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The heteroepitaxial growth in self-assembled quantum dot multilayers is investigated using kinetic Monte
Carlo simulations and a quantitative comparison with experiment is included. We study the self-organization
effect in the PbSe/PbEuTe�111� semiconductor system. For this purpose we developed an efficient kinetic
Monte Carlo model enabling us to simulate multilayers consisting of tens of periods with hundreds of three-
dimensional islands. We corroborate that the lateral and vertical-dot correlations are caused mainly by the
strain field induced by buried dots. A progressive self-ordering from period to period in a growing multilayer
is clearly illustrated. We also reproduced all three experimentally observed dot arrangements in the PbSe/
PbEuTe�111� superlattices inclusive of two abrupt transitions between them. Moreover, we achieved a good
quantitative agreement with the experimentally measured dependence of lateral-dot distance on spacer-layer
thickness. The advantages and shortcomings of our model are analyzed in detail.
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I. INTRODUCTION

Quantum dots �QDs� as a class of semiconductor nano-
structures are recently intensively studied due to their unique
electrical and optical properties, and great potential for de-
vice applications. The spontaneous formation of three-
dimensional �3D� quantum dots �islands� in the Stranski-
Krastanow growth mode of strained heteroepitaxial layers is
a promising candidate for QD fabrication.1–3 For technologi-
cal purposes a high-density, uniform-size distribution and
regular arrangement of defect-free dots are required. The
spatial dot density can be increased significantly by growing
QD multilayers, generating a 3D superlattice of buried is-
lands. A sophisticated technique for achieving a laterally and
vertically well-ordered QD multilayer is the use of the self-
organization effect, where the buried QDs influence positions
and sizes of the dots in the subsequent layers.2,4

The strain field induced by a lattice mismatch between the
materials of QDs and of the spacer layer is mostly respon-
sible for the self-organization effect. The elastic deformation
of the spacer due to the mismatch of its lattice with respect to
the QD lattice produces energetically more favorable areas
on the spacer surface, where the island nucleation is
enhanced.5–7 This is a typical self-organization mechanism
where also the elastic anisotropy of deposited materials and
the surface orientation play a significant role. They funda-
mentally affect the lateral and vertical correlations in a grow-
ing QD superlattice. A theoretical analysis has been given by
Holý et al.8

An interesting example of a self-assembled system are
PbSe/PbEuTe�111� multilayers9 with the Eu content ranging
from 5% to 10%. The PbSe dots form well-faceted trilateral
pyramids with �100� side facets.10 Depending on the PbEuTe
spacer-layer thickness, three different dot arrangements are
observed.11 A vertical-dot alignment is found in multilayers
with a spacer period thinner than approximately 37 nm. For
spacer thicknesses ranging from 37 to 56 nm the dots form a
fcc-like 3D trigonal lattice �an ABCABC stacking� with a

tunable lattice constant. In both these cases a pronounced
hexagonal lateral ordering of the QD positions is
observed.11,12 When the spacer thickness exceeds approxi-
mately 56 nm, the islands grow uncorrelated both in lateral
and vertical directions, i.e., such multilayers are completely
disordered.

Much effort has been devoted to the development of nu-
merical simulations of self-assembled growth in nanostruc-
tures. The simulations considerably facilitate finding the op-
timal growth conditions and also improve the understanding
of relevant growth processes. The kinetic Monte Carlo
�KMC� method has been successfully used for atomistic
simulations of epitaxial growth in numerous papers.13–16 Ad-
ditionally, the growth in two-dimensional �2D� islands on
prepatterned substrates16,17 or periodically strained
surfaces18,19 has been studied. The effect of different growth
parameters on the final surface morphology was investigated
in details by Meixner et al.20 and many others. Pan et al.21

studied the QD ordering on GaAs substrates with different
surface orientation and confirmed a strong influence of elas-
tic anisotropy on the resulting QD patterns. Zhu et al.22 re-
cently proposed a fast multiscale KMC model designed for
simulation of 3D self-assembled QD layers. Russo and
Smereka23 proposed another 3D KMC model for strained
epitaxial growth simulation using a ball and spring-type
model for incorporation of the strain effects. Vertical corre-
lations of stacked QDs in dependence on spacer-layer thick-
ness were also successfully examined using the KMC
method.24,25

On the other hand, as far as we know, nobody has re-
ported KMC simulations of self-organized multilayer growth
corresponding to a particular semiconductor system, more-
over with a good quantitative agreement with experiment. In
this paper we present KMC simulations modeling the
molecular-beam epitaxial growth in PbSe/PbEuTe�111� mul-
tilayers. We show that our KMC model can reproduce their
self-ordering properties described above. An enhanced dot
arrangement from period to period in the simulated multilay-

PHYSICAL REVIEW B 80, 045325 �2009�

1098-0121/2009/80�4�/045325�10� ©2009 The American Physical Society045325-1

http://dx.doi.org/10.1103/PhysRevB.80.045325


ers is clearly demonstrated together with the obtained depen-
dence of lateral-dot distance on spacer thickness which is in
a good quantitative agreement with experiment.

II. THEORY

This work is focused on the investigation of the self-
organized nucleation of QDs in PbSe/PbEuTe�111� multilay-
ers. We do not deal with the formation of a wetting layer
�WL�, i.e., with the 2D to 3D growth transition, nor with the
detailed shape of the growing dots. Our simulation includes
the movement of free-standing adatoms on the WL surface,
so that the simulation process in each period starts just at the
moment when the wetting-layer formation is finished �in the
sense that it has achieved its critical thickness� and the QDs
start to grow.

A. Strain field calculation

It is well known from thermodynamic reasons that the
QDs nucleate predominantly in minima of chemical potential
and that the surface diffusion of adatoms is governed by the
gradient of the chemical potential.26 In the commonly used
continuum approach, the chemical potential � of an adatom
can be written as27,28

��s� = �0 + w�s�V0 + ���s�V0, �1�

where s denotes a point along the surface, �0 is a reference
value of the chemical potential, w is the volume density of
elastic energy, � is the surface tension, � is the surface cur-
vature, and V0 is the atomic volume. In the continuum ap-
proach the third term is related �via the surface curvature� to
the number of free chemical bonds of a free-standing ada-
tom. Since the formed WL is assumed to be atomically flat,
we consider this term to be constant for all equilibrium sites
on the WL. From this assumption we get a relation for the
difference in � in two neighboring equilibrium sites �on an
atomically flat WL�: ��=�wV0.

The elastic energy density is given by the relation

w�s� =
1

2
Cijkl�ij�s��kl�s� , �2�

where Cijkl are the elastic constants and �ij is the strain ten-
sor. Due to the linearity of the elasticity theory for small
deformations, the strain tensor �in a given point s on the WL
surface� can be written as a sum of pseudomorphic deforma-
tion �ij

pseu of the WL, and the individual strain contributions
�ij

QD caused by all QDs buried in previous periods under the
WL

�ij = �ij
pseu + �

buried QDs
�ij

QD, i, j = 1,2,3. �3�

The elastic strain �ij
QD from a buried QD can be calculated

by a semianalytical method8,29,30 based on the solution of the
equilibrium equation of continuum. The method is applicable
to an arbitrary surface orientation and it also considers the
elastic anisotropy of crystalline materials. Nevertheless, it
uses an important assumption that the surface of the dot-
covering spacer must be flat. We assume it is well satisfied

for buried dots, however, this requirement excludes this
method for the calculation of a strain induced by uncovered
dots on the sample surface.

In a general case during the deposition, when some dots
are already grown on the topmost WL, their strain contribu-
tions should also be incorporated in the summation in Eq.
�3�. Nevertheless, at the initial phase of the nucleation of
QDs, the strain field is well described by Eq. �3� and that is
the essence of our work. Moreover, as we have just men-
tioned, the applied strain-calculation method cannot be used
for uncovered dots. For these reasons, the strain field from
growing dots is omitted in Eq. �3�.

As an example, the line profiles of relative elastic-energy
density calculated for three different PbEuTe spacer thick-
nesses dSP are demonstrated in Fig. 1. The profiles are taken

along the lateral �1̄1̄2� direction on the �111� WL surface.
The deformation is caused by a PbSe pyramidal dot with
�100� facets and a height of 15 nm covered by a given spacer.
The left inset in Fig. 1 shows a lateral distribution of w
corresponding to dSP=45 nm. Three separated energy
minima around the centrum appear due to the elastic aniso-
tropy of the PbEuTe material and the �111� surface orienta-
tion. They predetermine the nucleation positions on the WL.
Their depth and separation distance strongly depend on the
spacer thickness dSP. In the strain calculations we use the
following values of the elastic constants: �c11=12.37, c12
=1.93, c44=1.59��1011 dyn /cm2 for PbSe,31 and �c11
=10.53, c12=0.70, c44=1.32��1011 dyn /cm2 for PbTe.32

B. Model description

We apply an event-based KMC scheme33,34 to investigate
the nucleation process and the self-organized QD growth.
The basic processes included in an adapted solid-on-solid
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FIG. 1. Line profiles of relative elastic-energy density w calcu-
lated on the PbSe�111� WL surface for three different PbEuTe
spacer thicknesses dSP. The strain field is produced by a buried dot
of a height of 15 nm �see the right inset scheme�. The left inset
shows the surface distribution of w for dSP=45 nm. The dark color
corresponds to an energy minimum, the arrow denotes the profiles’
direction, and the white triangle denotes the buried-dot base.
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model13 are the deposition of adatoms onto the surface and
their subsequent surface diffusion. By an adatom we under-
stand one “PbSe molecule” that always moves on the simu-
lation grid as a whole. The adatom desorption is omitted
from the model since it is negligible under the usual growth
conditions. The surface diffusion of adatoms is modeled as a
sequence of nearest-neighbor hops on a square lattice. Since
the adatom migration is a thermally activated process, the
hopping rate k of an adatom onto a nearest-neighbor site is
given by the Arrhenius-type formula

ki→f = k0 exp�− Ei→f/kBT� , �4�

where k0=2kBT /h�1013 s−1 is a characteristic vibrational
frequency, T is the substrate temperature, kB is Boltzmann’s
constant, and h is Planck’s constant. Ei→f denotes the energy
barrier which an adatom must overcome at a hop from the
initial site i to the final site f . Motivated by Eq. �1� and the
comment below it, we express Ei→f as a sum of two terms: a
substrate term ES and a strain-field contribution induced by
buried dots

Ei→f = ES + K�wf − wi�acell
3 . �5�

ES corresponds to a position-independent hopping barrier on
unstrained surface. wi and wf are the elastic energy densities
at the sites i and f calculated from Eq. �2�, where �ij is
calculated according to Eq. �3� comprehensive of all dots
buried under the just growing layer. acell is the linear size of
a simulation cell. The coefficient K�0 is a free input param-
eter of the model. It enables the study of the strain-field
influence on the self-organization effect. Strictly speaking,
instead of wf the value of w in the point where the hopping
barrier has its maximum �between the sites i and f� should be
applied. Because we evaluate the strain field only in the equi-
librium sites, we replace the “middle value” by a linear in-
terpolation between the values wi and wf and the interpola-
tion coefficient is effectively incorporated in K.

Let us note the main simplifications of the described
KMC model that is not strictly atomistic. We have already
mentioned that neither the WL formation nor the shape of
growing dots is atomistically simulated. The dot shape is
taken ad hoc from the experiment10 and thus the dots are
modeled as trilateral pyramids with �100� side facets. When
an adatom joins an existing dot, the dot size is increased but
its shape and the coordinates of the center of the dot base
remain unchanged. No structural changes in the dots during
the overgrowth process are considered as well. The main
advantage of this approximation is that the simulations are
substantially faster, so a larger area and more multilayer pe-
riods can be simulated, which is more important for the self-
organization effect study. The second significant simplifica-
tion is the use of a square grid although the PbSe�111�
surface does not possess the square symmetry. To ensure a
corresponding scale, it is required the same number of equi-
librium sites in a unit area as it would be on the real
PbSe�111� surface. From this condition the acell is given as
acell= �	43 /2�aPbSe, where aPbSe is the PbSe lattice constant.

On the other hand, the existence of a critical nucleus,35

consisting of Nc adatoms, is included in the model. We con-
sider a nonzero probability of an adatom escape from a dot

smaller than the critical nucleus. All dots of size equal to or
larger than the critical nucleus are taken as absolutely stable,
i.e., the escape probability is set to zero for them. The escape
rate ke for a nucleus consisting of just two adatoms is calcu-
lated as

ke�2� = k0 exp�− �ES + EB�/kBT� , �6�

where EB is the binding energy between two adatoms at
neighboring sites. The typical value of this energy for semi-
conductor materials is about 0.2�0.3 eV �Refs. 20 and 36�
and we do not include any strain-field influence on it.
The rate ke�N� of an adatom escape from a nucleus of size N
�2	N	Nc� is calculated simply by linear interpolation be-
tween the values ke�2� and ke�Nc�=0. This approximation is
motivated by the knowledge that a nucleus becomes more
and more stable due to its growth.

Also the nuclei are represented by trilateral pyramids dur-
ing their growth. If two �or more� free adatoms meet at
neighboring sites, they join together and create a new dot
�nucleus� in such a way that its triangular base is marked out
on the simulation grid. Each simulation cell of the grid is
always in one of three possible states: unoccupied, occupied
by an adatom, or occupied by a dot. The edge length of the
triangular base corresponding to a dot containing N adatoms
is calculated from the expression: 	3 12	2Nacell

3 �the dot vol-
ume is considered to be Nacell

3 �. When an adatom splits off
from a nucleus, the nucleus base is reduced and the split-off
adatom is placed at a randomly selected site whose distance
from the base margin is equal to two cells. �Sites at the
distance of one cell directly touch the base and an adatom
placed there would immediately join the nucleus again.�

The described part of the model is very important since it
allows a total decay of any undercritical nucleus. Let us re-
mark that in all cited references to other KMC growth
simulations,13–25,33,34,36 the concept of critical nucleus is in-
cluded implicitly by using a bond-counting model, where the
hopping probability depends on the number of occupied
neighboring sites.

Beside the possible events in our KMC model �the depo-
sition, a free-standing adatom hop, and an adatom escape
from a nucleus�, the dot-coalescence effect is also taken into
account. If two or more dots intersect on the simulation grid
due to their growth, they are replaced by a new dot created
between them. The volume of the new dot is a sum of the
original dots’ volumes. Let us mention for completeness that
the growth conditions are constant for all periods and no
prepatterned substrate is used, as well as in experiment.

Finally, let us comment on the thermodynamic equilib-
rium in our simulations. The simulated system, developing
according to the introduced model, successively moves to-
ward a limit state where all deposited adatoms are comprised
in totally stable �i.e., supercritical� dots. This state is com-
pletely static and is achievable always if the total number of
all deposited adatoms is greater than the critical nucleus size
Nc. Since the simulations stop as soon as all adatoms are
deposited, some unstable nuclei and free adatoms can remain
on the surface as well. We assume that such final state of a
simulation corresponds well to the situation in experiment
after the QDs’ growth if no extra annealing is applied. In this
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sense we do not explicitly deal with the detailed balance
condition37 since we do not require achievement of the �real�
thermodynamic equilibrium specified by the Boltzmann dis-
tribution. The essential fact is that our description of the
adatom surface diffusion, given by Eqs. �4� and �5�, prefers
the occurrence �and thus the nucleation� of adatoms at sites
with lower energy �chemical potential�, which corresponds to
the reality.

III. RESULTS

All presented simulations were carried out on a simulation
grid of 2048�2048 cells �an area of 0.7 �m2� under typical
experimental conditions: substrate temperature T=370 °C,
deposition flux F of PbSe molecules of 0.12 ML/s, and total
PbSe coverage of 5 ML. The remaining model parameters
were determined from simulations of the first �unstrained�
layer as follows. The dot-height histogram from the first
layer is compared with experimental data to achieve the best
agreement. From tens of various combinations of the param-
eters’ values we found the following optimum values: ES
=0.93 eV, EB=0.2 eV, and the part of the total PbSe cov-
erage �5 ML� used just for the formation of dots of 1.2 ML.
The optimum value of the critical nucleus size was deter-
mined from the simulations of the growth in the whole
multilayer and it was estimated to Nc=100 adatoms �PbSe
molecules�. This value corresponds to a trilateral pyramid
with an edge of about 4.6 nm, which is in good agreement
with Mayer’s work,38 where the size was estimated from
energy calculations using the continuum elasticity as about
5.0 nm. The coefficient K remains a free parameter and its
influence on the results is analyzed below. Let us mention in
advance that its optimum value was found to be K=7.

In Fig. 2 the result of the simulation of the first layer is

displayed. The grown dots are completely uncorrelated since
there is no strain from buried dots, which would affect the
deposited atoms, and so all sites in the first layer are ener-
getically equivalent. No correlation is also proved at the fast
Fourier transform �FFT� power spectrum �Fig. 2�b��, where
no satellite peaks occur. The dot density n=442 �m−2 is
typical for the experimental conditions mentioned above.
Absence of a previous dot layer also caused the blank cross-
correlation function �Fig. 2�c��.

Using the KMC model described in Sec. II we can mimic
all three kinds of the PbSe/PbEuTe multilayers’ arrangement.
It is shown in Figs. 3–5, where the topmost �20th� dot layers
are displayed. They belong to three multilayers simulated
with different spacer thickness of 26, 45, and 60 nm, respec-
tively.

For dSP=26 nm we obtain a vertically aligned multilayer
as is clearly visible from the cross-correlation function �Fig.
3�c�� showing a pronounced maximum at the coordinate-
system midpoint. That implies a vertical reproduction of the
surface morphology in subsequent layers. The dot density �in
the 20th period� strongly decreases to 176 �m−2 and the dot-
height histogram �Fig. 3�d�� becomes significantly narrower.
Due to the self-organization effect the dots form a disordered
2D hexagonal array �Fig. 3�a�� which is more obvious in Fig.
3�b� depicting the FFT power spectrum where one can rec-
ognize six satellite peaks.

The ABCABC stacking achieved in the simulation with
dSP=45 nm is pictured in Fig. 4. The cross-correlation func-
tion has three main maxima close to the coordinate center
and a minimum at the center, which corresponds to the
ABCABC stacking. The dot-height histogram again becomes
narrower with respect to the first-layer one. Dot density de-
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FIG. 2. Analysis of the first multilayer period: �a� dot positions
and sizes �a top view�, �b� 2D FFT power spectrum of the surface
morphology, �c� the cross-correlation function �it is blank here�, and
�d� the dot-height histogram.
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view�, �b� 2D FFT power spectrum of the surface morphology, �c�
the cross-correlation function of the 19th and 20th dot-layer surface
morphology, and �d� the dot-height histogram. The two dashed lines
in �a� mark out the location of the vertical cross section through this
multilayer displayed in Fig. 6�a�.
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creases to 295 �m−2 and the dots laterally self-organize
themselves into a more shapely hexagonal structure than in
the previous �vertical� case. It is demonstrated by sharper
satellite peaks in the FFT power spectrum �Fig. 4�b��.

A simulation carried out with dSP=60 nm produced an
uncorrelated multilayer displayed in Fig. 5. The dots grown
in the last layer are completely disordered like in the first one
�Fig. 2�. The dot density of 440 �m−2 remains nearly iden-
tical with the first layer and also the FFT power spectrum
does not change significantly. It does not contain any peaks
which would reveal a lateral correlation in the dot positions.
In Fig. 5�c� of cross-correlation function one can recognize
three indistinct maxima indicating a negligible residual cor-
relation in the vertical direction.

The dashed lines in Figs. 3�a�, 4�a�, and 5�a� mark out
locations of the vertical cross sections through the grown
multilayers. The cross sections are depicted in Fig. 6. For the
multilayer simulated with dSP=26 nm, the cross section is

taken along a direction slightly deflected from the �1̄10� di-
rection and its width is 60 nm. For the multilayers with
dSP=45 nm and 60 nm, the cross sections are identically

taken along the �1̄1̄2� direction and their width is 35 nm. The
color of the QD-representing triangles indicates their relative
position in the cross-sectional band orthogonally to the cross
section. Let us rather note that the impression of a higher dot
density of the multilayer in Fig. 6�a� is deceptive and caused
only due to the different orientation and width of the cross
section. The cross sections graphically show the progressive
evolution of the QD-superlattice self-organization. The su-
perlattice with the thick spacer �Fig. 6�c�� remains apparently
disordered in all periods. Figure 6�b� vice versa proves the
ABCABC stacking, well visible mainly in the last five peri-
ods, of the superlattice with the intermediate spacer. The rep-

lication angle of the dot positions of 39° to the surface nor-
mal is in perfect agreement with the identical experimental
value.11 Well pronounced vertical ordering of the superlattice
simulated with the thin spacer is clearly visible in Fig. 6�a�.

The progressive self-organization evolution of those ana-
lyzed multilayers is quantitatively characterized in Fig. 7
which shows the dependence of dot density n, lateral-dot
distance L, and lateral correlation length Lcorr versus the pe-
riod number. The dot density in the ordered multilayers
�dSP=26 and 45 nm� exhibits a strong decrease immediately
in the first superimposed periods �see Fig. 7�a��. Then its
value starts to be more or less constant from the 10th period
approximately. The third curve, belonging to the uncorre-
lated multilayer, exhibits only statistical fluctuations around
a fixed value, as expected by virtue of no ordering in that
multilayer. L and Lcorr were determined from the separation
of FFT satellite peaks and their broadness, respectively, for
the ordered multilayers. While L only slightly increases with
increasing period number �see Fig. 7�b��, Lcorr conversely
shows a strong enhancement �see Fig. 7�c�� corresponding to
a larger and larger evenly ordered area of QDs. The Lcorr

dependence also shows that the lateral-dot arrangement is
superior and improves more steeply in the ABCABC stacked
multilayer than in the vertically aligned one, which accords
with experiment.

Figure 8 compares the experimentally measured depen-
dence of L on dSP, where L is the mean lateral distance
between dots in the topmost layer, with the one obtained
from our KMC simulations. The two vertical dashed lines in
the graph denote two critical spacer thicknesses that corre-
spond to the observed transitions between the different kinds
of superlattice arrangement. In experiment, the transition
from a vertical alignment �region I, thin spacers� to an
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FIG. 5. Analysis of the 20th period of a multilayer simulated
with a thick spacer of dSP=60 nm. ��a�, �b�, �c�, and �d�� Descrip-
tion is the same as in Fig. 3. The two dashed lines in �a� mark out
the location of the vertical cross section through this multilayer
displayed in Fig. 6�c�.
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ABCABC stacking �region II, intermediate spacers� arises at
dSP of around 37 nm and the second one from the ABCABC
stacking to the uncorrelated mode �region III, thick spacers�
at dSP of around 56 nm. All KMC simulations were carried
out with the optimum set of input parameters and a stack of
20 periods was always simulated. The growth conditions of
the experimental samples were very similar: in region I: T
=360 °C, F=0.12 ML /s, and 50 superlattice periods;12 in
regions II and III: T=360 °C, F=0.08 ML /s, and 30
periods.11 For the disordered multilayers �region III�, L is
calculated from n via L=1 /	n · sin 60° which would corre-
spond to a dot separation in a perfectly hexagonally ordered
layer just with the dot density n.

From Fig. 8 we can see that the position of the second
transition and the abruptness of both transitions are success-
fully reproduced by the simulations. Further, the increasing
linear dependence of L on dSP obtained for the intermediate
spacers agrees well with experimental measurements �see
Fig. 8, region II�. A small difference in L is visible in the
uncorrelated region III. That is due to the slightly different
growth conditions in the experiment and the simulations,
leading to little diverse dot densities and hence to diverse L
in this region. A systematic discrepancy is vice versa obvious
at the thin spacers where all experimental values of L are by
about 10-nm larger, although the character of the dependence
is very similar �see Fig. 8, region I�. Moreover, the first struc-
tural transition occurs at a thinner spacer of about 33 nm,
instead of 37 nm. Both these discrepancies are discussed in
Sec. IV.

At the end of this section, let us turn the attention to the
coefficient K. This prefactor in Eq. �5� has, due to the expo-

nential character of Eq. �4�, a substantial influence on the
adatoms’ kinetics and thus on the self-organization process.
If we set K=1, then all multilayers with a spacer thicker than
24 nm end up completely disordered. From this reason we
have to enhance the K value to obtain results accordant with
the experiment. An increase in K does not alter a pattern of w
but only magnifies its “gradient” with respect to the substrate
energy barrier ES in Eq. �5�. In other words, it does not
directly affect the form of a resulting QD arrangement, but
mainly its quality. Table I presents such results. It contains
some values of n, L, and Lcorr describing a lateral ordering of
QDs obtained from simulations where only K and dSP varied.
�20-period multilayers were simulated again and the data are
from the topmost period.�

For the thin-spacer multilayers �dSP=26 nm� one can see
that the values of n, L, and Lcorr do not vary significantly,
i.e., statistically identical superlattices are practically formed
for all K=5,7 ,10. For dSP=45 nm a divergence is already
appreciable. While the values of L are more or less equiva-
lent again, n and Lcorr change with K distinctly �see the
middle rows of Table I�. K=5 causes a weaker ordering il-
lustrated by a higher n and reduced Lcorr. The higher dot
density but equal L �determined from FFT� imply that the
QDs oftentimes grow �at K=5� even out of the preferred
energy minima separated by L. On the contrary, K=10 yields
a larger Lcorr, i.e., a more regular hexagonal lateral ordering.
However, K=10 also causes a partial arrangement of the
multilayer simulated with the thick spacer of 60 nm �see the
last row in Table I� and that is in contradiction with experi-
ment. All around, the results show that the position of the
second critical spacer in Fig. 8 can be controlled �in the
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FIG. 6. Vertical cross sections through multilayers consisting of 20 periods simulated with different spacer thicknesses dSP: �a� 26 nm;
�b� 45 nm; and �c� 60 nm. The lateral orientation and location of the cross-section bands are denoted in Figs. 3�a�, 4�a�, and 5�a�, respectively,
by two dashed lines. The gray level of the QD-representing triangles relatively indicates their complementary lateral coordinate in the related
cross-section band.

MIXA et al. PHYSICAL REVIEW B 80, 045325 �2009�

045325-6



simulations of course� just by the coefficient K. From the
listed arguments, we found the most suitable value of K to be
7 �within the framework of the presented model and the
simulated semiconductor system�. To K we turn back also in
the discussion �Sec. IV B�.

IV. DISCUSSION

A. Comparison with experiment

The presented KMC simulations confirmed that the self-
organization effect in the PbSe/PbEuTe�111� multilayers is
induced mainly by the strain field caused by buried dots
since no other mechanism is taken into account in our KMC
model. It seems the main shortcoming of the used model is
the omission of the deformation produced by growing dots at
the free surface. Nevertheless, positions of the QD nuclei at
the initial phase of deposition are governed just by the strain
field from buried QDs �if no defects, steps, etc. are consid-
ered�. So the related distribution of elastic-energy minima on
the WL surface also exclusively predetermines the final
lateral-dot distances. This statement is well corroborated by
the comparison of the simulation and experimental results in
Fig. 8. At the later deposition phases the strain field from
growing dots may surely play an important role, however,
the comparison documents a fundamental role of the buried
QDs. The influence of growing dots will naturally be more
relevant if the growing QDs are large, which is the case of

the thin-spacers region. This could explain the systematic
shift of the simulation results in region I in Fig. 8. But there
are some other effects such as overgrowth changes or uneven
surface of the spacer layer �more probable at thin spacers�
that could contribute to the observed difference between the
simulations and experiment as well.

For completeness, let us comment on the differences be-
tween simulation and experimental growth conditions of the
multilayers compared in Fig. 8, particularly the unequal
number of superlattice periods. Figure 8 compares the mean
lateral-dot distance L at the topmost period and Fig. 7�b�

TABLE I. Dependence of dot-arrangement parameters �dot den-
sity n, lateral-dot distance L, and lateral correlation length Lcorr� at
the topmost layer on the coefficient K, for three different spacer
thicknesses dSP.

K n
��m−2�

L
�nm�

Lcorr

�nm�

dSP=26 nm

5 159 89 216

7 176 87 224

10 178 88 209

dSP=45 nm

5 384 63 192

7 295 65 243

10 274 66 287

dSP=60 nm

5 430 disordered

7 440 disordered

10 335 81 221
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FIG. 7. Evolution of: �a� dot density n; �b� lateral-dot distance L;
and �c� lateral correlation length Lcorr as a function of multilayer-
period number. Square symbols belong to the multilayer simulated
with dSP=26 nm; triangles to dSP=45 nm, and circles to dSP

=60 nm. L and Lcorr were determined from the separation of FFT
satellite peaks and their broadness, respectively. The relative error
of Lcorr can be only roughly estimated, due to the simulation-area
limited size, to be about 20%-30% �the lower error holds for higher
periods�.
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shows that L does not significantly vary at higher period
numbers, so the unequal number of periods is irrelevant here.
�Of course, this need not be true for the lateral correlation
length Lcorr, etc.� Despite the slightly different growth con-
ditions, the simulations revealed a nearly identical L vs dSP
dependence for the intermediate spacers and the same trend
of this dependence at thin spacers. It confirms again that L in
ordered multilayers is strongly predetermined through the
buried-dots strain field. �The slight difference in the growth
conditions is crucial here of course�. The small difference in
L determined from n at the uncorrelated multilayers has al-
ready been explained just by the different growth conditions.

The discrepancy in the position of the first critical spacer
�see Fig. 8� is probably given by the simple dot-coalescence
model. We believe that the transition between the vertical
alignment and the ABCABC stacking proceeds in the follow-
ing way. In a multilayer with a spacer thickness comparable
to the first critical spacer, three distinctly separated energy
minima �like in the left inset in Fig. 1� are induced by each
buried dot �with a proper height� on the next WL surface.
Subsequently, three new QDs nucleate separately in these
minima. Depending on the minima spacing and the deposi-
tion coverage the three dots coalesce together or not. If they
coalesce, they form a large QD above the buried dot, i.e., the
vertical alignment is produced. Vice versa, if they do not
coalesce, the vertical alignment does not occur and the strain
field caused by them at the subsequent layer will favor sepa-
rated islands again. Hence the ABCABC stacking will occur.
The dot-coalescence process and its conditions in reality are
of course more complex than the ones used in our model.
Furthermore, the longer L measured in experiment at thin
spacers implies larger QDs on the surface, ergo more suitable
conditions for their coalescence again. Therefore we observe
the first transition at a little thinner spacer in the simulations.

B. The K coefficient

The most disputable matter of the simulations is the coef-
ficient K. Its optimum value �K=7� was determined so that
the best agreement with experiment was achieved. The K
coefficient can be understood as a correction factor compris-
ing all shortcomings of the model. For example, if the criti-
cal nucleus concept is removed from the model �i.e., all pairs
of encountered adatoms create stable QDs�, K must be in-
creased to about 40 to achieve any accordant results. So the
introduction of a critical nucleus existence enabled to reduce
K up to 7. With increasing Nc �size of the critical nucleus in
the model� the required value of K progressively decreases.
However, there is a saturation effect since the simulations
performed with Nc=1000 no longer statistically differ from
those performed with Nc=100 but these differ from those
simulated with Nc=50. These results also document the in-
dispensability of the critical nucleus existence for a correct
simulation of the self-organization process in the Stranski-
Krastanow growth mode.

Surprisingly, K �within the range from 5 to 10� does not
considerably influence the arrangement of multilayers having
thin spacers �see the data in Table I for dSP=26 nm�. It is
due to the aforementioned fact that K can just alter the am-

plitude of a strain-field modulation but not the shape of its
surface distribution. It only intensifies the nucleation of QDs
in local strain-energy minima. The strain-energy minima
caused by QDs covered by a thin spacer are significantly
deeper than the ones in an intermediate-spacer case �see Fig.
1�. Therefore, at thin spacers, K need not be too high to
ensure a good vertical alignment. And since a higher K does
not adjust the shape of w on the WL surface, the lateral
ordering is not affected much by K varying within the men-
tioned range. It holds generally that K can improve particu-
larly the vertical correlations and less the lateral ones. We
infer this is the reason why the lateral correlation length Lcorr

still comes out shorter than in experiment in both ordered
regions I and II.

There is also one other issue related with K that should be
discussed. It is concerned with limitations of the continuum
theory if one deals with the surface diffusion of individual
adatoms. The commonly used Eq. �1� contains the atomic
volume V0 which is not a clearly and exactly specified quan-
tity. The term w�s�V0 in Eq. �1� should express a work nec-
essary to produce a coherent match between a surface and an
element of mass V0 �that is going to be strained for this
purpose�.27 However, a coherent match or an elastic defor-
mation is well defined for an element of continuum but not
for a single adatom. Therefore, we are on a continuum ap-
proach applicability limit and the uncertainty of the V0 speci-
fication is effectively incorporated into the K coefficient in
Eq. �5�. On the other hand, the well-reproduced L vs dSP
dependence inclusive of the two abrupt changes �Fig. 8�,
which is closely related to a surface distribution of w, indi-
cates that the adatom hopping barrier modeled by Eq. �5�
may have a good foundation. An alternative option how to
incorporate the strain effects is using of a ball- and spring-
type model as Russo and Smereka23 used.

We suppose that K includes all simplifications and ne-
glects made in the model. Namely: missing strain field from
growing dots, uncertainty of the V0 determination, strain in-
fluence on some other material parameters e.g., ES, EB, and
Nc; square lattice use, modeling of QD nuclei as 3D pyra-
mids, and linear dependence of the adatom escape rate ke�N�
on the nucleus size N. The important point is that the same
value of K yields a reasonably good correspondence with the
experimental data for all simulated spacer thicknesses.
Therefore it seems that the parameter K could plausibly sub-
stitute all the effects listed above.

C. Comparison with other models

The most significant difference of the presented KMC
model from others is the noncounting of adatom’s neighbors
�bonds�. The other KMC models used for QDs epitaxial
growth studies13–25,33,34,36 are miscellaneous variations in a
bond-counting model. In our model, the conventional bond-
counting approach and detailed atomistic monitoring of a
structure of the growing �2D or 3D� islands are substituted
by the critical nucleus concept and a fixed �but arbitrary ad-
justable� shape of the simulated QDs. It prohibits us to study
a shape evolution of the nuclei or stable dots, an adatom
migration around island boundaries, etc. However, the model
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is designed for a simulation of self-organized QD multilayer
growth. The grown QDs are 3D but their shape is not intri-
cately treated in detail.22,23 This reveals the essential advan-
tage of the introduced model: to simulate realistic 3D super-
lattices consisting of tens of periods with hundreds of 3D
QDs in each period. The possibility, characteristic for the
KMC method, to investigate different growth conditions is
retained of course.

Despite a relative simplicity, the model yields results in
good quantitative agreement with experiment concerning the
observed vertical and lateral correlations at a concrete semi-
conductor system PbSe/PbEuTe�111�. The results also per-
fectly agree with the general theoretical predictions of
Shchukin et al.6 and KMC simulations done by Meixner and
Schöll25 relating to a vertical correlation-anticorrelation tran-
sition in dependence on spacer layer thickness. Kunert and
Schöll39 stress out the importance of finite volume of QDs
and inclusion of elastic interactions in an array of buried
QDs to reproduce an abrupt correlation-anticorrelation tran-
sition in QD stacks. Both these features are just incorporated
in our model and such an abrupt transition is really observed.
The QDs self-organized themselves from a completely dis-
ordered first layer, in accordance with the experiment, and
the uniformity of island size and spacing progressively en-
hanced from period to period as Tersoff et al.5 formerly in-
troduced.

V. CONCLUSION

In this paper, we have introduced a KMC model designed
for efficient realistic simulations of heteroepitaxial growth of

QD multilayers. The model differs from the others by the
noncounting of adatom’s bonds and a preset 3D shape of the
growing dots. It explicitly includes a critical nucleus exis-
tence whose presence has proved to be fundamental. The
simulation results focused on the lateral- and vertical-dot
correlations in the PbSe/PbEuTe�111� multilayers clearly
verified their source in the strain field from buried dots. All
three types of vertical-dot correlations known for the studied
system were successfully reproduced as well as a reasonably
good quantitative comparison with the experimentally mea-
sured dependence of lateral-dot distance on spacer layer
thickness. The presented model has been adapted to the
PbSe/PbEuTe�111� system, however, it is totally general and
it can be used for an arbitrary semiconductor �crystalline�
system with any surface orientation or can be easily modi-
fied, e.g., for prepatterned substrates.
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