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Tight-binding approach to uniaxial strain in graphene
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We analyze the effect of tensional strain in the electronic structure of graphene. In the absence of electron-
electron interactions, within linear elasticity theory, and a tight-binding approach, we observe that strain can
generate a bulk spectral gap. However, this gap is critical, requiring threshold deformations in excess of 20%
and only along preferred directions with respect to the underlying lattice. The gapless Dirac spectrum is robust
for small and moderate deformations and the gap appears as a consequence of the merging of the two
inequivalent Dirac points only under considerable deformations of the lattice. We discuss how strain-induced
anisotropy and local deformations can be used as a means to affect transport characteristics and pinch off

current flow in graphene devices.
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It is now well established that sp?> bonded carbon systems
feature record-breaking mechanical strength and stiffness.
Investigations in the context of carbon nanotubes reveal in-
trinsic strengths' that make these systems the strongest in
nature. Recently, graphene—the mother of all sp? carbon
structures—has been confirmed as the strongest material ever
to be measured? being able to sustain reversible elastic de-
formations in excess of 20%.

These mechanical measurements arise at a time where
graphene draws considerable attention on account of its un-
usual and rich electronic properties. Besides the great crys-
talline quality, high mobility, and resilience to high current
densities,* they include a strong field effect,” absence of
backscattering, and a minimum metallic conductivity.’
While many such properties might prove instrumental if
graphene is to be used in future technological applications in
the ever pressing demand for miniaturization in electronics,
the latter is actually a strong deterrent: it hinders the pinch-
ing off of the charge flow and the creation of quantum point
contacts. In addition, graphene has a gapless spectrum with
linearly dispersing, Dirac-like, excitations.®° Although a gap
can be induced by means of quantum confinement in the
form of nanoribbons'® and quantum dots,!" these “paper-
cutting” techniques are prone to edge roughness, which has
detrimental effects on the electronic properties. Hence, a
route to induce a robust, clean, bulk spectral gap in graphene
is still much in wanting.

In this paper we inquire whether the seemingly indepen-
dent aspects of mechanical response and electronic proper-
ties can be brought together with profit in the context of a
tunable electronic structure. Motivated by recent experiments
showing that reversible and controlled strain can be pro-
duced in graphene with measurable effects,'>!3 we theoreti-
cally explore the effect of strain in the electronic structure of
graphene within a tight-binding approach. Our calculations
show that, in the absence of electron-electron interactions, a
gap can be opened in a pure tight-binding model of graphene
for deformations beyond 20%. This gap opening is not a
consequence of a broken sublattice symmetry but due to
level crossing. The magnitude of this effect depends on the
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direction of applied tension, so that strain along a zigzag
direction is most effective in overcoming the gap threshold,
whereas deformations along an armchair direction do not in-
duce a gap. Unfortunately, such large threshold deformations
render strain an ineffective means to achieve a bulk gapped
spectrum in graphene. We discuss alternate means to impact
transport and electronic structure using local strain profiles.

I. MODEL

We consider that electron dynamics of electrons hopping
in the honeycomb lattice is governed by the nearest-neighbor
tight-binding Hamiltonian

H= > t(R,8)a’(R)b(R + ) + H.c. (1)
R.6

Here R denotes a position on the Bravais lattice and & con-
nects the site R to its neighbors; a(R) and b(R) are the field
operators in sublattices A and B. The first thing to emphasize
is that, under general stress conditions, the hopping #(R, &)
will be generally different among different neighbors. We are
interested in the elastic response for which deformations are
affine. This means that even though the hoppings from a
given atom to its neighbors can be all different, they will be
the same for every atom. Therefore, as depicted in Fig. 2(a),
we need only to consider three distinct hoppings: #;=1(&;),
t,=1(8,), and t;=1(8;). The relaxed equilibrium value for ;
=1(8;) is ty,=2.7 eV.? Our goal is to investigate the changes
that strain induces in these hoppings, and what impact they
have in the resulting electronic structure.

Throughout this paper we shall use the C—C equilibrium
distance, ag=1.42 A, as unit of length, and will frequently
use 7y as unit of energy.

II. ANALYSIS OF STRAIN

We are interested in uniform planar tension situations, like
the one illustrated in Fig. 1(a): the graphene sheet is uni-
formly stretched (or compressed) along a prescribed direc-
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FIG. 1. (Color online) Tension geometry considered in the text.
The zigzag direction of the honeycomb lattice is always parallel to
the axis Ox.

tion. The fixed Cartesian system is chosen in a way that Ox
always coincides with the zigzag direction of the lattice. In
these coordinates the tension, T, reads T=T cos(f)e,
+T sin(O)e,.

As for any solid, the generalized Hooke’s law relating
stress, 7;; and strain &jj has the form

€= SijuTu (2)

7;i = Cijr€us
where C;j,(S;;,) are the components of the stiffness (compli-
ance) tensor. Since we address only states of planar stress,
we resort to the two-dimensional reduction of the stress and
strain tensors. In general the components C;j; depend on the
particular choice of the Cartesian axes. Incidentally, for an
hexagonal system under planar stress in the basal plane, the
elastic components are independent of the coordinate system.
This means that graphene is elastically isotropic.'*

The analysis of strain is straightforward in the principal
system Ox'y’ where we simply have T=Te,,

&1i= SiuT = TSijt1GxOx = TSijn (3)

Given that only five compliances are independent in graphite
(VIZey SyryysSreyysSixezsSzzze»Syzyo)s ! it follows that the only
nonzero deformations are

8),cx =TS exrs S;y = TSxxyy, (4)

which represent the longitudinal deformation and Poisson’s
transverse contraction. If we designate the tensile strain by
e=TS,,,, the strain tensor can be written in terms of Pois-
son’s ratio, 0=—>S v,/ Sy

_(10) S
o'=2 | (5)

This form shows that graphene responds as an isotropic elas-
tic medium. For Poisson’s ratio we use the value known for
graphite: 0=0.165." It should be mentioned that when stress
is induced in graphene by mechanically acting on the sub-
strate (i.e., when graphene is adhering to the top of a sub-
strate and the latter is put under tension as is done in Ref.
12), the relevant parameter is in fact the tensile strain, &,
rather than the tension 7.!° For this reason, we treat ¢ as the
tunable parameter. Since the lattice is oriented with respect
to the axes Oxy, the stress tensor needs to be rotated to ex-
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FIG. 2. (Color online) (a) Honeycomb lattice geometry. The
vectors 51=a(§,—%), 6,=a(0,1) @:a(—?,—%) connect A sites
(red/dark) to their B site (blue/light) neighbors. (b) The first Bril-
louin zone of undeformed graphene with its points of high
symmetry.

tract information about bond deformations. The strain tensor
in the lattice coordinate system reads

cos> @—osin® 0 (1 + o)cos Osin 6
e=¢ .5 ) . (6)
sin“ @— o cos” @

(1+ o)cos Osin 6

III. BOND DEFORMATIONS

If v° represents a general vector in the undeformed
graphene plane, its deformed counterpart is given to leading
order by the transformation

v=(1+¢) 0" (7)

Especially important are the deformations of the nearest-
neighbor bond distances. Knowing e;; one readily obtains the
deformed bond vectors using Eq. (7). The deformed bond

lengths are then given by

_
3 V3 1
|51|:1+1811—7812+2822 (8a)
|65 =1+ey (8b)
I~
3 V3 1
|53|=1+ZS11+?812+2822 (8¢)

Of particular interest are the cases #=0 and #=m/2 since
they correspond to tension along the zigzag (Z) and armchair
(A) directions

301
Z: |51|=|53|=1+28—Z£O', |&l=1-e0 (9a)

A: |51|=|53|=1+i8—380', [8)=1+¢& (9b)

The modification of these distances distorts the reciprocal
lattice as well, and the positions of the high-symmetry points
shown in Fig. 2(b) are shifted. The primitive vectors of the
reciprocal space are denoted by b, and in leading order,
change according to
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27T €1 1 822)
b= 22122 e 22) 0w
l \E( ! \E \E . \’6
2 e 1 822)
by=—|-1+e,-—F=;—=+ep,——|. (10b)
’ wE( R RE e

Most importantly, the symmetry point K :(;—7%,0) (that coin-
cides with the Fermi point in the undoped, equilibrium situ-
ation, and chosen here for definiteness) moves to the new
position

4
Kz_,t<1—@—2;—2812> (11)
343 22

for a general deformation, and in leading order in strain. For
uniaxial tension this reduces to

~4_7T<1_8(1—0')

K=—F
3V3 2

;—s(1+0')sin[20]). (12)
The factor of 26 means that the shift is the same for the A
and Z directions, in leading order. These general results will
be important for our subsequent discussion.

IV. HOPPING RENORMALIZATION

The change in bond lengths Eq. (7) leads to different hop-
ping amplitudes among neighboring sites. In the Slater-
Koster scheme,!” the hoppings can be obtained from the de-
pendence of the integral V,,. on the interorbital distance.
Unfortunately determining such dependence with accuracy is
not a trivial matter. Many authors resort to Harrison’s flyleaf
expression which suggests that V(1) = 1/12.'® However this
is questionable, insofar as such dependence is meaningful
only in matching the tight-binding and free electron disper-
sions of simple systems in equilibrium (beyond the equilib-
rium distance such dependence is unwarranted).!® It is in-
deed known that such functional form fails away from the
equilibrium distance!® and a more reasonable assumption is
an exponential decay.?’ In line with this we assume that in
graphene

Vppﬂr(l) — toe—3.37(l/a0—l) , (13)

where the rate of decay is extracted from the experimental
result dV,,,,/dl=—-6.4 eV/A2' As a consistency check, we
point out that, according to Eq. (13), the next nearest-
neighbor hopping (') would have the value V,,.(\3a,)
=0.23 eV, which tallies with existing estimates of ¢’ in

graphene.’

V. GAP THRESHOLD

The bandstructure of Eq. (1) with arbitrary hoppings
11,t,13 1s given by

E(kx,ky) = =* |l2 + t3€_ik'al + tle_ik'“2| . (14)

Here both 7, and the primitive vectors a,, [see Fig. 2(a) for
the definition of the vectors a,] change under strain: the
hoppings change as per Egs. (7) and (13) and the primitive
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FIG. 3. (Color online) (a) Plot of #,/1, vs t3/t, as a function of
strain, € and 6. Closed lines are isostrain curves and arrowed lines
correspond to the trajectory of the point (¢;/1,,t3/1,) as € increases
calculated at constant angle. The graph is symmetric under reflec-
tion on both axes. In the shaded area the spectrum is gapless. The
blue isostrain line (¢=~0.23) corresponds to the gap threshold. In
panel (b) we show the angular dependence of # , ; for £=0.05 and
£=0.23.

vectors as per Eq. (7). This generalized dispersion has been
previously discussed in Refs. 22 and 23, under the assump-
tion that only the hopping elements change without lattice
deformation. It was found that the gapless spectrum is robust
and that a gap can only appear under anisotropy in excess of
100% in one of the hoppings. More specifically, the spectrum
remains gapless as long as the condition

mk_ 1| = Ll =
[£2] [12]

B (15)

[£2]

is in effect. This condition corresponds to the shaded area in
Fig. 3(a). Using the results in Egs. (6), (7), and (13) we have
mapped the evolution of the hoppings with & and 6. This
allows us to identify the range of parameters that violate Eq.
(15) and to obtain the threshold for gap opening. For a given
0, we follow the trajectory of the point (¢,/1,,23/1,) as strain
grows starting from the isotropic point at e=0. The result is
one of the arrowed curves in Fig. 3(a). The value of & at
which this curve leaves the shaded area corresponds to the
gap threshold for that particular angle. From such procedure
summarized in Fig. 3(a) we conclude that: (i) the gap thresh-
old is at £=0.23(~20%); (ii) the behavior of the system is
periodic in 6 with period 7/3, in accord with the symmetry
of the lattice; (iii) tension along the zigzag direction (6
=0, m/3,...) is more effective in overcoming the gap thresh-
old; and (iv) tension along the armchair direction never gen-
erates a gap.

The two panels of Fig. 3(b) contain plots of the individual
t, for two particular values of strain. It is clear that for de-
formations along the Z direction, the highest relative change
occurs along the zigzag bonds (#;3) and conversely for de-
formations along the A direction. This could also be antici-
pated from Egs. (9) and the smallness of o.

VI. CRITICAL GAP

The fact that the isotropic point (1,1) in Fig. 3(a) is sur-
rounded by an appreciable shaded area, means that the gap-
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FIG. 4. (Color online) Top row shows density plots of the energy dispersion, E(k,,k,), for {¢=0, 6=0} (a), {£¢=0.2, 6=m/2} (b), and
{e=0.2, 6=0} (c). In (d) we have a cut of (c) along k,=0, showing the merging of the Dirac cones as strain increases and the ultimate
appearance of the gap. In panel (e) we compare the gap given by Eq. (18) (line) with the result obtained from direct minimization of the

energy in the full BZ (dots).

less situation is robust and the emergence of the gap requires
a critical strain. The physical effect behind such critical gap
lies in the fact that, under strain, the Dirac cones drift away
from the points K,K' in the Brillouin zone (BZ). Before we
proceed, it is pertinent to advance a crucial detail: in a de-
formed lattice, the Dirac points (i.e., the positions in the BZ
where conduction and valence bands touch conically) and
the symmetry points K; do not coincide. In what follows, we
shall distinguish them explicitly.

To be more definite, we examine the position of the mini-
mum energy”* for the bands obtained from Eq. (14), which
can be done exactly if we assume that the lattice remains
undeformed. Due to the particle-hole symmetry, we mini-
mize E(k)?. Let us assume that t,=t; # t,, which applies for
tension along either zigzag or armchair directions. In that
case the spectrum has minima at exactly

2 1
kpin = iﬁarccos _2_1‘1 ;00,

and all symmetry related points. The = sign refers to one
possible choice for the two inequivalent valleys. In addition
to these local minima that correspond to the Dirac points, the
dispersion has saddle points at

k_(z.z) k_(o.z_f) k_<1. z) am
“\\33) T3 ) T\ 3 )

(and all symmetry related points). These are just the points
M, ,M,,M; shown in Fig. 2(b) and their position is indepen-
dent of #,.%> The values of energy at these points are E(M,)
=|t,+t,—13], E(MM,) =|~t,+t,+13|, and E(M5)=|t,—t,+15].

(16)

The result in Eq. (16) shows that the Dirac points drift
away from the K point and the direction of that drift is dic-
tated by the relative variations in ¢;. For example, for uniaxial
tension along the Z we have #,>1,=t3, and therefore the
minimum of energy moves to the right (left) of K;(Kj) [cf.
Fig. 2(b)]. This means that the inequivalent Dirac points
move toward each other, and will clearly meet when 2¢,=¢,.
They meet precisely at the position of the saddle point M.
Throughout this process, the dispersion remains linear along
the two orthogonal directions, albeit with different Fermi ve-
locities. If the hoppings change further so that 2¢,>1¢,, the
solution Eq. (16) is no longer valid and the minimum lies
always at M,. Since the energy at this saddle point is given
exactly by E(M,)=|2t,~1,|, the system becomes gapped with
a gap A=2|2t,~1,|. Moreover, the dispersion becomes pecu-
liar in that it remains linear along one direction (the y direc-
tion in this example) and quadratic along the other. The to-
pological structure is also modified since the two
inequivalent Dirac cones have merged.?®

These considerations assume that the hoppings can
change but the lattice remains undeformed. Under a real de-
formation both lattice and hoppings are affected. The lattice
deformation will distort the BZ but will not affect the aspects
discussed above. This can be clearly seen from inspection of
the energy dispersions plotted in Fig. 4(a)-4(c). The plotted
dispersions include the deformation of the BZ and the
change in the hoppings, simultaneously. For strain along the
A direction the nonequivalent Dirac cones move in opposite
directions and never meet [Fig. 4(b)]. However, if the defor-
mation is along the Z direction, the cones always approach
each other [Fig. 4(c)] and will eventually merge. This merg-
ing is seen in detail in Fig. 4(d) where a cut along k,=0 is
presented to show the emergence of the gap beyond the
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threshold deformation. For tension along an arbitrary direc-
tion (except armchair) the cones always merge, the Z direc-
tion being the optimal orientation requiring less strain [cf.
Fig. 3(a)]. Precisely at the critical point, the dispersion is
linear along k, and quadratic along k. This modification in
the dispersion along one of the Cartesian directions has pe-
culiar implications for the DOS and Landau-level
quantization.?’

The gap is a result of this Dirac cone merging process and
the origin of the high-critical strain is now clear: one needs
to deform enough to bring the two Dirac points to coinci-
dence. This agrees with the existing understanding that the
gapless Dirac spectrum in graphene is robust (topologically
protected) with respect to small perturbations.

For strain along 6=0, as discussed above, the gap is con-
veniently given by

Eg(s)=2|2t|(8)—t2(8)|0(l2—2t1). (18)

An example of the strain dependence of E, can be seen in
Fig. 4(e). In it we see the agreement between the gap given
by Eq. (18) and the value extracted from a direct minimiza-
tion of E(k,,k,) in the full (deformed) BZ.

From Fig. 4(b) one can see that pulling along an armchair
direction imparts one dimensional (1D)-like features to the
system: the dispersion becomes highly anisotropic. This is
explained on account of the results plotted in Fig. 3(b) which
show that stress along .4 tends to weaken one bond only. In
extreme cases, the weak bond can be highly suppressed leav-
ing only a set of 1D chains.?® This means that strain along
certain directions can be used as a means to induce preferred
anisotropy in electric transport. In contrast, pulling along a
zigzag direction tends to dimerize the system for large defor-
mations, which ultimately explains the appearance of the gap
in this case.

VII. POSITION OF THE DIRAC POINT

The fact that there are two concurrent effects determining
the changes in the bandstructure (viz. the lattice distortion
itself, and the modification in the nearest-neighbor hoppings)
means that the position of the minimum of energy does not
coincide with the symmetry points of the deformed BZ. This
is documented in Fig. 5(a) where we provide a close up of
the energy dispersion close to the Dirac point. This should be
clear from the foregoing discussion on the merging of the
Dirac points. In any case we want to stress this effect and
illustrate it by analyzing small perturbations with respect to
the undeformed situation. For definiteness let us focus again
in the case #;=t;. The position of the new K was given al-
ready in Egs. (11) and (12). The position of the Dirac point is
given by Eq. (16) when only the hoppings change, but not
the lattice. For a small perturbation (#,=~1,) the result Eq.
(16) reduces to®

4 t2_tl )
Ky~ = | —=+2 0. 19
(3\/5 3 19

One can calculate the correction to this result simultaneously
accounting for the lattice deformation. But the lengthy ex-
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FIG. 5. (Color online) (a) A close up of the energy dispersion
close to its minimum for tension along #=0 and £=0.05. The solid
white lines show the intersection of the Bragg planes that define the
boundary of the first BZ in the deformed lattice, while the dashed
white lines represent the same boundary lines in equilibrium. It is
clear that the Dirac point lies neither at K nor at its deformed coun-
terpart. The energy contours are labeled in eV. (b) A contour plot of
the absolute value of the Fermi velocity, v =V, E(k) for the same
region shown in (a).

pression that results is less important than the qualitative
effect: the corrections to the expression (19) depend on the
specific details of the variation of #; with distance. Conse-
quently, the Dirac point and the K point of the deformed
lattice do not coincide in general. The equilibrium situation,
in which they coincide, is a very particular case.

In fact, even assuming a simple lattice distortion that does
not change the hoppings will move the Dirac point away
from the symmetry point of the resulting lattice. This can be
seen from a low-energy expansion of Eq. (14) putting f,=t.
The position of the Dirac point K; in such case moves to

k 4 (1 ) 41 (20)
n=~ | T l-en)i—- T =en|,
min 3\/5 11 3\/5 12

which is clearly different from Eq. (11). This fact is of criti-
cal relevance when interpreting results of similar calculations
obtained ab initio, as will be discussed below.

The fact that the Dirac point drifts from the corner of the
BZ means that there are no longer three equivalent pairs of
points in the first BZ for the neutral system, but only one pair
of nonequivalent points in general (in other words, in the
undoped unreformed lattice the Fermi surface is distributed
among the six degenerate K points in the boundary of the
BZ, whereas for a general deformation we have only two
within the first BZ). In the situation shown in Fig. 5(a), for
example, the Dirac point shown in the figure lies outside the
first Brillouin zone. The one inside the first BZ is actually the
(equivalent) Dirac point that moved away from K, (or K3), in
the notation of Fig. 2(b).

VIII. DISCUSSION

We have seen that, within the tight-binding Hamiltonian
written in Eq. (1), uniform tension can induce a bulk spectral
gap in graphene. However, at least within a noninteracting
tight-binding approach, the gap threshold is very difficult to
overcome, if at all possible. Since a tensional strain in excess
of 20% is required to observe such feature, several comments
are in order.
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A. On the approximations employed

We start by noticing that in our calculation we kept only
the lowest order terms in €. In addition, although strain mag-
nitudes of ~20% are not unreasonable, graphene is expected
to be in the nonlinear elastic regime at those deformations.?
Therefore, nonlinear corrections can be relevant at the quan-
titative level in the vicinity of the threshold.

Notwithstanding, our main result is robust: no gap can be
opened under planar tension situations, except in highly
strained situations. This conclusion does not depend on hav-
ing taken a linear approximation insofar as it should be valid
up to deformations in the range of 5-10%.

With respect to our tight-binding parametrization includ-
ing only nearest-neighbor hopping, we should mention that
Kishigi et al.®® have shown that inclusion of next nearest-
neighbor terms (¢') can alone generate a gap. But this re-
quires a very specific deformation of the lattice, unlikely to
occur under simple tension. The presence of ¢’ can also lead
to other effects such as tilted Dirac cones as discussed in Ref.
31.

It is expected that the planar arrangement of carbon atoms
in freely hanging graphene should become unstable with re-
spect to a buckled or rippled configuration or even experi-
ence mechanical failure for moderate to high tension. The
presence of a substrate should provide more stability for the
planar distribution of the carbon atoms. In fact, a recent ex-
periment published during revision of this manuscript®
shows that reversible strain of the order of 18% can be in-
duced in graphene deposited on flexible plastic substrates.

B. On related ab initio calculations

Second, some ab initio calculations seem to show that a
gap is present in graphene for arbitrarily small tensions.!>33
But these reports have some conflicting details. For example
there is an order of magnitude discrepancy between the gap
predicted in these two references for 1% strain. In addition,
Ref. 33 claims their ab initio result agrees with the band-
structure Eq. (14) after a suitable choice of hoppings. As we
showed above this cannot be the case, since there is always a
(large) threshold for the appearance of the gap. Conse-
quently, further clarification regarding ab initio under strain
is desired.

One issue that requires special attention in interpreting
density functional theory (DFT) calculations of graphene’s
bandstructure under strain is the shift of the Dirac point. As
we stressed earlier, when graphene is strained the Dirac point
(position of the energy minimum) does not lie at any sym-
metry point of the lattice. This is paramount because DFT
calculations of the bandstructure rely on a pre-existing mesh
in reciprocal space at whose points the bandstructure is
sampled. These meshes normally include points along high-
symmetry lines of the BZ. But in the current problem, the
use of such a traditional mesh will not be particularly useful
to distinguish between a gapped and gapless situation. Since
the Fermi surface of undoped graphene is a single point,
unless the sampling mesh includes that precise point, one
will always obtain a gap in the resulting bandstructure.

Most recently, we became aware of two recent develop-
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FIG. 6. (Color online) Anisotropy in the Fermi velocity as a
function of strain for a Fermi energy of 50 meV. The vertical axis
shows the ratio of the maximum to the minimum values of v in the
entire Fermi surface.

ments from the ab initio front, that shed the light needed to
interpret the earlier calculations mentioned above. One of
them>* is a revision of the DFT calculations presented in Ref.
12. In this latter work it is shown that, upon careful analysis,
the DFT calculation shows no gap under uniaxial deforma-
tions up to ~20%. In fact the authors mention explicitly that
the shift of the Dirac point from the high-symmetry point
mislead the authors in their initial interpretation of the band-
structure. In another preprint,® independent authors show
that their DFT calculations reveal, again, no gap for defor-
mations of the order of 10% in either the Z or A directions.
These subsequent developments confirm our prediction that
only excessive planar deformations are able to engender a
bulk spectral gap in graphene.

C. Anisotropic transport

Several effects of tensional strain are clear from our re-
sults. Tension leads to one dimensionalization of transport in
graphene by weakening preferential bonds: transport should
certainly be anisotropic even for small tensions. One ex-
ample of that is seen in Fig. 5(a) where a strain of 5% visibly
deforms the Fermi surface. Figure 5(b), where the Fermi ve-
locity is plotted for the same region in the BZ, further shows
that, for the chosen tension direction, the Fermi surface is not
quite elliptical but slightly oval in a reminiscence of the
trigonal warping effects.

The anisotropy in the Fermi velocity can become quite
large, as shown in Fig. 6. There we plot the ratio
U F(max)/ UF(min) fOr Ep=50 meV. As can be seen in the cuts of
Fig. 4(d), near the critical strain the Fermi level may touch
the van Hove singularity (midpoint between the two cones)
where v;=0 along one direction, which leads to formal di-
vergence of the ratio between the maximum and minimum
Fermi velocities. The Fermi surface anisotropy has been cap-
tured in transport experiments that reveal a considerable an-
isotropy in the resistivities parallel (R,,) and perpendicular
(R,,) to the tension direction.>? The authors of Ref. 32 report
in their Fig. 4(c) resistivity anisotropies of up to one order of
magnitude at ~19% strain. We can make a simple estimate
of the anisotropies expected in the light of our results for the
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deformed bandstructure. For that we follow a Boltzmann ap-
proach to the relaxation time and DC conductivity. As is
usually the case, the relevant electron states are the ones
lying in a narrow vicinity of the Fermi surface. On account
of the Fermi surface anisotropy, we can take the Fermi ve-
locities in the direction of the electric field only. For ex-
ample, in the situation shown in Fig. 5(a) for uniaxial strain
along Ox, the relevant v,’s determining R,, and Ry, will be
the ones along the major and minor axes, respectively.

For the purposes of our estimate, we take the Boltzmann
longitudinal conductivity for scattering out of unscreened
charged impurities of valence Z and concentration n;,%® given
by

20 wh*vin

h Ze*n;

; 1)

g=

and follow the reasoning above: replacing vy— vy.ug where
uy is the direction of the electric field in each case (parallel
or perpendicular to the tension direction). We immediately
see that this estimate leads to a resistance anisotropy of®’

2
Ra _ (UF(max)> (22)

Ry, U F(min)

For the maximum strain used in the experiment (~19%) our
plot in Fig. 5(b) yields a ratio of 2.8, which, per Eq. (22),
corresponds to a resistance anisotropy of roughly eightfold,
consistent with the measured anisotropy.

Our results apply to exfoliated and epitaxial graphene
alike. As matters currently stand, it is perhaps more relevant
in the context of the latter since graphene grown epitaxially
on SiC is almost always under strain.’® The strained configu-
rations are imposed by the lattice mismatch with the sub-
strate and can be controlled by changing the growth and
annealing conditions.3 For these systems, the relaxed start-
ing configuration is already deformed.
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Lastly, it is important to point out that even though a
spectral gap seems to require extreme strain, one can gener-
ate a transport gap by means of local small deformations. It
has been shown in Refs. 40 and 41 that tunneling across a
locally strained region is highly suppressed and leads to a
transport gap (i.e., a suppression of electrical conductivity) at
small densities even in the absence of a bulk spectral gap.

IX. CONCLUSIONS

Within a noninteracting nearest-neighbor tight-binding
approach, we have shown that opening a spectral gap in
strained graphene requires deformations of the order of 20%.
This result is confirmed by the most recent ab initio calcula-
tions. Such an extreme strain is required on account of the
stability of the Dirac points in graphene that renders the
spectrum gapless unless the two inequivalent Dirac points
merge. The merging requires substantial anisotropy in the
hopping integrals, only achieved under high strain. General
features of strained graphene are an anisotropic Fermi sur-
face, anisotropic Fermi velocities, and the drift of the Dirac
points away from the high-symmetry points of the lattice.

Uniform planar stain appears to be an unlikely candidate
to induce a bulk gap in graphene. Nevertheless, strain (local
or uniform) can be an effective means of tuning the elec-
tronic structure and transport characteristics of graphene de-
vices. Even if the bulk gap turns out to be challenging in
practice, local strain could be used as a way to mechanically
pinch off current flow.
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