of an edge
potential Ve=0�. A characteristic example is presented in Fig.
6. While flat bands at E=0 in bipartite lattices arise due to a
global sublattice imbalance �nA�nB�, as discussed above, we
ascribe the quasiflat ones at E�0 to local sublattice imbal-
ances �while globally nA=nB�. Such local imbalances can be
induced even in regularly shaped antidot lattices, for in-
stance, by debonded C atoms with a single neighbor at the
edges �cf. Fig. 6�b��.

The occurrence of quasiflat bands may be understood as
follows. A single debonded C atom induces a sublattice im-
balance that leads to a zero-energy “defect level.” One may

FIG. 3. �Color online� Band structure of an antidot lattice with
triangular antidots. Only bands above the Fermi level �E=0� are
shown because of the particle-hole symmetry. �, K, M stand for the
high-symmetry points in the Brillouin zone. The flat band at E=0 is
�a� sixfold degenerate �D=6� and �b� ninefold degenerate �D=9�.

FIG. 4. �Color online� Illustration of the spatial localization of
the single-particle wave function corresponding to a flat band. �a�
Tunneling-current distribution I�r�, reflecting the population of only
the A-sublattice sites. The sizes of the circles and the color bright-
ness are proportional to I�r�, which is scaled to 0� I�1. The elec-
tron amplitudes obey the sum rule shown in the inset. �b�
Tunneling-current maxima along the y direction, at positions indi-
cated by the arrows in �a�. Inset: tunneling-current distribution in
the x direction.
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view a collection of debonded C atoms as a collection of
“local sublattice imbalances” that induce one defect level
each with wave functions that are localized in the vicinity of
the defects. This picture is supported by the tunneling density
of states shown in Fig. 6�b�. Localized states induced by
defects that are well separated from one another hybridize
only weakly. Accordingly, these defect levels give rise to
essentially dispersionless bands close to the Fermi level �E
=0�.54 As the distance between the defects decreases, the
hybridization of defect states becomes stronger and the re-
sulting bands are shifted away from the Fermi level.

In disordered antidot lattices, debonded C atoms generi-
cally appear along the edges of irregularly shaped antidots,
leading to a local sublattice imbalance. Such defects at the
edge of a zigzag nanoribbon have been experimentally ob-
served quite recently.55 In this experiment, the multilayer

graphene structures were thermally treated leading to edges
that are mostly closed �i.e., folded from one layer to an-
other�. Open-edge structures with debonded C atoms are
found in a local area where the folding edge is partially bro-
ken. Another source of local sublattice imbalances in disor-
dered lattices are vacancies, for example, due to removed C
atoms or C atoms that are sp3 rehybridized as a result of
hydrogen chemisorption.56–58 In Fig. 7�a�, we show that a
single defect in an otherwise perfectly circular antidot lattice
produces, as expected, a zero-energy band. Needless to say,
in realistic disordered systems defects do not repeat with the
lattice period as assumed in Fig. 7�a�. Some qualitative fea-
tures of realistic disordered lattices can be captured by con-
sidering a superlattice with an increased unit cell. In Fig.
7�b�, we show a band structure for an antidot lattice with a
unit cell containing four antidots with defects at different
locations; this band structure indicates that well-separated
defect states weakly hybridize, giving rise to two pairs of
quasiflat bands that are symmetric with respect to the Fermi
level. This suggests that for realistic disordered lattices one
has a quasicontinuum of such low-energy states due to hy-
bridization of defect states.

We finally consider an antidot lattice with strong shape
irregularities, as is likely the case in current experiments.34,35

Although our calculation, the result of which is shown in
Fig. 8, is based on periodically repeated defects, we expect
that it will give reliable estimates for the localization prop-
erties of the appearing midgap states. The localization length
found in this manner can be used to estimate the charging
energy in the system. The obtained band structure has the
expected features: the number of flat bands at E=0 is in
agreement with general result for the bipartite systems, and

FIG. 5. �Color online� Effect of an on-site impurity potential
Ve=−0.15t along the antidot edges: �a� band structure and the
tunneling-current distributions corresponding to �b� the lowest-lying
flat band and �c� the highest flat band.

FIG. 6. �Color online� Effects of debonded C atoms in the anti-
dot lattice �9,3.2�: �a� band structure and the tunneling-current dis-
tributions corresponding to �b� the low-lying quasiflat bands and �c�
the energy bands within the range 0.125t�E�0.257t.

FIG. 7. �Color online� Effects of disorder in antidot lattices: �a�
band structure of an antidot lattice with defects on sublattice A
�indicated by the arrow in the inset�, �b� band structure in the pres-
ence of defects on both sublattices, and �c� unit cell with arrows
indicating vacancies or C adatom defects. The dashed curves in �a�
represent the band structure of an ideal lattice �without disorder�. �,
K, M stand for the high-symmetry points in the Brillouin zone of
the antidot lattice with the fourfold-enlarged unit cell.
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the quasiflat bands at nonzero energies correspond to local
sublattice imbalances. The electron states for both types of
flat bands are localized in the vicinity of the zigzaglike seg-
ments of the antidot edges and debonded C atoms, as illus-
trated in Fig. 8. �In contrast to the zigzaglike segments, their
armchairlike counterparts on the antidot edges do not exhibit
electron localization.� Moreover, the tunneling current is
maximal at the midpoints of the zigzaglike segments on the
antidot edges. These features are in agreement with the ex-
isting experimental results on stepped graphite surfaces,59

which have edges with similar irregularities.
Also depicted in Fig. 8 �see the zoomed part� is a “charge-

density reconstruction” from the original graphene honey-
comb lattice into a lattice with �3 times larger period, which
is rotated by an angle of 30°. This is a manifestation of a
Friedel-oscillation-like phenomenon, that is, a long-range
electronic perturbation caused by the presence of defects.
Such interference phenomena, which are essentially a conse-
quence of the wave nature of electrons, are familiar in the
context of impurities on surfaces of metals60 and were ob-
served on the graphite and graphene surfaces using STM.56,61

In the case of graphene, the charge-density reconstruction
results from intervalley coupling of the electronic � states.
We thus conclude that there is strong intervalley scattering at
the antidot edges in the lattice shown in Fig. 8. This is in
agreement with the experiments of Refs. 34 and 35, where
the observed weak localization �instead of weak antilocaliza-
tion� is a signature of intervalley scattering at the antidot
edges.

The numerically obtained localization of the induced mid-
gap states at the antidot edges, with a localization length on
the order of a few interatomic distances, suggests that the
charging energies for these states can be substantial. Assum-
ing completely random edges of length Le, one expects 
nA

−nB
��Le /a low-energy states per unit cell due to local sub-
lattice imbalances �in a realistic disordered system these
states will not be strictly at zero energy since the local sub-
lattice imbalances nA−nB in individual unit cells will par-
tially cancel between unit cells�. For the parameters in the

experiment of Ref. 35, one thus expects a spacing between
these localized states of about �Lea�10 nm along the edge,
implying a charging energy that is substantially larger than
the band gap in the system, which is roughly inversely pro-
portional to the distance between antidots. Also, since the
low-energy edge states due to local sublattice imbalances are
separated by the antidot distance, one expects that their en-
ergy after hybridization is at most on the order of the band
gap. Figure 7 supports this estimate. We thus conclude that
the localized states observed in Fig. 8 have kinetic energies
inside the band gap of the perfectly regular lattice, but charg-
ing energies that by far exceed that band gap. This suggests
that local spin moments may form at the edges of disordered
antidot lattices at Fermi energies where charge transport
takes place. Since local magnetic moments are known to be
an effective source of electron dephasing in weak localiza-
tion experiments,38 the studied midgap states offer an alter-
native explanation for the saturation of the electron-
dephasing length at a scale corresponding to the distance
between antidots reported in Ref. 35.

IV. CONCLUSIONS

In this work, we have studied the salient features of the
low-energy band structure of graphene antidot lattices. Apart
from strictly zero-energy �midgap� flat bands that arise from
the bipartite lattice structure and a global sublattice imbal-
ance, we have also found quasiflat bands at low, but nonzero,
energies that can be ascribed to local sublattice imbalances.
In addition, we have examined the influence of an edge po-
tential on the flat bands, showing that such a potential lifts
the degeneracy of these bands, without affecting significantly
their dispersionless character.

We have also investigated the spatial profile of the elec-
tronic states corresponding to both classes of low-energy
bands �flat and quasiflat�. By analyzing the tunneling-current
distributions that can be compared to STM measurements,
we have demonstrated that these electronic states are generi-
cally localized at the antidot edges. The computed tunneling-
current distributions also show a charge-density reconstruc-
tion from the original honeycomb lattice to a lattice with �3
times larger period and rotated through an angle of 30°. This
phenomenon is indicative of intervalley scattering off irregu-
lar antidot edges, as also observed in recent experiments.34,35

The spatial profiles of the localized midgap states that we
find allow for a rough estimate of their charging energies.
That estimate suggests that such states can host local mag-
netic moments. We propose that such magnetic moments
may be at the origin of a recently observed saturation of the
dephasing length in graphene antidot lattices.35 In addition,
the investigated midgap states compete with the localized
states due to superlattice-scale defects, and therefore can
have significant implications for a recent proposal of spin
qubits in graphene antidot lattices.32
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FIG. 8. �Color online� Tunneling-current distributions for a lat-
tice with irregularly shaped antidots, shown for the four lowest
electron bands: E0=0 �brown�, E1�k� �blue�, E2�k� �red�, and E3�k�
�violet�. The tunneling-current magnitudes are represented by
circles of different sizes. The sublattice polarization due to edge
defects, along with the accompanying charge-density reconstruc-
tion, is shown in the zoomed part of the figure.
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