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Measurement and theory of the two-terminal conductance of monolayer and bilayer graphene in the quantum
Hall regime are compared. We examine features of conductance as a function of gate voltage that allow
monolayer, bilayer, and gapped samples to be distinguished. In particular, we analyze the distortions of
quantum Hall plateaus and the conductance peaks and dips at the charge-neutrality point, which can be used to
identify the incompressible densities. These results are compared to recent theory and possible origins of the
discrepancy are discussed.
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I. INTRODUCTION

Graphene monolayers and bilayers are recently discov-
ered two-dimensional gapless semimetals. The Dirac spec-
trum of excitations in monolayer graphene gives rise to a
number of novel transport properties, including anomalous
quantized Hall conductance with plateaus at 4�n
+1 /2�e2 /h ,n=0, �1, �2, . . . in multiterminal samples.1,2

Bilayer graphene has a quadratic, electron-hole-symmetric
excitation spectrum, leading to quantized Hall conductance
values 4ne2 /h ,n= �1, �2, . . ..3,4 Both monolayer and bi-
layer graphene have a zeroth Landau level �LL�, located at
the charge-neutrality point �CNP�, which is eightfold degen-
erate in bilayers and fourfold degenerate in monolayers.
Other Landau levels are all fourfold degenerate in both types
of graphene.5–7 These unique transport signatures not only
reflect this underlying band structure but also serve as an
experimental tool for identifying the number of layers and
characterizing sample quality.4

In recent work on graphene, two-terminal magnetocon-
ductance has emerged as one of the main tools of sample
characterization.8–10 While a two-terminal measurement is
not as straightforward to interpret as the corresponding mul-
titerminal measurement,11 it is the simplest to perform and
may be the only measurement possible, for instance, with
very small samples. The presence of nonzero longitudinal
conductivity causes quantum Hall �QH� plateaus measured in
a two-terminal configuration to not be as well quantized as in
multiprobe measurement.4 As discussed in detail below, pla-
teaus exhibit a characteristic N-shaped distortion arising
from the finite longitudinal conductivity that depends on de-
vice geometry.

In this paper, we systematically examine two-terminal
conductance in the QH regime for monolayer and bilayer
graphene for a variety of sample aspect ratios �Table I�. We
especially focus on the features that can help to distinguish
monolayer and bilayer graphene: the conductance extrema in
the N-shaped distortions of the quantum Hall plateaus and at
the CNP. We find that these features depend on the sample
aspect ratio and on the number of graphene layers.

Results are compared to recent theory,12 in which two-
terminal conductance for arbitrary shape is characterized

by a single parameter �, the effective device aspect ratio
��=L /W for rectangular samples, where L is the length or
distance between contacts and W is the device width�. The
N-shaped distortions of the plateaus, arranged symmetrically
around the CNP, are consistently observed in the two-
terminal conductance measured as a function of carrier den-
sity, both in the data presented in this paper and
elsewhere.8–10 The overall behavior of the conductance is in
good qualitative agreement with theoretical results.12

In Ref. 12, the positions of conductance extrema on the
distorted plateaus were found to align with the incompress-
ible densities, where the centers of quantized plateaus occur
in multiterminal devices. In particular, it was predicted that
in short samples ���1� the conductance minima are cen-
tered around the incompressible densities. On the other hand,
for narrow samples ���1� the maxima of the conductance
are expected to occur at the incompressible densities. Here
we demonstrate that this relation can be used to distinguish
monolayer and bilayer graphene devices even when the dis-
tortions of the plateaus are strong. We find that the maxima
�or the minima� line up with incompressible densities pre-
cisely in the way expected for the monolayer and bilayer
graphene.

The correlation between the maxima �minima� and in-
compressible densities is unambiguous; it is supported by all
measurements presented in the paper. We analyze data for
several rectangular two-terminal samples as well as for one
sample with asymmetric contacts, extracting an effective
sample aspect ratio via conformal mapping. Best-fit values of

TABLE I. Measured two-terminal graphene devices.

Sample Layers �inferred�
�L ,W�
��m� �s �fit

A1 Monolayer �1.3, 1.8� 0.7 1.7

A2 Monolayer �0.4, 2.0� 0.2 0.2

B1 Bilayer �2.5, 1.0� 2.5 0.8

B2 Bilayer �0.3, 1.8� 0.2 0.3

C Monolayer Asymmetric 0.9a 0.9

aEffective aspect ratio, see Sec. IV.
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the aspect ratio, �fit, obtained by fitting the theory to the
experimental data, are compared to the measured sample as-
pect ratio �s. Agreement between data and theory is relatively
good for the samples of smaller lengths and less good for the
longer �L�1 �m� samples. We speculate on possible causes
of these discrepancies, including inhomogeneous contact re-
sistance, electron and hole puddles, and contributions of
transport along p-n interfaces.

A. Qualitative discussion

Representative theoretical plots of two-terminal conduc-
tance for monolayer, bilayer, and gapped bilayer graphene as
a function of filling factor, �, are shown in Fig. 1. For both
monolayers and bilayers, the absence of an energy gap be-
tween the conduction and valence bands gives rise to a zero-
energy LL,5 which can either increase or decrease the two-
terminal conductance around the charge-neutrality point,
depending on the aspect ratio of the sample. The eightfold
degeneracy of the zero-energy LL in bilayer graphene7 en-
hances the size of this feature relative to monolayer
graphene.

A gap in the spectrum of bilayer graphene opens when the
on-site energy in one layer differs from the on-site energy in
the other.13 This may result, for instance, from asymmetric

chemical doping14 or electrostatic gating.15 The gap splits the
zero-energy LL, suppressing conductance at the CNP. The
qualitative effect of a gap in the bilayer spectrum can be seen
in Fig. 1 by comparing the gapped case �Fig. 1�c��, which
always has a zero of conductance at �=0, to the gapless
cases �Figs. 1�a� and 1�b��, which have a nonzero value of
conductance at �=0.

Also illustrated in Fig. 1 is how the aspect ratio of the
sample affects the two-terminal conductance near quantum
Hall plateaus for all three spectrum types. Finite longitudinal
conductivity leads to N-shaped distortions of the plateaus,12

which are of opposite signs for aspect ratios ��1 and
��1. Note, however, that the extrema of conductance—
minima for ��1 and maxima for ��1—are aligned with the
plateaus centers, which coincide with the incompressible
density values �different for monolayers and bilayers�. Dis-
torted plateaus thus remain useful for characterizing the
number of layers and density.

The back-gate dependence of conductance for the five
samples reported are most similar to those in Figs. 1�a� and
1�b�, indicating that these samples are single layers and gap-
less bilayers only �see Table I�. We use the model of Ref. 12
to fit the conductance data treating the aspect ratio as a fit
parameter. In doing so, our presumption is that the visible
dimensions of the sample may not reflect the actual pattern
of current flow. Since the conductance problem for a sample
of any shape can be reduced to that of an effective rectangle
via a conformal mapping,16–18 which depends on the sample
shape but not on the conductivity tensor, the rectangular ge-
ometry is universal for two-terminal conductance. Thus the
model of a conducting rectangle with an unspecified aspect
ratio is suitable for describing systems in which current pat-
tern is not precisely known.

B. Sample fabrication and measurement

Graphene devices were fabricated by mechanically exfo-
liating highly oriented pyrolytic graphite19 onto a n++ Si wa-
fer capped with �300 nm of SiO2. Potential single and bi-
layer graphene flakes were identified by optical microscopy.
Source and drain contacts, defined by electron-beam lithog-
raphy, were deposited by thermally evaporating 5/40 nm of
Ti/Au. The aspect ratio, �s, of each sample was measured
using either optical or scanning electron microscopy after
transport measurements were performed.

Devices were measured in a 3He refrigerator allowing dc
transport measurements in a magnetic field �B��8 T perpen-
dicular to the graphene plane. Unless otherwise noted, all
measurements were taken at base temperature, T�250 mK.
Differential conductance g=dI /dV, where I is the current
and V is the source-drain voltage, was measured using a
current bias �I chosen to keep eV�kBT� and standard lock-in
technique at a frequency of 93 Hz. All samples show B=0
characteristics of high-quality single-layer and bilayer
graphene:1,2 a CNP positioned at back-gate voltage
Vbg�0 V and a change in g exceeding 20e2 /h over the Vbg
range of �40 V.

II. MONOLAYER SAMPLES

Figure 2�a� shows the two-terminal conductance g�Vbg�
for sample A1 ��s=0.7� at B=8 T �trace�. Plateaus are seen
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FIG. 1. �Color online� Theoretical �Ref. 12� two-terminal QH
conductance g as a function of filling factor � for �a� single-layer
graphene, �b� bilayer graphene, and �c� gapped bilayer graphene, for
effective aspect ratios �=L /W=2 �lower curve� and 0.5 �upper
curve�. Finite longitudinal conductivity due to the states in the
middle of each Landau level distorts the plateaus into N-shaped
structures, which are of opposite sign for ��1 and ��1. Local
extrema of g at filling factors �= �2, �6, �10, . . . for single lay-
ers and at �= �4, �8, �12, . . . for bilayers are either all maxima
���1� or all minima ���1�. �a� and �b� For gapless monolayer and
bilayer samples, g��=0� is a maximum for ��1 and minimum for
��1 and �c� for the gapped bilayer g vanishes at �=0 for all �.
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at �= �2 near—but not equal to—2e2 /h, with values of
�2.3�2.7�e2 /h on the electron �hole� side of the CNP. At the
CNP �Vbg�2.3 V, obtained from g at B=0�, g departs from
the quantized values, dropping to a minimum of �1.4e2 /h.
At higher densities, the conductance exhibits a series of
maxima with values slightly above 6, 10, and 14e2 /h.
Maxima on the hole side consistently have slightly higher
values, a feature observed in all the samples measured. The
inset of Fig. 2�a� shows g in the QH regime as a function of
Vbg and B. Dashed lines indicating the filling factors
�=nsh /eB �where ns is the carrier density� of −6, −10, −14,
and −18 align with the local maxima of g�Vbg,B�. Here,
Vbg was converted to ns using a parallel-plate
capacitance model,19 giving ns=��Vbg+Voffset� with
�=6.7	1010 cm−2 V−1 and Voffset=2 V. Although the val-
ues of Vbg at the CNP and Voffset are slightly different, we
note that the value of Vbg for the CNP is not well defined
below �2 V—a result of the underlying disorder in the

sample20—and since these two values do not differ by more
than this value we do not ascribe any significance to this
discrepancy.

Measured g�Vbg� �curve in Fig. 2�b�� for sample A2
��s=0.2�, made using the same graphene flake as A1, shows
distinctive differences from the measured g�Vbg� of sample
A1. In particular, at the CNP �Vbg=−1.5 V�, g exhibits a
sharp peak with a maximal value �8.8e2 /h. Away from the
CNP, the conductance has maxima, which are much stronger
than those of sample A1. The inset of Fig. 2�b�
shows g�Vbg,B�. For this sample, the dashed lines
representing the incompressible filling factors −6,−10,
−14,−18 now align with the minima in g. Here we used
�=6.7	1010 cm−2 V−1 �the same as for sample A1� and
Voffset=−1.1 V.

The observed features in g for samples A1 and A2 can be
compared to theory12 for two-terminal quantum Hall conduc-
tance, which uses a model of a conducting rectangle L	W
with a spatially uniform conductivity. The filling factor de-
pendence of the conductivity tensor is obtained using the
semicircle relation for quantum Hall systems, derived in Ref.
21, which is applied independently for each Landau level.
Landau-level broadening due to disorder is included in the
theory as a Gaussian broadening e−
�� − �n�2

, where �n is the
center of the LL and 
 is a fitting parameter. The total con-
ductivity tensor is taken to be a sum of the contributions of
individual Landau levels. The current-density distribution for
a rectangular sample with an arbitrary aspect ratio is found
analytically by conformal mapping �see Refs. 16–18�. The
current density is then integrated numerically along suitably
chosen contours to evaluate total current and voltage drop,
from which g= I /V is obtained.

Along with the experimental traces, Figs. 2�a� and 2�b�
also show the theoretical curves for �fit �solid trace� and for
�s �dashed trace� ratios. For sample A1, �fit=1.7 differs con-
siderably from �s=0.7. The best fit to the experimental data
gives 
=1.2. This theoretical curve ��fit=1.7� reproduces the
essential features of the data: local maxima align with the
filling factors �2, �6, �10, . . ., and g exhibits a dip at the
CNP.

The alignment of conductance minima with the integer
filling factors where quantum Hall states form as well as a
peak at the CNP observed for sample A2 are consistent with
theoretical predictions for a short, wide monolayer graphene
sample. As illustrated in Fig. 2�b�, �fit=0.2 matches the mea-
sured �s for sample A2.

We observe that the size of peaks and dips in Figs. 2�a�
and 2�b� increases for higher LL. In contrast, theory12 pre-
dicts that peaks and dips at ����0 LLs are all roughly the
same. This discrepancy may reflect the inapplicability of the
two-phase model approach of Ref. 21, which underlies the
semicircle law obtained in this work, to higher LLs. Indeed,
because for Dirac particles the spacing between LLs de-
creases at higher energies as an inverse square root of the
level number, one may expect mixing between non-nearest
LLs to increase at high energies. Such mixing can lead to the
longitudinal conductivity values in excess of those of Ref.
21, which only considers mixing between nearest LLs �see
the discussion in Ref. 22�.

To take these effects into account, we extend the model of
Ref. 12 by assuming that the contribution of the nth LL to
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FIG. 2. �Color online� �a� Inset: conductance g in the quantum
Hall regime as a function of B and Vbg at T=250 mK for sample
A1. Dashed lines correspond to filling factors �=−6,−10,−14,
−18 and align with the local maxima of conductance. Main: hori-
zontal cut of inset giving g�Vbg� at B=8 T and calculated g for the
best-fit equivalent aspect ratio �fit=1.7 �solid curve� and for the
measured sample aspect ratio �s=0.7 �dashed curve� using Landau-
level broadening parameter 
=1.2. �b� Inset: conductance g in the
quantum Hall regime as a function of B and Vbg at T=250 mK for
sample A2. Dashed lines correspond to �=−6,−10,−14,−18 and
align with the local minima of conductance. Main: horizontal cut of
inset giving g�Vbg� at B=8 T and calculated g for �fit=0.2 �solid
curve� and �s=0.2 �dashed curve� �
=1.2, the same as sample A1�.
The dashed curve was vertically displaced for clarity.
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the conductivity tensor in monolayer graphene is described
by a modified semicircle �“elliptic”� law,

�n�xx
2 + An

2��n�xy − �xy,n
0 ���n�xy − �xy,n�

0 � = 0, �1�

where �n�xx and �n�xy are the effective longitudinal and Hall
conductivities and �xy,n

0 and �xy,n�
0 are the quantized Hall con-

ductivities at the neighboring plateaus. Here n and n� are
neighboring LL indices, related by n�=n+1 �except the
doubly degenerate �=0 LL for the bilayer, in which case
n=−1 and n�=1�. The An account for departures from the
semicircle law. We take An�1 for n=0, �1 and An�2 for
other LLs, consistent with previous observations.22

III. BILAYER SAMPLES

The curve in Fig. 3 shows measured g�Vbg� for sample B1
��s=2.5� at B=8 T and T=4 K. This sample has two fea-
tures indicating that it is a bilayer sample: plateaus in con-
ductance appearing near 4, 8, 12, and 16e2 /h, and a conduc-
tance maximum at the CNP whose relative size is much
larger than those at higher LLs. The conductance values at
the plateaus �= �4 here are lower than the expected 4e2 /h
for a bilayer sample, falling to 2.7�3.1�e2 /h on the electron
�hole� side of the CNP. The peak value in conductance at
�=0 �Vbg=0.5 V� is 5e2 /h. At higher filling factors, the
plateaus exhibit two different behaviors, showing a flat pla-
teau at �=8 and a plateau followed by a dip at �=12. The
small dips align with the filling factors �=−12,−16,−20
for 5�B�8 T �see inset of Fig. 3�, using
�=7.2	1010 cm−2 V−1 and Voffset=0.5 V.

Theoretical g curves for aspect ratios �s=2.5 �dashed
curve� and �fit=0.8 �solid curve�, obtained using the semi-
circle relation, are shown in Fig. 3. Theoretical g�Vbg� curves
for these two aspect ratios are similar at high density but
differ for �=0: the curve for �s=2.5 has a dip in conductance
at the CNP while �fit=0.8 has a peak, similar to the experi-
mental curve. The curve for �fit=0.8 also agrees better with
experiment at higher densities.

In some cases the two-terminal geometry can strongly dis-
tort the conductance, leading to a large difference between
values of the two-terminal conductance at the local extrema
and the quantized conductance values observed in multiter-
minal samples. In sample B2 �Fig. 4�, g reaches a maximum
of 13.5e2 /h at the CNP with adjacent minima of 5e2 /h. Away
from the CNP, conductance plateaus appear at values of �16
and 23e2 /h, neither of which are near expected values for
monolayer or bilayer graphene. Since there are no strong
peaks or dips in g away from charge neutrality, as is expected
for a device with a �s
1, it is difficult to determine the
number of layers from the location of the conductance ex-
trema. There are two conductance features, however, that
suggest the sample is gapless bilayer graphene. First, the
peak at �=0 is much more pronounced than any other peak
in the conductance. Second, the spacing in Vbg between the
two lowest LLs is twice as large as the spacing between any
other two successive LLs �in Fig. 4, �Vbg�9.5 V�. Both
features arise in bilayers as a result of the zero-energy LL
being eightfold degenerate, twice as much as all other bilayer
LLs and the zero-energy LL in single-layer graphene.7 The
theoretical result for �fit=0.3 �solid line� and �s=0.2 �dashed
line� for sample B2 are shown in Fig. 4.

IV. NONRECTANGULAR SAMPLES

In this section we extend the comparison of theory and
experiment to a nonrectangular device, sample C, shown
schematically in the inset of Fig. 5. The measured two-
terminal conductance of sample C �curve in Fig. 5� has prop-
erties very similar to those expected for a square monolayer
sample: around the CNP the conductance is nearly flat with
value �2e2 /h, monotonically increasing on the electron and
hole sides at filling factors ����2.

The theoretical curve shown in Fig. 5 is obtained from the
conducting rectangle model and the semicircle relation, for
�fit=0.9 and 
=0.7. This choice of parameters yields particu-
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larly good agreement for ����6. At higher fillings, the pla-
teaus are washed out, suggesting that the LL broadening is
stronger for LLs �n��2. It is interesting to compare �fit to an
effective aspect ratio obtained from conformal mapping of
sample C to a rectangle. As discussed below, this conformal
mapping can be constructed directly, owing to the relatively
simple geometry of sample C. The effective aspect ratio ob-
tained in this way is �s�0.9, consistent with �fit.

Before we proceed to construct the conformal mapping
we note that the geometry of sample C, pictured in Fig. 6, is
that of a polygon. In principle, any polygon can be mapped
onto the upper half plane by inverting a Schwarz-Christoffel
mapping.23 However, since this mapping is defined by a con-
tour integral, the inverse mapping can only be found numeri-
cally. In order to circumvent this difficulty, two approxima-
tions are employed below, allowing the desired mapping to
be constructed as a composition of a few simple mappings.

The steps involved in this construction are illustrated in
Fig. 7. First, the rectangular shape in Fig. 6 is replaced with
a semi-infinite strip shown in Fig. 7�a�. This approximation
should not significantly affect the conductance, as the current
flows mostly in the region between contacts 1-2 and 3-4.
Without loss of generality we set the length scale a=1.

The next step is to straighten out the contact 3-5-6-4. For
that, let us consider an auxiliary mapping that maps the

upper w̃ plane onto the upper z̃ plane with a removed
rectangle,24

z̃ − iA = �
0

w̃ 	 �2 − 1

�2 − 2

1/2

d� . �2�

We choose the parameter A to be equal to

A = �
0

1 	 �2 − 1

�2 − 2

1/2

d� � 0.60, �3�

so that the removed rectangle has vertices

z̃3,4 = � A, z̃5,6 = � A + iA . �4�

These points correspond to the points w̃3,4= ��2,
w̃5,6= �1 in the w̃ plane. The value of A ensures that the
edge of the sample on the x axis remains on the x axis under
the mapping �Eq. �2��. The distance between points z̃3 and z̃5
plane equals A, as follows from Eq. �2� and the identity

�
1

�2 � �2 − 1

�2 − 2
�1/2

d� = �
0

1 	 �2 − 1

�2 − 2

1/2

d� , �5�

which can be proved by making the change in variables,
�=�2−x in the integral in the left-hand side of Eq. �5� and
�=�x in the integral in the right-hand side of Eq. �5�.

The removed rectangle has an aspect ratio equal to 2, the
same as that for the contact 3-5-6-4; however, their dimen-
sions differ by a factor of A. Scaling and shifting both z̃ in w̃,

z̃ = A�z − 5�, w̃ = A�w − 5� , �6�
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we obtain the required mapping, which straightens out the
contact 3-5-6-4.

The second approximation is necessary because the map-
ping �Eqs. �2� and �6��, while straightening the segments
3-5-6-4, distorts the rest of the boundary. We notice, how-
ever, that sufficiently far from the contact 3-5-6-4 the map-
ping �Eq. �2�� is close to the identity,

z�w � 1� = w + O�1/w�, �z − 5� � 1. �7�

This property and the relatively small size of the segments
3-5-6-4 compared to the strip width guarantees that the dis-
tortion is small. This is shown schematically in Fig. 7�b�,
where the curved gray polygon represents the actual image
of the sample, with the deviation of its boundary from the
strip of the same asymptotic width �solid line�. The deviation
is indeed small; by investigating the mapping �Eqs. �2� and
�6�� numerically we found that the boundary is displaced the
most at point 2, which is shifted by approximately 0.3 away
from its original position 2� along the real axis. This is small
compared to the sample width, equal to 6, which allows us to
neglect the displacement of the boundary. Thus we assume
that the mapping �Eqs. �2� and �6�� transforms sample C into
the semi-infinite strip shown in Fig. 7�c�.

After this approximation is made, it is straightforward to
transform the semi-infinite strip in Fig. 7�c� into the upper
half plane, which can be done by the mapping

� = cosh
�w

6
. �8�

In the � plane, the contacts are mapped on the real axis with
the end points 1, 2, 3, and 4 mapped to �1=−1, �2=1,
�3�2.11, and �4�23.57. From these values, following the
procedure described in Ref. 12 �Appendix�, we compute the
cross ratio

�1234 =
��1 − �4���3 − �2�
��1 − �2���3 − �4�

� − 0.64, �9�

and then obtain the aspect ratio from the relations

�s =
L

W
=

K�k��
2K�k�

, �1234 = �1 − k2�/2k , �10�

where K�k� is the complete elliptic integral of the first kind
and k�= �1−k2�1/2. This procedure yields the value �s=0.9,
identical to that found from the best fit to a conducting rect-
angle model �see Fig. 5�.

V. SUMMARY AND DISCUSSION

In summary, we have studied the effect of geometry on
the conductance of two-terminal graphene devices in the QH
regime, comparing experiment and theory. The QH plateaus
typically exhibit conductance extrema that are stronger for
wide and short samples. For wide samples ��fit�1�, minima
of the two-terminal conductance are expected at filling fac-
tors where plateaus would be found in multiterminal devices.
On the other hand, for narrow samples ��fit�1�, conductance
maxima appear at those filling-factor values. Having in hand

a value for the aspect ratio of the sample, one can then use
the alignment of either the minima �for �fit�1� or the
maxima �for �fit�1� with particular filling factors to infer the
number of layers. For instance, alignment of the appropriate
extrema with filling factors 2, 6, 10, etc. implies that the
sample is a single layer, whereas alignment with filling fac-
tors 4, 8, 12, etc. implies that the sample is a bilayer. This
type of analysis can be extended to nonrectangular samples;
the equivalent rectangle approach appears to work well.

We find for the five samples measured that conductance as
a function of gate voltage shows relatively good agreement
with theory for short samples �L�1 �m�; in longer samples
the best-fit aspect ratio differs considerably from the mea-
sured sample aspect ratio. We note that using the fit value �fit
for the effective aspect ratio can be more reliable than using
the value �s measured from the micrograph because invisible
partial contact can alter the effective aspect ratio.

What could be the physical mechanism of such partial
contact? One effect to consider is contact resistance, which
would lead to an overall reduction in the experimentally ob-
served values of conductance. In devices fabricated using
similar methods to the two-terminal devices in this experi-
ment but with four or more terminals, it is found that contact
resistance in the quantum Hall regime at the charge-
neutrality point is on the order of 500 �, dropping to
�100 � away from charge neutrality for contacts with simi-
lar contact area as the ones used in this experiment. This
contact resistance is a small fraction of the resistances mea-
sured in the graphene sheet in the quantum Hall regime;
hence, we rule out the possibility of contact resistance being
a main source of discrepancy with theory.

There are scenarios, however, in which contact effects can
play a role in altering the aspect ratio. One is that only part
of the contact actually injects current, reducing the effective
width and causing �fit to be greater than �s, as observed in
sample A1. Another possibility is that the contacts locally
dope the graphene, causing the actual aspect ratio to be
smaller. However, for doping to make �fit��s in sample B1,
it would have to penetrate �500 nm into the graphene, at
least two orders of magnitude more than expected.25

Another more interesting possibility could be that the pic-
ture of an effective medium characterized by local conduc-
tion, on which the argument leading up to the semicircle
relation21 is based, may not hold. This might arise, for in-
stance, from large density fluctuations, giving rise to electron
and hole puddles20 forming a network of p-n interfaces along
which conduction occurs. In this case, the effect of the back
gate is to alter the percolation properties of this p-n network.
Magnetotransport across multiple p-n interfaces cannot be
accurately described in terms of a local conductivity model.
This situation arises when the distance between contacts is
much greater than the scale of disorder, which we take to be
�500 nm following Ref. 20. This suggests that samples A1
and B1 should show greater deviation from the present
theory than samples A2 and B2, which is indeed the case
experimentally. Transport mediated by such states would al-
most certainly change the conventional picture of local con-
duction. Further studies are required to clarify the physical
mechanism responsible for the observed behavior.
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