
Harmonic oscillator eigenfunction expansions, quantum dots, and effective interactions

Simen Kvaal*
Centre of Mathematics for Applications, University of Oslo, N-0316 Oslo, Norway

�Received 15 August 2008; revised manuscript received 15 May 2009; published 27 July 2009�

We give a thorough analysis of the convergence properties of the configuration-interaction method as applied
to parabolic quantum dots among other systems, including a priori error estimates. The method converges
slowly in general, and in order to overcome this, we propose to use an effective two-body interaction well
known from nuclear physics. Through numerical experiments we demonstrate a significant increase in accu-
racy of the configuration-interaction method.
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I. INTRODUCTION

The last two decades, an ever-increasing amount of re-
search has been dedicated to understanding the electronic
structure of so-called quantum dots:1 semiconductor struc-
tures confining from a few to several thousands electrons in
spatial regions on the nanometer scale. In such calculations,
one typically seeks a few of the lowest eigenenergies Ek of
the system Hamiltonian H and their corresponding eigenvec-
tors �k, i.e.,

H�k = Ek�k, k = 1, . . . ,kmax. �1.1�

One of the most popular methods is the �full� configuration-
interaction �CI� method, where the many-body wave func-
tion is expanded in a basis of eigenfunctions of the harmonic
oscillator �HO� and then necessarily truncated to give an ap-
proximation. In fact, the so-called curse of dimensionality
implies that the number of degrees of freedom available per
particle is severely limited. It is clear that an understanding
of the properties of such basis expansions is very important
as it is necessary for a priori error estimates of the calcula-
tions. Unfortunately, this is a neglected topic in the physics
literature.

In this article, we give a thorough analysis of the �full� CI
method using HO expansions applied to parabolic quantum
dots and give practical convergence estimates. It generalizes
and refines the findings of a recent study of one-dimensional
systems2 and is applicable to, for example, nuclear systems3

and quantum chemical calculations4 as well. We demonstrate
the estimates with calculations in the d=2 dimensional case
for N�5 electrons, paralleling computations in the
literature.5–10

The main results are however somewhat discouraging.
The expansion coefficients of typical eigenfunctions are
shown to decay very slowly, limiting the accuracy of any
practical method using HO basis functions. We therefore pro-
pose to use an effective two-body interaction to overcome, at
least partially, the slow convergence rate. This is routinely
used in nuclear physics3,11 where the interparticle forces are
of a completely different, and basically unknown, nature. For
electronic systems, however, the interaction is well known
and simpler to analyze, but effective interactions of the
present kind have not been applied, at least to the author’s
knowledge. The modified method is seen to have conver-

gence rates of at least 1 order of magnitude higher than the
original CI method. An important point here is that the com-
plexity of the CI calculations is not altered as no extra non-
zero matrix elements are introduced. All one needs is a rela-
tively simple one-time calculation to produce the effective
interaction matrix elements.

The HO eigenfunctions are popular for several reasons.
Many quantum systems, such as the quantum dot model con-
sidered here, are perturbed harmonic oscillators per se so that
the true eigenstates should be perturbations of the HO states.
Moreover, the HO has many beautiful properties, such as
complete separability of the Hamiltonian, invariance under
orthogonal coordinate changes, and thus easily computed
eigenfunctions so that computing matrix elements of relevant
operators becomes relatively simple. The HO eigenfunctions
are defined on the whole of Rd in which the particles live so
that truncation of the domain is unnecessary. Indeed, this is
one of the main problems with methods such as finite differ-
ence or finite element methods.12 On the other hand, the HO
eigenfunctions are the only basis functions with all these
properties.

The article is organized as follows. In Sec. II we discuss
the harmonic oscillator and the parabolic quantum dot
model, including exact solutions for the N=2 case. In Sec.
III, we give results for the approximation properties of the
Hermite functions in n dimensions and thus also of many-
body HO eigenfunctions. By approximation properties, we
mean estimates on the error ��− P��, where � is any wave
function and P projects onto a finite subspace of HO eigen-
functions, i.e., the model space. Here, P� is in fact the best
approximation in the norm. The estimates will depend on
analytic properties of �, i.e., whether it is differentiable, and
whether it falls of sufficiently fast at infinity. To our knowl-
edge, these results are not previously published.

In Sec. IV, we discuss the full configuration-interaction
method, using the results obtained in Sec. III to obtain con-
vergence estimates of the method as function of the model
space size. We also briefly discuss the effective interaction
utilized in the numerical calculations, which are presented in
Sec. V. We conclude with a discussion of the results, its
consequences, and an outlook on further directions of re-
search in Sec. VI. We have also included an appendix with
proofs of the formal propositions in Sec. III.
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II. HARMONIC OSCILLATOR AND PARABOLIC
QUANTUM DOTS

A. Harmonic Oscillator

A spinless particle of mass m in an isotropic harmonic
potential has Hamiltonian

HHO = −
�2

2m
�2 +

1

2
m�2�r��2, �2.1�

where r��Rd is the particle’s coordinates. By choosing
proper energy and length units, i.e., �� and �� /m�, respec-
tively, the Hamiltonian becomes

HHO = −
1

2
�2 +

1

2
�r��2. �2.2�

HHO can be written as a sum over d one-dimensional har-
monic oscillators, viz.,

HHO = �
k=1

d �−
1

2

�2

�rk
2 +

1

2
rk

2� , �2.3�

so that a complete specification of the HO eigenfunctions is
given by

��1,�2,. . .,�d
�r�� = ��1

�r1���2
�r2� ¯ ��d

�rd� , �2.4�

where ��i
�x�, �i=0,1 , . . . are one-dimensional HO eigen-

functions, also called Hermite functions. These are defined
by

�n�x� = �2nn ! 	1/2�−1/2Hn�x�e−x2/2, n = 0,1, . . . ,

�2.5�

where the Hermite polynomials Hn�x� are given by

Hn�x� = �− 1�nex2 �n

�xne−x2
. �2.6�

The Hermite polynomials also obey the recurrence formula

Hn+1�x� = 2xHn�x� − 2nHn−1�x� , �2.7�

with H0�x�=1 and H1�x�=2x. The Hermite polynomial Hn�x�
has n zeroes, and the Gaussian factor in �n�x� will eventually
subvert the polynomial for large �x�. Thus, qualitatively, the
Hermite functions can be described as localized oscillations
with n nodes and a Gaussian “tail” as x approaches 
�. One
can easily compute the quantum-mechanical variance

��x�2
ª 	

−�

�

x2�n�x�2dx = n +
1

2
, �2.8�

showing that, loosely speaking, the width of the oscillatory
region increases as �n+1 /2�1/2.

The functions ��1,. . .,�d
defined in Eq. �2.4� are called

d-dimensional Hermite functions. In the sequel, we will de-
fine �= ��1 , . . . ,�d��Id for a tuple of non-negative integers,
also called a multi-index; see the Appendix. Using multi-
indices, we may write

���r�� = �2���� ! 	d/2�−1/2H�1
�r1� ¯ H�d

�rd�e−�r��2/2.

�2.9�

The eigenvalue of �n�x� is n+1 /2 so that the eigenvalue
of ���r�� is


� =
d

2
+ ��� , �2.10�

i.e., a zero-point energy d /2 plus a non-negative integer. We
denote by ��� the shell number of �� and the eigenspace
Sr�Rd� corresponding to the eigenvalue d /2+r a shell. We
define the shell-truncated Hilbert space PR�Rd��L2�Rd� as

PR�Rd� ª span
���r������ � R� = �
r=0

R

Sr�Rd� , �2.11�

i.e., the subspace spanned by all Hermite functions with shell
number less than or equal to R, or, equivalently, the direct
sum of the shells up to and including R. The N-body gener-
alization of this space, to be discussed in Sec. III B, is a very
common model space used in CI calculations.

Since the Hermite functions constitute an orthonormal ba-
sis for L2�Rd�, PR�Rd�→L2�Rd�, in the sense that for every
��L2�Rd�, limR→���− P��=0, where P is the orthogonal
projector on PR�Rd�. Strictly speaking, we should use a sym-
bol such as PR or even PR�Rd� for the projector. However, R
and d will always be clear from the context, so we are de-
liberately sloppy to obtain a concise formulation. For the
same reason, we will sometimes simply write P or PR for the
space PR�Rd�.

An important fact is that since HHO is invariant under
orthogonal spatial transformations �i.e., such transformation
conserve energy� so is each individual shell space. Hence,
each shell Sr�Rd�, and also PR�Rd�, is independent of the
spatial coordinates chosen.

For the case d=1 each shell r is spanned by a single
eigenfunction, namely, �r�x�. For d=2, each shell r has de-
generacy r+1, with eigenfunctions

��s,r−s��r�� = �s�r1��r−s�r2�, 0 � s � r . �2.12�

The usual HO eigenfunctions used to construct many-
body wave functions are not the Hermite functions ��1,¯,�d

,
however, but rather those obtained by utilizing the spherical
symmetry of the HO. This gives a many-body basis diagonal
in angular momentum. For d=2 we obtain the so-called
Fock-Darwin orbitals given by

�n,m
FD �r,�� = � 2n!

�n + �m��!
1/2 eim�

�2	
Ln

�m��r2�e−r2/2. �2.13�

Here, n�0 is the nodal quantum number, counting the nodes
of the radial part, and m is the azimuthal quantum number.
The eigenvalues are


n,m = 2n + �m� + 1. �2.14�

Thus, R=2n+ �m� is the shell number. By construction, the
Fock-Darwin orbitals are eigenfunctions of the angular-
momentum operator Lz=−i� /�� with eigenvalue m. Of
course, we may write �n,m

FD as a linear combination of the
Hermite functions ��s,R−s�, where 0�s�R=2n+ �m�, and
vice versa. The actual choice of form of eigenfunctions is
immaterial as long as we may identify those belonging to a
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given shell. The space PR=4�R2� is illustrated in Fig. 1 using
both Hermite functions and Fock-Darwin orbitals.

B. Parabolic quantum dots

We consider N electrons confined in a harmonic oscillator
in d dimensions. This is a very common model for a quan-
tum dot. We comment that modeling the quantum dot geom-
etry by a perturbed harmonic oscillator is justified by self-
consistent calculations13–15 and is a widely adopted
assumption.5,8,9,16–18

The Hamiltonian of the quantum dot is given by

H ª T + U , �2.15�

where T is the many-body HO Hamiltonian, given by

T = �
k=1

N

HHO�r�k� �2.16�

and U is the interelectron Coulomb interactions. In dimen-
sionless units the interaction is given by,

U ª �
i�j

N

C�i, j� = �
i�j

N
�

�r�i − r� j�
. �2.17�

The N electrons have coordinates r�k, and the parameter �
measures the strength of the interaction over the confinement
of the HO, viz.,

� ª

1

��
� e2

4	
0

� , �2.18�

where we recall that �� /m� is the length unit. Typical values
for GaAs semiconductors are close to �=2; see, for example,
Ref. 18. Increasing the trap size leads to a larger �, and the
quantum dot then approaches the classical regime.1

C. Exact solution for two electrons

Before we discuss the approximation properties of the
Hermite functions, it is instructive to consider the very sim-
plest example of a two-electron parabolic quantum dot and
the properties of the eigenfunctions since this case admits
analytical solutions for special values of � and is otherwise

well understood.19–21 Here, we consider d=2 dimensions
only, but the d=3 case is similar. We note that for N=2 it is
enough to study the spatial wave function since it must be
either symmetric �for the singlet S=0 spin state� or antisym-
metric �for the triplet S=1 spin states�. Hamiltonian �2.15�
becomes

H = −
1

2
��1

2 + �2
2� +

1

2
�r1

2 + r2
2� +

�

r12
, �2.19�

where r12= �r�1−r�2� and rj = �r� j�. Introduce a set of scaled
center-of-mass coordinates given by R� = �r�1+r�2� /�2 and r�
= �r�1−r�2� /�2. This coordinate change is orthogonal and sym-
metric in R4. This leads to the separable Hamiltonian

H = −
1

2
��r

2 + �R
2� +

1

2
��r��2 + �R� �2� +

�

�2�r��

= HHO�R� � + Hrel�r�� .

A complete set of eigenfunctions of H can now be written on
product form, viz.,

��R� ,r�� = �n�,m�
FD �R� ���r�� . �2.20�

The relative coordinate wave function ��r�� is an eigenfunc-
tion of the relative coordinate Hamiltonian given by

Hrel = −
1

2
�r

2 +
1

2
r2 +

�

�2r
, �2.21�

where r= �r��. This Hamiltonian can be further separated us-
ing polar coordinates, yielding eigenfunctions on the form

�m,n�r,�� =
eim�

�2	
un,m�r� , �2.22�

where �m��0 is an integer and un,m is an eigenfunction of the
radial Hamiltonian given by

Hr = −
1

2r

�

�r
r

�

�r
+

�m�2

2r2 +
1

2
r2 +

�

�2r
. �2.23�

By convention, n counts the nodes away from r=0 of un,m�r�.
Moreover, odd �even� m gives antisymmetric �symmetric�
wave functions ��r�1 ,r�2�. For any given �m�, it is quite easy

n = 0

m = 0

n = 0

m = −1

n = 0

m = 1

n = 0

m = −2

n = 1

m = 0

n = 0

m = 2

n = 0

m = −3

n = 1

m = −1

n = 1

m = 1

n = 0

m = 3

n = 0

m = −4

n = 1

m = −2

n = 2

m = 0

n = 1

m = 2

n = 0

m = 4

α = (0, 0)

α = (0, 1) α = (1, 0)

α = (0, 2) α = (1, 1) α = (2, 0)

α = (0, 3) α = (1, 2) α = (2, 1) α = (3, 0)

α = (0, 4) α = (1, 3) α = (2, 2) α = (3, 1) α = (4, 0)

}
shell S3

Unitarily equivalent

FIG. 1. Illustration of PR=4�R2�: �left� Fock-Darwin orbitals. �right� Hermite functions. Basis functions with equal HO energy are shown
at same line.

HARMONIC OSCILLATOR EIGENFUNCTION EXPANSIONS,… PHYSICAL REVIEW B 80, 045321 �2009�

045321-3



to deduce that the special value �=�2�m�+1 yields the eigen-
function

u0,m = Dr�m��a + r�e−r2/2, �2.24�

where D and a are constants. The corresponding eigenvalue
of Hr is Er= �m�+2, and E=2n�+ �m��+1+Er. Thus, the
ground state �having m=m�=0 and n=n�=0� for �=1 is
given by

�0�R� ,r�� = D�r + a�e−�r2+R2�/2 =
D
�2

�r12 + �2a�e−�r1
2+r2

2�/2,

with D being a �new� normalization constant.
Observe that this function has a cusp at r=0, i.e., at the

origin x=y=0 �where we have introduced Cartesian coordi-
nates r�= �x ,y� for the relative coordinate�. Indeed, the partial
derivatives �x�0,0 and �y�0,0 are not continuous there, and �0
has no partial derivatives �in the distributional sense, see the
Appendix� of second order. The cusp stems from the famous
“cusp condition,” which in simple terms states that, for a
nonvanishing wave function at r12=0, the Coulomb diver-
gence must be compensated by a similar divergence in the
Laplacian.22,23 This is only possible if the wave function has
a cusp.

On the other hand, the nonsmooth function �0�R� ,r�� is to
be expanded in the HO eigenfunctions, e.g., Fock-Darwin
orbitals. �Recall that the particular representation for the HO
eigenfunctions is immaterial and also whether we use labo-
ratory coordinates r�1,2 or center-of-mass coordinates R� and r�
since the coordinate change is orthogonal.� For m=0, we
have

�n,0
FD�r� =� 2

	
Ln�r2�e−r2/2, �2.25�

using the fact that these are independent of �. Thus,

�0�r�� = �0,0
FD�R�u0,0�r� = �0,0

FD�R��
n=0

�

cn�n,0
FD�r� , �2.26�

The functions �n,0
FD�r� are very smooth, as is seen by noting

that Ln�r2�=Ln�x2+y2� is a polynomial in x and y, while
u0,0�r�=u0,0��x2+y2�, so Eq. �2.26� is basically approximat-
ing a square root with a polynomial.

Consider then a truncated expansion �0,R�PR�R2�, such
as the one obtained with the CI or coupled cluster method.24

In general, this is different from PR�0, which is the best
approximation of the wave function in PR�R2�. In any case,
this expansion, consisting of the R+1 terms such as those of
Eq. �2.26� is a very smooth function. Therefore, the cusp at
r=0 cannot be well approximated.

In Sec. III C, we will show that the smoothness properties
of the wave function � is equivalent to a certain decay rate
of the coefficients cn in Eq. �2.26� as n→�. In this case, we
will show that

�
n=0

�

nk�cn�2� + � �2.27�

so that

�cn� = o�n−�k+1+
�/2� . �2.28�

Here, k is the number of times � may be differentiated
weakly, i.e., ��Hk�R2�, and 
� �0,1� is a constant. For the
function �0 we have k=1. This kind of estimate directly tells
us that an approximation using only a few HO eigenfunc-
tions necessarily will give an error depending directly on the
smoothness k.

We comment that for higher �m� the eigenstates will still
have cusps, albeit in the higher derivatives.22 Indeed, we
have weak derivatives of order �m�+1, as can easily be de-
duced by operating on �0,m with �x and �y. Moreover, recall
that �m�=1 is the S=1 ground state, which then will have
coefficients decaying faster than the S=0 ground state. More-
over, there will be excited states, i.e., states with �m��1, that
also have more quickly decaying coefficients �cn�. This will
be demonstrated numerically in Sec. V.

In fact, Hoffmann-Ostenhof et al.22 showed that near r12
=0, for arbitrary � any local solution � of �H−E��=0 has
the form

���� = ���mP� �

���
��1 + a���� + O����m+1� , �2.29�

where �= �r�1 ,r2��R4, and where P, deg�P�=m, is a hyper-
spherical harmonic �on S3�, and where a is a constant. This
also generalizes to arbitrary N, cf. Sec. III D. From this rep-
resentation, it is manifest, that ��Hm+1�R4�, i.e., � has
weak derivatives of order m+1. We discuss these results fur-
ther in Sec. III D.

III. APPROXIMATION PROPERTIES OF HERMITE
SERIES

A. Hermite functions in one dimension

In this section, we consider some formal mathematical
propositions whose proofs are given in the Appendix, and
discuss their importance for expansions in HO basis func-
tions.

The first proposition considers the one-dimensional case,
and the second considers general multidimensional expan-
sions. The treatment for one-dimensional Hermite functions
is similar, but not equivalent to, that given by Boyd25 and
Hille.26

We stress that the results are valid for any given wave
function—not only eigenfunctions of quantum dot
Hamiltonians—assuming only that the wave function decays
exponentially as �x�→�. In the Appendix, more general con-
ditions are also considered.

The results are stated in terms of weak differentiability of
the wave function, which is a generalization of the classical
notion of a derivative. The space Hk�R��L2�R� is roughly
defined as the �square-integrable� functions ��x� having k
�square-integrable� derivatives �x

m��x� and 0�m�k. Corre-
spondingly, the space Hk�Rn��L2�Rn� consists of the func-
tions whose partial derivatives of total order �k are square
integrable. For wave functions of electronic systems, it turns
out that k times continuous differentiability implies k+1
times weak differentiability.22 The order k of differentiability
is not always known, but an upper or lower bound can often
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be found through analysis. It is however important, that the
Coulomb singularity implies that k is finite.

For the one-dimensional case, we have the following
proposition:

Proposition 1 �Approximation in one dimension�.
Let k�0 be a given integer. Let ��L2�R� be exponen-

tially decaying as �x�→� and given by

��x� = �
n=0

�

cn�n�x� , �3.1�

where �n�x� is given by Eq. �2.5�. Then ��Hk�R� if and
only if

�
n=0

�

nk�cn�2 � � . �3.2�

We notice that the latter implies that

�cn� = o�n−�k+1�/2� , �3.3�

which shows that the more ��x� can be differentiated, the
faster the coefficients will fall off as n→�. Moreover, let
�R= PR�=�n=0

R cn�n. Then

�� − �R� = � �
n=R+1

�

�cn�2�1/2

, �3.4�

which gives an estimate of how well a finite basis of Hermite
functions will approximate ��x� in the norm. We already
notice that for low k=2, which is typical, the coefficients fall
off as o�n−3/2�, which is rather slowly.

In the general n-dimensional case, the wave function �
�L2�Rn� has an expansion in the n-dimensional Hermite
functions ���x� and ��In given by

��x� = �
�

c����x� = �
�1¯�n

c�1¯�n
��1

�x1� ¯ ��n
�xn� .

In order to obtain useful estimates on the error, we need to
define the shell weight p�R� by the overlap of ��x� with the
single shell SR, i.e.,

p�R� = �P�SR���2 = �
�,���=R

�c��2, �3.5�

where P�SR� is the projection onto the shell. Thus,

���2 = �
R=0

�

p�R� . �3.6�

For the one-dimensional case, we of course have p�R�
= �cR�2.

Proposition 2 �Approximation in n dimensions�.
Let ��L2�Rn� be exponentially decaying as �x�→� and

given by

��x� = �
�

c����x� . �3.7�

Then ��Hk�Rn� if and only if

�
�

���k�c��2 = �
r=0

�

rkp�r�� + � . �3.8�

Again, we notice that the latter implies that

p�r� = o�r−�k+1�� . �3.9�

Moreover, for the shell-truncated Hilbert space PR, the ap-
proximation error is given by

��1 − P��� = � �
r=R+1

�

p�r��1/2

. �3.10�

In applications, we often observe a decay of nonintegral
order; i.e., there exists an 
� �0,1� such that we observe

p�r� = o�r−�k+1+
�� . �3.11�

This does not, of course, contradict the results. To see this,
we observe that if ��Hk�Rn� but ��Hk+1�Rn�, then p�r�
must decay at least as fast as o�r−�k+1�� but not as fast as
o�r−k+2�. Thus, the actual decay exponent can be anything
inside the interval �k+1,k+2�.

Consider also the case where ��Hk�Rn� for every k, i.e.,
we can differentiate it �weakly� as many times we like. Then
p�r� decays faster than r−�k+1�, for any k�0, giving so-called
exponential convergence of the Hermite series. Hence, func-
tions that are best approximated by Hermite series are rap-
idly decaying and very smooth functions �. This would be
the case for the quantum dot eigenfunctions if the interpar-
ticle interactions were nonsingular.

B. Many-body wave functions

We now discuss N-body eigenfunctions of the HO in d
dimensions, including spin, showing that we may identify
the expansion of such with 2N expansions in Hermite func-
tions in n=Nd dimensions, i.e., 2N expansions in HO eigen-
functions of imagined spinless particles in n=Nd dimen-
sions. Each expansion corresponds to a different spin
configuration.

Each particle k=1, . . . ,N has both spatial degrees of free-
dom r�k�Rd and a spin coordinate �k� 

1�, corresponding
to the z-projection Sz= 


�
2 of the electron spin. The configu-

ration space can thus be taken as two copies X of Rd; one for
each spin value, i.e., X=Rd� 

1� and xk= �r�k ,�k��X are
the coordinates of particle k.

For a single particle with spin, the Hilbert space is now
L2�X�, with basis functions given by

�̂i�x� = ���r������� , �3.12�

where i= i�� ,�� is a new generic index and where �� is a
basis function for the spinor space C2.

Ignoring the Pauli principle for the moment, the N-body
Hilbert space is now given by

H�N� = L2�X�N � L2�RNd� � �C2�N, �3.13�

i.e., each wave function ��H�N� is equivalent to 2N spin-
component functions �����L2�RNd� and �= ��1 , . . . ,�N�
� 

1�N. We have
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��x1, . . . ,xN� = �
�

������������, � � �r�1, . . . ,r�N� , �3.14�

where �= ��1 , . . . ,�N�, and where �����=��,� are basis func-
tions for the N-spinor space C2N

, being eigenfunctions for Sz,
i.e., corresponding to a given configuration of the N spins.

The �th component function ��������L2�RNd� is a func-
tion of Nd variables, and by considering the Nd-dimensional
HO as the sum of N HOs in d dimensions, it is easy to see
that a basis for the L2�RNd� is given by the functions

����� � ��1�r�1� ¯ ��N�r�N� �3.15�

where �= �r�1 , . . . ,r�N�, and where �= ��1 , . . . ,�N� is an
Nd-component multi-index. Correspondingly, a basis for the
complete space H�N�=L2�X�N is given by the functions

�̂i1¯iN
��,�� � ��1�r�1� ¯ ��N�r�N������ , �3.16�

where ik= i��k ,�k�. Notice, that the HO energy and hence the
shell number ��� only depends on �= ��1 , . . . ,�N�.

The functions ���� may be expanded in the functions ��,
i.e.,

������� = �
�

c�
�������� = �

�1
¯�N

c�1
¯�N

���
��1�r�1� ¯ ��N�r�N� ,

and we define the �th shell weight p����r� as before, i.e.,

p����r� � �
���=r

�c�
����2. �3.17�

We may then apply the analysis from Sec. III A to each of
the spin-component functions and note that the total shell
weight is

p�r� � �
i1¯iN

��̂i1¯iN
,������,r = �

�

p����r� �3.18�

since the shell number ���=���k� does not depend on the
spin configuration of the basis function.

Including the Pauli principle to accommodate proper
wave-function symmetry does not change these consider-

ations. The basis functions �̂i1¯iN
are antisymmetrized to

become Slater determinants �i1¯iN
�see, for example, Ref.

27 for details�, which is equivalent to consider the projection
HAS�N�= PASH�N� of the unsymmetrized space onto the an-
tisymmetric subspace. Moreover, the projections PR and PAS
commute so that the shell-truncated space is given by

PAS,R = span��i1,. . .,iN
:i1 = i � ¯ � iN, �

k

��k� � R� ,

�3.19�

which is precisely the computational basis used in many CI
calculations. �See however also the discussion in Sec. IV.�
We stress that PAS,R is independent of the actual one-body
HO eigenfunctions used. The shell weight of ��HAS�X� is
now given by

p�r� = �
i1¯iN

��i1¯iN
,������i1¯iN��,r, �3.20�

and

�PR��2 = �
r=0

R

p�r� . �3.21�

As should be clear now, studying approximation of Hermite
functions in arbitrary dimensions automatically gives the
corresponding many-body HO approximation properties
since the many-body eigenfunctions can be seen as 2N com-
ponent functions and since the shell-truncated Hilbert space
transfers to a many-body setting in a natural way.

C. Two electrons revisited

We return to the exact solutions of the two-electron quan-
tum dot considered in Sec. II C. Recall, that the wave func-
tions were on the form

��r,�� = eim�f�r� , �3.22�

where f�r� decayed exponentially fast as r→�. Assume now
that ��Hk�R2�, i.e., that all partial derivatives of � of order
k exists in the weak sense, viz.,

�x
j�y

k−j� � L2�R2�, 0 � j � k , �3.23�

where x=r cos��� and y=r sin���. Then, by Lemma 4 in the
Appendix, �ax

†� j�ay
†�k−j��L2�R2� for 0� j�k as well.

The function ��r ,�� was expanded in Fock-Darwin orbit-
als, viz.,

��r,�� = �
n=0

�

cn�n,m
FD �r,�� . �3.24�

Recall, that the shell number N for �n,m
FD was given by

N=2n+ �m�. Thus, the shell weight p�N� is in this case simply

p�N� = �c�N−�m��/2�2, N � �m� , �3.25�

and p�N�=0 otherwise. From Proposition 2, we have

�
N=�m�

�

Nkp�N� � + � , �3.26�

which yields

�cn� = o�n−�k+1+
�/2�, 0 � 
 � 1, �3.27�

as claimed in Sec. II C.

D. Smoothness properties of many-electron wave functions

Let us mention some results, mainly due to Hoffmann-
Ostenhof et al.,22,28 concerning smoothness of many-electron
wave functions. Strictly speaking, their results are valid only
in d=3 spatial dimensions since the Coulomb interaction in
d=2 dimensions fails to be a Kato potential, the definition of
which is quite subtle and out of the scope for this article.28

On the other hand, it is reasonable to assume that the results
will still hold true since the analytical results of the N=2
case is very similar in the d=2 and d=3 cases: the eigen-
functions decay exponentially with the same cusp singulari-
ties at the origin.19,20

Consider the Schrödinger equation �H−E�����=0, where
�= ��1 , ¯ ,�Nd�= �r�1 , ¯ ,r�N��RNd and where ���� is only
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assumed to be a solution locally. �A proper solution is of
course also a local solution.� Recall that � has 2N spin com-
ponents ����. Define a coalesce point �CP as a point where at
least two particles coincide, i.e., r� j =r�� and j��. Away from
the set of such points, ������� is real analytic since the inter-
action is real analytic there. Near a �CP, the wave function
has the form

������ + �CP� = rkP��/r��1 + ar� + O�rk+1� , �3.28�

where r= ���, P is a hyperspherical harmonic �on the sphere
SNd−1� of degree k=k��CP�, and where a is a constant. It is
immediately clear that ������� is k+1 times weakly differen-
tiable in a neighborhood of �CP. However, at K-electron coa-
lesce points, i.e., at points �CP where K different electrons
coincide, the integer k may differ. Using exponential decay
of a proper eigenfunction, we have �����Hmin�k�+1�RNd�.
Hoffmann-Ostenhof et al.22,28 also showed that symmetry re-
strictions on the spin components due to the Pauli principle
induces an increasing degree k of the hyperspherical har-
monic P, generating even higher order of smoothness. A gen-
eral feature is that the smoothness increases with the number
of particles.

However, their results in this direction are not general
enough to ascertain the minimum of the values for k for a
given wave function, although we feel rather sure that such
an analysis is possible. Suffice it to say that the results are
clearly visible in the numerical calculations in Sec. V.

Another interesting direction of research has been under-
taken by Yserentant,29 who showed that there are some very
high order mixed partial derivatives at coalesce points. It
seems unclear, though, if this can be exploited to improve the
CI calculations further.

IV. CONFIGURATION-INTERACTION METHOD

A. Convergence analysis using HO eigenfunction basis

The basic problem is to determine a few eigenvalues and
eigenfunctions of the Hamiltonian H in Eq. �2.15�, i.e.,

H�k = Ek�k, k = 1, . . . ,kmax. �4.1�

The CI method consists of approximating eigenvalues of H
with those obtained by projecting the problem onto a finite-
dimensional subspace Hh�H�N�. As such, it is an example
of the Ritz-Galerkin variational method.30,31 We comment
that the convergence of the Ritz-Galerkin method is not sim-
ply a consequence of the completeness of the basis
functions.30 We will analyze the CI method when the model
space is given by

Hh = PRHAS�N� = PR�N� = span��i1,. . .,iN
:�

k

��k� � R� ,

used in Refs. 10 and 32, for example, although other spaces
also are common. �We drop the subscript “AS” from now
on.� The space

MR�N� ª span
�i1,. . .,iN
:max

k
��k� � R� , �4.2�

i.e., a cut in the single-particle shell numbers �or energy�

instead of the global shell number �or energy� is also
common.6,8 For obvious reasons, PR�N� is often referred to
as an “energy cut space,” while MR�N� is referred to as a
“direct product space.”

As in Sec. III A, PR is the orthogonal projector onto the
model space PR�N�. We also define QR=1− PR as the projec-
tor onto the excluded space PR�N��. The discrete eigenvalue
problem is then

�PRHPR��h,k = Eh,k�h,k, k = 1, . . . ,kmax. �4.3�

The CI method becomes, in principle, exact as R→�.
Indeed, a widely used name for the CI method is “exact
diagonalization,” being somewhat a misnomer as only a very
limited number of degrees of freedom per particle are
achievable.

It is clear that

PR�N� � MR�N� � PNR�N� �4.4�

so that studying the convergence in terms of PR�N� is suffi-
cient. In our numerical experiments we therefore focus on
the energy cut model space. A comparison between the con-
vergence of the two spaces is, on the other hand, an interest-
ing topic for future research.

Using the results in Refs. 30 and 33 for nondegenerate
eigenvalues for simplicity, we obtain an estimate for the error
in the numerical eigenvalue Eh as

Eh − E � �1 + ��R���1 + K����,QRT�� , �4.5�

where K is a constant, and where ��R�→0 as R→�. Using
T��= �Nd /2+ ������ and Eq. �3.8�, we obtain

��,QRT�� = �
r=R+1

� �Nd

2
+ r�p�r� . �4.6�

Assume now, that �����Hk�RNd� for all � so that according
to proposition 2, we will have

�
r=0

�

rkp�r� � + � �4.7�

implying that rp�r�=o�r−k�. We then obtain, for k�1,

��,�1 − PR�T�� = o�R−�k−1�� + o�R−k� . �4.8�

For k=1 �which is the worst case�, we merely obtain conver-
gence, �� , �1− PR�T��→0 as R→�. We assume, that R is
sufficiently large, so that the o�R−k� term can be neglected.

Again, we may observe a slight deviation from the decay,
and we expect to observe eigenvalue errors on the form

Eh − E � �1 + K��R−�k−1+
�, �4.9�

where 0�
�1.
As for the eigenvector error ��h−�� �recall that �h

� PR��, we mention that

��h − �� � �1 + ��R����1 + K����,�1 − PR�T���1/2,

�4.10�

where ��R�→0 as R→�.

HARMONIC OSCILLATOR EIGENFUNCTION EXPANSIONS,… PHYSICAL REVIEW B 80, 045321 �2009�

045321-7



B. Effective interaction scheme

Effective interactions have a long tradition in nuclear
physics, where the bare nuclear interaction is basically un-
known and highly singular and where it must be renormal-
ized and fitted to experimental data.3 In quantum chemistry
and atomic physics, the Coulomb interaction is of course
well known so there is no intrinsic need to formulate an
effective interaction. However, in lieu of the in general low
order of convergence implied by Eq. �4.9�, we believe that
HO-based calculations such as the CI method in general may
benefit from the use of effective interactions.

A complete account of the effective interaction scheme
outlined here is out of scope for the present article, but we
refer to Refs. 2, 11, and 34–36 for details as well as numeri-
cal algorithms.

Recall, that the interaction is given by

U = �
i�j

N

C�i, j� = �
i�j

N
�

�r�i − r� j�
, �4.11�

a sum of fundamental two-body interactions. For the N=2
problem we have in principle the exact solution since Hamil-
tonian �2.19� can be reduced to a one-dimensional radial
equation, e.g., the eigenproblem of Hr defined in Eq. �2.21�.
This equation may be solved to arbitrarily high precision
using various methods, for example using a basis expansion
in generalized half-range Hermite functions.37 In nuclear
physics, a common approach is to take the best two-body CI
calculations available, where R=O�103�, as “exact” for this
purpose.

We now define the effective Hamiltonian for N=2 as a
Hermitian operator Heff defined only within PR�N=2� that
gives K=dim�PR�N=2�� exact eigenvalues Ek of H, and K
approximate eigenvectors �eff,k. Of course, there are infi-
nitely many choices for the K eigenpairs, but by treating U
=� /r12 as a perturbation, and “following” the unperturbed
HO eigenpairs ��=0� through increasing values of �, one
makes the eigenvalues unique.2,38 The approximate eigen-
vectors �eff,k�PR�N=2� are chosen by minimizing the dis-
tance to the exact eigenvectors �k�H�N=2� while retaining
orthonormality.35 This uniquely defines Heff for the two-body
system. In terms of matrices, we have

Heff = Ũdiag�E1, . . . ,EK�Ũ†, �4.12�

where X and Y are unitary matrices defined as follows. Let U
be the K�K matrix whose kth column is the coefficients of
PR�k. Then the singular value decomposition of U can be
written as

U = X � Y†, �4.13�

where � is diagonal. Then,

Ũ ª XY†. �4.14�

The columns of Ũ are the projections PR�k “straightened
out” to an orthonormal set. Equation �4.12� is simply the
spectral decomposition of Heff. Although different in form
than most implementations in the literature �e.g., Ref. 11�, it
is equivalent.

The effective two-body interaction Ceff�i , j� is now given
by

Ceff�1,2� ª Heff − PRTPR, �4.15�

which is defined only within PR�N=2�.
The N-body effective Hamiltonian is defined by

Heff ª PRTPR + �
i�j

N

Ceff�i, j� , �4.16�

where PR projects onto PR�N�, and thus Heff is defined only
within PR�N�. The diagonalization of Heff�N� is equivalent to
a perturbation technique where a certain class of diagrams is
summed to infinite order in the full problem.34 In implemen-
tations, Eqs. �4.12� and �4.16� are treated in COM coordi-
nates, utilizing block diagonality of both H and Heff; see Ref.
36 for details.

We comment that unlike the bare Coulomb interaction,
the effective two-body interaction Ceff corresponds to a non-
local potential due to the “straightening out” of truncated
eigenvectors. Rigorous mathematical treatment of the con-
vergence properties of the effective interaction is, to the au-
thor’s knowledge, not available. Effective interactions have,
however, enjoyed great success in the nuclear physics com-
munity, and we strongly believe that we soon will see suffi-
cient proof of the improved accuracy with this method. In-
deed, in Sec. V we see clear evidence of the accuracy boost
when using an effective interaction.

V. NUMERICAL RESULTS

A. Code description

We now present numerical results using the full
configuration-interaction method for N=2–5 electrons in d
=2 dimensions. We will use both the “bare” Hamiltonian
H=T+U and effective Hamiltonian �4.16�.

Since the Hamiltonian commutes with angular momentum
Lz, the latter taking on eigenvalues M �Z, the Hamiltonian
matrix is block diagonal. �Recall that the Fock-Darwin orbit-
als �n,m

FD are eigenstates of Lz with eigenvalue m, so each
Slater determinant has eigenvalue M =�k=1

N mk.� Moreover,
the calculations are done in a basis of joint eigenfunctions
for total electron spin S2 and its projection Sz as opposed to
the Slater determinant basis used for convergence analysis.
Such basis functions are simply linear combinations of Slater
determinants within the same shell and further reduce the
dimensionality of the Hamiltonian matrix.8 The eigenfunc-
tions of H are thus labeled with the total spin S=0,1 , . . . , N

2
for even N and S= 1

2 , 3
2 , . . . , N

2 for odd N, as well as the total
angular momentum M =0,1 , . . .. �−M produce the same ei-
genvalues as M, by symmetry.� We thus split PR�N� �or
MR�N�� into invariant subspaces PR�N ,M ,S��MR�N ,M ,S��
and perform computations solely within these.

The calculations were carried out with a code similar to
that described by Rontani et al. in Ref. 8. Table I shows
comparisons of the present code with that of Table IV of Ref.
8 for various parameters using the model space
MR�N ,M ,S�. Table I also shows the case �=1, N=2, M
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=0, and S=0, whose exact lowest eigenvalue is E0=3; cf.
Sec. II C. We note that there are some discrepancies between
the results in the last digits of the results of Ref. 8. The
spaces MR�N� were identical in the two approaches; i.e., the
number of basis functions and the number of nonzero matrix
elements produced are crosschecked and identical.

We have checked that the code also reproduces the results
of Refs. 9, 10, and 39, using the PR�N ,M ,S� spaces. Our
code is described in detail elsewhere36 where it is also dem-
onstrated that it reproduces the eigenvalues of an analytically
solvable N-particle system40 to machine precision.

B. Experiments

For the remainder, we only use the energy cut spaces
PR�N ,M ,S�. Figure 2 shows the development of the lowest
eigenvalue E0=E0�N ,M ,S� for N=4, M =0,1 ,2 and S=0 as
function of the shell truncation parameter R, using both
Hamiltonians H and Heff. Apparently, the effective interac-
tion eigenvalues provide estimates for the ground-state ei-
genvalues that are better than the bare interaction eigenval-
ues. This effect is attenuated with higher N, due to the fact
that the two-electron effective Coulomb interaction does not
take into account three- and many-body effects which be-
come substantial for higher N.

We take the Heff eigenvalues as “exact” and graph the
relative error in E0�N ,M ,S� as function of R on a logarith-
mic scale in Fig. 3, in anticipation of the relation

ln�Eh − E� � C + � ln R, � = − �k − 1 + 
� . �5.1�

The graphs show straight lines for large R, while for small R
there is a transient region of nonstraight lines. For N=5,
however, �=2 is too large a value to reach the linear regime
for the range of R available, so in this case we chose to plot
the corresponding error for the very small value �=0.2,
showing clear straight lines in the error. The slopes are more
or less independent of �, as observed in different calcula-
tions.

In Fig. 4 we show the corresponding graphs when using
the effective Hamiltonian Heff. We estimate the relative error

as before, leading to artifacts for the largest values of R due
to the fact that there is a finite error in the best estimates for
the eigenvalues. However, in all cases there are clear, linear
regions, in which we estimate the slope �. In all cases, the
slope can be seen to decrease by at least ���−1 compared
to Fig. 3, indicating that the effective interaction indeed ac-
celerates the CI convergence by at least an order of magni-
tude. We also observe, that the relative errors are improved
by an order of magnitude or more for the lowest values of R
shown, indicating the gain in accuracy when using small
model spaces with the effective interaction.

Notice, that for symmetry reasons only even �odd� R for
even �odd� M yields increases in basis size
dim�PR�N ,M ,S��, so only these values are included in the
plots. To overcome the limitations of the two-body effective
interaction for higher N, an effective three-body interaction
could be considered, and is hotly debated in the nuclear
physics community. �In nuclear physics, there are also more
complicated three-body effective forces that need to be
included.41� However, this will lead to a huge increase in
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FIG. 2. Eigenvalues for N=4, S=0, and �=2 as function of R
for H �solid� and Heff �dashed�. M =0,1, and 2 are represented by
squares, circles, and stars, respectively.

TABLE I. Comparison of current code and Ref. 8. Figures from the latter have varying number of
significant digits. We include more digits from our own computation for reference.

N � M 2S

R=5 R=6 R=7

Current Ref. 8 Current Ref. 8 Current Ref. 8

2 1 0 0 3.013626 3.011020 3.009236

2 0 0 3.733598 3.7338 3.731057 3.7312 3.729324 3.7295

1 2 4.143592 4.1437 4.142946 4.1431 4.142581 4.1427

3 2 1 1 8.175035 8.1755 8.169913 8.166708 8.1671

4 1 1 11.04480 11.046 11.04338 11.04254 11.043

0 3 11.05428 11.055 11.05325 11.05262 11.053

4 6 0 0 23.68944 23.691 23.65559 23.64832 23.650

2 4 23.86769 23.870 23.80796 23.80373 23.805

5 2 0 5 21.15093 21.15 21.13414 21.13 21.12992 21.13

4 0 5 29.43528 29.44 29.30898 29.31 29.30251 29.30
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memory consumption due to extra nonzero matrix elements.
At the moment, there are no methods available that can gen-
erate the exact three-body effective interaction with suffi-
cient precision.

We stress that the relative error decreases very slowly in
general. It is a common misconception, that if a number of
digits of E0�N ,M ,S� is unchanged between R and R+2, then
these digits have converged. This is not the case, as is easily
seen from Fig. 3. Take for instance N=4, M =0 and S=0, and
�=2. For R=14 and R=16 we have E0=13.844 91 and E0

=13.841 53, respectively, which would give a relative error
estimate of 2.4�10−4, while the correct relative error is
1.3�10−3.

The slopes in Fig. 3 vary greatly, showing that the eigen-
functions indeed have varying global smoothness, as pre-
dicted in Sec. III D. For �N ,M ,S�= �5,3 ,5 /2�, for example,
��−4.2, indicating that ��H5�R10�. It seems, that higher S
gives higher k, as a rule of thumb. Intuitively, this is because
the Pauli principle forces the wave function to be zero at
coalesce points, thereby generating smoothness.

VI. DISCUSSION AND CONCLUSION

We have studied approximation properties of Hermite
functions and harmonic oscillator eigenfunctions. This in
turn allowed for a detailed convergence analysis of numeri-
cal methods such as the CI method for the parabolic quantum
dot. Our main conclusion is, that for wave functions �
�Hk�Rn� falling off exponentially as �x�→�, the shell-
weight function p�r� decays as p�r�=o�r−k−1�. Applying this
to the convergence theory of the Ritz-Galerkin method, we
obtained estimate �4.5� for the error in the eigenvalues. A
complete characterization of the upper bound on the differ-
entiability k, i.e., in ��s��Hk, as well as a study of the con-
stant K in Eq. �4.9�, would complete our knowledge of the
convergence of the CI calculations.

We also demonstrated numerically that the use of a two-
body effective interaction accelerates the convergence by at
least an order of magnitude, which shows that such a method
should be used whenever possible. On the other hand, a rig-
orous mathematical study of the method is yet to come.
Moreover, we have not investigated to what extent the in-
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FIG. 3. Plot of relative error using the bare interaction for various N, M, and S. Clear o�R�� dependence in all cases.
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crease in convergence is independent of the interaction
strength �. This, together with a study of the accuracy of the
eigenvectors, is an obvious candidate for further investiga-
tion.

The theory and ideas presented in this article should in
principle be universally applicable. In fact, Figs. 1–3 of Ref.
11 clearly indicate this, where the eigenvalues of 3He as
function of model space size are graphed both for bare and
effective interactions, showing some of the features we have
discussed.

Other interesting future studies would be a direct com-
parison of the direct product model space MR�N� and our
energy cut model space PR�N�. Both techniques are com-
mon, but may have different numerical characteristics. In-
deed, dim�MR�N�� grows much quicker than dim�PR�N��,
while we are uncertain of whether the increased basis size
yields a corresponding increased accuracy.

We have focused on the parabolic quantum dot first be-
cause it requires relatively small matrices to be stored, due to
conservation of angular momentum, but also because it is a

widely studied model. Our analysis is, however, general, and
applicable to other systems as well, e.g., quantum dots
trapped in double wells, finite wells, and so on. Indeed, by
adding a one-body potential V to the Hamiltonian H=T+U
we may model other geometries, as well as adding external
fields.42–44
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APPENDIX: MATHEMATICAL DETAILS

1. Multi-indices

A very handy tool for compact and unified notation, when
the dimension n of the underlying measure space Rn is a
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FIG. 4. Plot of relative error using an effective interaction for various N, M, and S. Clear o�R�� dependence in all cases, but notice
artifacts when R is large, due to errors in most correct eigenvalues. The R=5 case does not contain enough data to compute the slopes with
sufficient accuracy.
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parameter, are multi-indices. The set In of multi-indices are
defined as n tuples of non-negative indices, viz, �
= ��1 , . . . ,�n�, where �k�0.

We define several useful operations on multi-indices as
follows. Let u be a formal vector of n symbols. Moreover, let
����=���1 ,�2 , . . . ,�n� be a function. Then, define

��� � �1 + �2 + ¯ + �n, �A1�

� ! � �1 ! �2 ! ¯ �n ! , �A2�

� 
 � � ��1 
 �1, . . . ,�n 
 �n� , �A3�

u� � u1
�1u2

�2, . . . ,un
�n, �A4�

������ �
��1

��1
�1

��1

��2
�2

¯

��d

��d
�1

���� . �A5�

In Eq. �A3�, the result may not be a multi-index when we
subtract two indices, but this will not be an issue for us.
Notice, that Eq. �A5� is a mixed partial derivative of order
���. Moreover, we say that ��� if and only if � j �� j for all
j. We define �=� similarly. We also define “basis indices” ej
by �ej� j�=� j,j�. We comment, that we will often use the no-
tation �x� �

�x and �k� �
��k

to simplify notation. Thus,

�� = ��1
�1, . . . ,�n

�n� , �A6�

consistent with Eq. �A4�.

2. Weak derivatives and Sobolev spaces

We present a quick summary of weak derivatives and re-
lated concepts needed. The material is elementary and super-
ficial but probably unfamiliar to many readers, so we include
it here. Many terms will be left undefined; if needed, the
reader may consult standard texts, e.g., Ref. 45.

The space L2�Rn� is defined as

L2�Rn� � ��:Rn → C:	
Rn

������2dn� � + �� , �A7�

where the Lebesgue integral is more general than the Rie-
mann “limit-of-small-boxes” integral. It is important that we
identify two functions � and �1 differing only at a set Z
�Rn of measure zero. Examples of such sets are points if
n�1, curves if n�2, and so on, and countable unions of
such. For example, the rationals constitute a set of measure
zero in R. Under this assumption, L2�Rn� becomes a Hilbert
space with the inner product

��1,�2� � 	
Rn

�1�����2���dn� , �A8�

where the asterisk denotes complex conjugation.
The classical derivative is too limited a concept for the

abstract theory of partial differential equations, including the
Schrödinger equation. Let C0

� be the set of infinitely differ-
entiable functions, which are nonzero only in a ball of finite
radius. Of course, C0

��L2�Rn�. Let ��L2�Rn�, and let �

�In be a multi-index. If there exists a v�L2�Rn� such that,
for all ��C0

�,

	
Rn

������������dn� = �− 1����	
Rn

����v���dn� , �A9�

then ����v�L2 is said to be a weak derivative, or distribu-
tional derivative, of �. In this way, the weak derivative is
defined in an average sense, using integration by parts.

The weak derivative is unique �up to redefinition on a set
of measure zero�, obeys the product rule, chain rule, etc.

It is easily seen that if � has a classical derivative v
�L2�Rn� it coincides with the weak derivative. Moreover, if
the classical derivative is defined almost everywhere �i.e.,
everywhere except for a set of measure zero�, then � has a
weak derivative.

The Sobolev space Hk�Rn� is defined as the subset of
L2�Rn� given by

Hk�Rn� � 
� � L2:��� � L2, ∀ � � In, ��� � k� .

�A10�

The Sobolev space is also a Hilbert space with the inner
product

��1,�2� � �
�,����k

����1,���2� , �A11�

and this is the main reason why one obtains a unified theory
of partial differential equations using such spaces.

The space Hk�Rn� for n�1 is a big space. There are some
exceptionally ill-behaved functions there; for example, there
are functions in Hk that are unbounded on arbitrary small
regions but still differentiable. �Hermite series for such func-
tions would still converge faster than, e.g., for a function
with a jump discontinuity.� For our purposes, it is enough to
realize that the Sobolev spaces offer exactly the notion of
derivative we need in our analysis of the Hermite function
expansions.

3. Proofs of propositions

We will now prove the propositions given in Sec. III and
also discuss these results on mathematical terms. Recall that
the Hermite functions �n�L2�R�, where n�N0 is a non-
negative integer, are defined by

�n�x� = �2nn ! �	�−1/2Hn�x�e−x2/2, �A12�

where Hn�x� is the usual Hermite polynomial.
A well-known method for finding the eigenfunctions of

HHO in one dimension involves writing

HHO = a†a +
1

2
, �A13�

where the ladder operator a is given by

a �
1
�2

�x + �x� , �A14�

with Hermitian adjoint a† given by
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a† �
1
�2

�x − �x� . �A15�

The name “ladder operator” comes from the important for-
mulas

a�n�x� = �n�n−1�x� �A16�

a†�n�x� = �n + 1�n+1�x� , �A17�

valid for all n. This can easily be proven by using recurrence
relation �2.7�. By repeatedly acting on �0 with a† we gener-
ate every Hermite function, viz.,

�n�x� = n!−1/2�a†�n�0�x� . �A18�

As Hermite functions constitute a complete orthonormal
sequence in L2�R�, any ��L2�R� can be written as a series
in Hermite functions, viz.,

��x� = �
n=0

�

cn�n�x� , �A19�

where the coefficients cn are uniquely determined by
cn= ��n ,��.

An interesting fact is that the Hermite functions are also
eigenfunctions of the Fourier transform with eigenvalues
�−i�n, as can easily be proven by induction by observing first
that the Fourier transform of �0�x� is �0�k� itself, and second
that the Fourier transform of a† is −ia† �acting on variable k�.
It follows from completeness of the Hermite functions that
the Fourier transform defines a unitary operator on L2�R�.

We now make a simple observation, namely, that

�a†�k�n�x� = Pk�n�1/2�n+k�x� , �A20�

where Pk�n�= �n+k� ! /n ! �0 is a polynomial of degree k for
n�0. Moreover Pk�n+1�� Pk�n� and Pk+1�n�� Pk�n�.

We now prove the following lemma:
Lemma 1 �Hermite series in one dimension�.
Let ��L2�R�. Then �1� a†��L2�R� if and only if a�

�L2�R� if and only if �n=0
� n�cn�2�+�, where cn= ��n ,��; �2�

a†��L2�R� if and only if x� ,�x��L2�R�; �3� �a†�k+1�
�L2�R� implies �a†�k��L2�R�; �4� �a†�k��L2�R� if and
only if

�
n=0

�

nk�cn�2 � + � , �A21�

and �5� �a†�k��L2�R� if and only if xj�x
k−j��L2�R� for

0� j�k.
Proof: we have

�a†��2 = �
n=0

�

�n + 1��cn�2 = ��2� + �a��2, �A22�

from which statement 1 follows. Statement 2 follows from
the definition of a† and that a†��L2 implies a��L2 �since
�a��� �a†���, which again implies x� ,�x��L2. Statement 3
follows from the monotone behavior of Pk�n� as function of
k. Statement 4 then follows. By iterating statement 2 and
using ��x ,x�=1 and statement 3, statement 5 follows. �

The significance of the condition a†��L2�R� is that the
coefficients cn of � must decay faster than for a completely
arbitrary wave function in L2�R�. Moreover, a†��L2�R� is
the same as requiring �x��L2�R�, and x��L2�R�. Lemma 1
also generalizes this fact for �a†�k��L2�R�, giving success-
fully quicker decay of the coefficients. In all cases, the decay
is expressed in an average sense, through a growing weight
function in a sum, as in Eq. �A21�. Since the terms in the
sum must converge to zero, this implies a pointwise faster
decay, as stated in Eq. �A25� below.

We comment here that the partial derivatives must be un-
derstood in the weak, or distributional, sense: even though �
may not be everywhere differentiable in the ordinary sense, it
may have a weak derivative. For example, if the classical
derivative exists everywhere except for a countable set �and
if it is in L2�, this is the weak derivative. Moreover, if this
derivative has a jump discontinuity, there are no higher order
weak derivatives.

Loosely speaking, since x��x��L2⇔�y�̂�y��L2, where

�̂�y� is the Fourier transform, point 1 of Lemma 1 is a com-

bined smoothness condition on ��x� and �̂�y�. Point �A21� is
a generalization to higher derivatives but is difficult to check
in general for an arbitrary �. On the other hand, it is well
known that the eigenfunctions of many Hamiltonians of in-
terest, such as quantum dot Hamiltonian �215�, decay expo-
nentially fast as �x�→�. For such exponentially decaying

functions over R1, xk��L2�R� for all k�0; i.e., �̂�y� is in-
finitely differentiable. We then have the following lemma:

Lemma 2 �Exponential decay in 1D�.
Assume that xk��L2�R� for all k�0. Then a sufficient

criterion for �a†�m��L2�R� is �x
m��L2�R�, i.e., ��Hm�R�.

In fact, xk�x
m���L2 for all m��m and all k�0.

Proof: we prove the proposition inductively. We note that,
since �x

m��L2 implies �x
m−1��L2, the proposition holds for

m−1 if it holds for a given m. Moreover, it holds trivially for
m=1.

Assume then that it holds for a given m, i.e., that �
�Hm implies xk�x

m−j��L2 for 1� j�m and for all k �so that,
in particular, �a†�m��L2�. It remains to be proven that �
�Hm+1 implies xk�x

m��L2 since then �a†�m+1��L2 by state-
ment 5 of Lemma 1. We compute the norm and use integra-
tion by parts, viz.,

�xk�x
m��2 = 	

R
x2k�x

k���x��x
k��x�

= − 2k��x
m�,x2k−1�x

m−1�� − ��x
m+1�,x2k�x

m−1�� � + � .

The boundary terms vanish. Therefore, xk�x
m��L2 for all k,

and the proof is complete. �
The proposition states that for the subset of L2�R� consist-

ing of exponentially decaying functions, the approximation
properties of the Hermite functions will only depend on the
smoothness properties of �. Moreover, the derivatives up to
the penultimate order decay exponentially as well. �The
highest order derivative may decay much slower.�

HARMONIC OSCILLATOR EIGENFUNCTION EXPANSIONS,… PHYSICAL REVIEW B 80, 045321 �2009�

045321-13



From Lemmas 1 and 2 we extract the following important
characterization of the approximating properties of Hermite
functions in d=1 dimensions:

Proposition 1 �Approximation in one dimension�.
Let k�0 be a given integer. Let ��L2�R� be given by

��x� = �
n=0

�

cn�n�x� . �A23�

Then ��Hk�R� if and only if

�
n=0

�

nk�cn�2 � � . �A24�

The latter implies that

�cn� = o�n−�k+1�/2� . �A25�

Let �R= PR�=�n=0
R cn�n. Then

�� − �R� = � �
n=R+1

�

�cn�2�1/2

. �A26�

This is the central result for Hermite series approximation in
L2�R1�. Observe that Eq. �A25� implies that the error
��−�R� can easily be estimated. See also proposition 2 and
comments thereafter.

Now a word on pointwise convergence of the Hermite
series. As the Hermite functions are uniformly bounded,25

viz.,

��n�x�� � 0.816 ∀ x � R , �A27�

the pointwise error in �R is bounded by

���x� − �R�x�� � 0.816 �
n=R+1

�

�cn� . �A28�

Hence, if the sum on the right-hand side is finite, the conver-
gence is uniform. If the coefficients cn decay rapidly enough,
both errors can be estimated by the dominating neglected
coefficients.

We now consider expansions of functions in L2�Rn�. To
stress that Rn may be other than the configuration space of a
single particle, we use the notation x= �x1 , . . . ,xn��Rn in-
stead of r��Rd. For N electrons in d spatial dimensions, n
=Nd.

Recall that the Hermite functions over Rn are indexed by
multi-indices �= ��1 , . . . ,�n��In and that

���x� � ��1
�x1� ¯ ��n

�xn� . �A29�

Now, to each spatial coordinate xk define the ladder operators
ak��xk+�k� /�2. These obey �aj ,ak�=0 and �aj ,ak

†�=� j,k, as
can easily be verified. Let a be a formal vector of the ladder
operators, viz.,

a � �a1,a2, . . . ,an� . �A30�

For the first Hermite function, we have

�0�x� � 	−n/4e−�x�2/2. �A31�

By using Eqs. �A4� and �A18�, we may generate all other
Hermite functions, viz.,

���x� � �!−1/2�a†���0�x� . �A32�

Given two multi-indices � and �, we define the polyno-
mial P���� by

P���� �
�� + ��!

�!
= �

j=1

D

P�j
�� j� , �A33�

where P is defined for integers as before.
Since the Hermite functions �� constitute a basis, any

��L2�Rn� can be expanded as

��x� = �
�

c����x�, ���2 = �
�

�c��2, �A34�

where the sum is to be taken over all multi-indices ��In.
Now, let ��In be arbitrary. By using Eq. �A17� in each
spatial direction we compute the action of �a†�� on �,

�a†��� = �a1
†��1

¯ �an
†��n�

�

c���

= �
a

c��
k=1

n
��k + �k�!1/2

�k!
1/2 ��+� = �

�

c�P����1/2��+�.

�A35�

Similarly, by using Eq. �A16� we obtain

a�� = a1
�1
¯ an

�n�
�

c���

= �
�

c�+��
k=1

n
��k + �k�!1/2

�k!
1/2 ��

= �
�

c�+�P����1/2��, �A36�

Computing the square norm gives

��a†����2 = �
�

P�����c��2. �A37�

and

�a���2 = �
�

P�����c�+��2. �A38�

The polynomial P�����0 for all � ,��In, and P���+���
� P���� for all nonzero multi-indices ���0. Therefore, if
�a†����L2�Rn� then a���L2�Rn�. However, the converse is
not true for n�1 dimensions as the norm in Eq. �A38� is
independent of infinitely many coefficients c� while Eq.
�A37� is not. �This should be contrasted with the one-
dimensional case, where a��L2�R� was equivalent to a†�
�L2�R�.� On the other hand, as in the n=1 case, the condi-
tion ak

†��L2�Rn� is equivalent to the conditions xk�
�L2�Rn� and �k��L2�Rn�.

We are in position to formulate a straightforward gener-
alization of Lemma 1. The proof is easy, so we omit it.
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Lemma 3 �General Hermite expansions�.
Let ��L2�Rn�, with coefficients c� as in Eq. �A34�, and

let ��In be arbitrary. Assume �a†����L2�Rn�. Then
�a†�����L2�Rn� and a����L2�Rn� for all ����. Moreover,
the following points are equivalent:

�1� �a†����L2�Rn�; �2� for all multi-indices ���,
x���−���L2�Rn�; and �3� �����c��2�+�.

We observe, that as we obtained for n=1, condition 2 is a
combined decay and smoothness condition on � and that this
can be expressed as a decay condition on the coefficients of
� in the Hermite basis by 3.

Exponential decay of ��L2�Rn� as �x�→� implies that
x���L2�Rn� for all ��In. We now generalize Lemma 2 to
the n-dimensional case.

Lemma 4 �Exponentially decaying functions�.
Assume that ��L2�Rn� is such that for all ��In, x��

�L2�Rn�. Then, a sufficient criterion for �a†����L2�Rn� is
����L2�Rn�. Moreover, for all ���, we have x���−��
�L2�Rn� for all ��In such that �k=0 whenever �k=0; i.e.,
the partial derivatives of lower order than � decay exponen-
tially in the directions where the differentiation order is
lower.

Proof: the proof is a straightforward application of the n
=1 case in an inductive proof, together with the following
elementary fact concerning weak derivatives: if 1� j�k
�n, and if xj��x� and �k��x� are in L2�Rn�, then, by the
product rule, �k�xj��x��=xj��k��x���L2�Rn�. Notice, that
Lemma 2 trivially generalizes to a single index in n dimen-
sions, i.e., to �=�kek, since the integration by parts formula
used is valid in Rn as well. Similarly, the present Lemma is
valid in n−1 dimensions if it holds in n dimensions, as it

must be valid for �̄= �0,�2 , . . . ,�n�.
Assume that our statement holds for n−1 dimensions. We

must prove that it then holds in n dimensions. Assume then,

that ����L2�Rn�. Let �=��̄��L2. Moreover, �1
�1��L2.

Since � is exponentially decaying, and by the product rule,
x1

�1��L2 for all �1�0. By Lemma 2, x1
�1�1

�1−�1��L2 for all
�1 and 0��1��1. Thus, x1

�1��−e1�1��L2. Thus, the result
holds as long as �=e1�1, or equivalently �=ek�k for any k.

To apply induction, let �=x1
�1�1

�1−�1��L2. Note that ��̄�
�L2 and x�̄��L2 for all �̄= �0,�2 , . . . ,�n�. But by the in-

duction hypothesis, x�̄��̄−�̄��L2 for all �̄��̄ and all �̄ such
that �̄k=0 if �̄k=0. This yields, using the product rule, that
x���−���L2 for all ��� and all � such that �k=0 if �k
=0, which was the hypothesis for n dimensions, and the
proof is complete. Notice, that we have proved that �a†���
�L2 as a by-product. �

In order to generate a simple and useful result for approxi-
mation in n dimensions, we consider the case where � de-
cays exponentially, and ��Hk�Rn�, i.e., ����x��L2�Rn� for
all ��In with ���=k. In this case, we may also generalize
Eq. �A25�. For this, we consider the shell weight p�r� defined
by

p�r� � �
��In, ���=r

�c��2, �A39�

where c�= ��� ,��. Then, ���2=�r=0
� p�r�. Moreover, if P

projects onto the shell-truncated Hilbert space PR�Rn�, then

�P��2 = �
r=0

R

p�r� . �A40�

Proposition 2 �Approximation in n dimensions�.
Let ��L2�Rn� be exponentially decaying and given by

��x� = �
�

c����x� . �A41�

Then ��Hk�Rn�, k�0, if and only if

�
�

���k�c��2 = �
r=0

�

rkp�r� � + � . �A42�

The latter implies that

p�r� = o�r−�k+1�� . �A43�

Moreover, for the shell-truncated Hilbert space PR, the ap-
proximation error is given by

��1 − P��� = � �
r=R+1

�

p�r��1/2

. �A44�

Proof: the only nontrivial part of the proof concerns Eq.
�A42�. Since � is exponentially decaying and since ��Hk if
and only if ����L2 for all �, ����k, we know that
�����c��2�+� for all �, ����k. Since ���k is a polynomial
of order k with terms of type a���, a��0, and ���=k, we
have

�
�

���k�c��2 = �
�, ���=k

a��
�

���c��2 � + � . �A45�

On the other hand, since a��0 and the sum over � has
finitely many terms, �����k�c���+� implies �����c��2
�+� for all �, ���=k, and thus ��Hk since � was exponen-
tially decaying. �
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