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The scattering of conduction electrons off neutral donors depends sensitively on the relative orientation of
their spin states. We present a theory of spin-dependent scattering in the two-dimensional electron gas �2DEG�
of field effect transistors. Our theory shows that the scattering mechanism is dominated by virtual transitions to
negatively ionized donor levels. This effect translates into a source-drain current that always gets reduced when
donor spins are at resonance with a strong microwave field. We propose a model for donor impurities inter-
acting with conduction electrons in a silicon transistor, and compare our explicit numerical calculations to
electrically detected magnetic-resonance �EDMR� experiments. Remarkably, we show that EDMR is optimal
for donors placed into a sweet spot located at a narrow depth window quite far from the 2DEG interface. This
allows significant optimization of spin signal intensity for the minimal number of donors placed into the sweet
spot, enabling the development of single spin readout devices. Our theory reveals an interesting dependence on
conduction electron-spin polarization pc. As pc increases upon spin injection, the EDMR amplitude first
increases as pc

2 and then saturates when a polarization threshold pT is reached. These results show that it is
possible to use EDMR as an in situ probe of carrier spin polarization in silicon and other materials with weak
spin-orbit coupling.
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I. INTRODUCTION

Electron spins carry much promise as state variables for
scaled classical logic1 and as quantum bits �qubits� in quan-
tum computer architectures.2 A key challenge of current re-
search in spin-based electronics �“spintronics”� and quantum
computation is to devise methods to probe spin polarization
in semiconductors with weak spin-orbit coupling,3 such as
silicon and silicon-germanium alloys. Silicon combines
many special features that make its electronic spin a prom-
ising basis for classical and quantum logic devices: Band-
structure properties such as weak spin-orbit coupling and in-
direct band gap, and the possibility of preparing a nuclear-
spin-free environment lead to extremely long spin-relaxation
times in comparison to other semiconductors.4

However, the same features that lead to long spin-
relaxation times also make spin detection more challenging.
Optical methods for spin detection such as Faraday and Kerr
rotation have been used successfully in III-V
semiconductors,5,6 but unfortunately, these methods are inap-
plicable to silicon and related materials, whose spin-selective
optical transitions are extremely weak and ineffective.

Recently, injection and detection of conduction electron-
spin polarization were demonstrated in silicon. In Ref. 7, a Si
device with a ferromagnetic �FM� source was interfaced with
GaAs to enable optical spin detection, while in Ref. 8 a spin
valve based on a FM-Si interface was used.

Both experiments achieve spin detection at the interface,
but no local or “in situ” spin detection. The interface limits
spatial resolution and introduces additional scattering effects.
In studies with accumulation channel silicon transistors,
spin-dependent scattering �SDS� was demonstrated by elec-
trical detection of magnetic resonance �EDMR�.9,10

In this paper we present a theory of spin-dependent trans-
port in the scattering of spin polarized conduction electrons

in the two-dimensional electron gas of field effect transistors.
Based on the scattering theory, we propose a donor-based
approach to the problem of in situ carrier spin detection in
silicon. At the limit of a single donor impurity, this mecha-
nism also provides a path for the readout of single donor spin
states that does not require proximity to �or presence of�
charge traps.2,11–13

Consider a silicon transistor with a series of different
group V donor impurities implanted along its conduction
channel �Fig. 1�. Spatially resolved characterization of car-
rier spin polarization is obtained by measuring the source-
drain current when each donor species is in resonance with a
microwave field.

This is possible due to SDS, which relies solely on the
symmetry of impurity scattering events.9,14,15 While this ef-
fect was believed to be observed through EDMR in Ref. 9
amidst competing heating effects, it was only recently that
SDS was confirmed experimentally using a small ensemble
�6�106� of implanted antimony �Sb� donors.10 In the fol-

FIG. 1. �Color online� Silicon transistor with a ferromagnetic
source, inspired by the devices in Refs. 7 and 8. Our theory shows
that doping with different types of group V donor species along the
transistor channel enables the determination of the conduction
electron-spin-polarization distribution along the channel. Each do-
nor species has a distinct set of hyperfine-split electron-spin-
resonance frequencies, whose amplitude is directly proportional to
the local carrier spin and donor-electron-spin polarizations.
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lowing, we present a general microscopic theory of SDS, its
efficiency and tunability in a two-dimensional electron gas
�2DEG�. We show that the core physical mechanisms under-
lying SDS are virtual transitions mediated by negatively ion-
ized donor levels. Our results apply to all semiconductors but
are particularly useful as a probe of spin polarization in
group IV and related materials with weak spin-orbit cou-
pling, whose spin detection is intrinsically challenging. Our
physical optimization of this effect has exciting conse-
quences for spintronics and single donor-electron or nuclear-
spin readout.16

We remark that SDS is quite different from other EDMR
experiments based on spin-dependent recombination of
electron-hole pairs.13,17–22 As showed by Kaplan et al.,13

spin-dependent recombination has important contributions
that do not depend on carrier spin polarization pc. Hence it is
difficult to use recombination-based EDMR as a probe of
carrier spin polarization pc.

This paper is organized as follows. Section II presents a
general theory of SDS and its detection by EDMR in the case
of thermal equilibrium in an external magnetic field �no spin
injection�. Section III describes our explicit numerical calcu-
lations, together with a comparison between theory and two
experiments,9,10 and a discussion on how SDS can be opti-
mized with respect to donor impurity location. Section IV
discusses the validity of our perturbation-theory approach by
showing explicit calculations of the Kondo temperature as a
function of donor impurity location. Section V generalizes
our theory to the case of nonequilibrium spin injection and
discusses how EDMR scales with carrier spin polarization.
Section VI presents our conclusions.

II. THEORY OF SPIN-DEPENDENT IMPURITY
SCATTERING AND ELECTRICALLY DETECTED

MAGNETIC RESONANCE

Impurity scattering depends on whether the two-particle
states formed by a conduction and an impurity electron are in
a singlet �S� or triplet �T� configuration,

�kl
S/T =

1
�2

��kl�r1��1�r2� � �kl�r2��1�r1�� . �1�

Here �kl and �1 are orbital wave functions, respectively, of
a conduction electron with momentum k in the lth subband
and a localized donor impurity electron in the ground state.
Figure 2 shows the band diagram and potential profile for
conduction and impurity wave functions in the 2DEG.

Access to additional channels for virtual scattering in the
singlet state �Fig. 3� translates into distinct neutral impurity
scattering times for triplets vs singlets, �T��S. With spin
polarizations p= �p↑− p↓� / �p↑+ p↓� for conduction �pc� and
impurity �pi� electrons, the occupation fraction for singlets is
given by pS= �1− pipc� /4, and the fraction for triplets pT=1
− pS= �3+ pipc� /4. Due to this difference in singlet vs triplet
scattering times, the device current is directly related to the
spin polarizations according to

I � ��� = �pS�S + pT�T� � I0�1 + �pcpi� . �2�

Here we introduced the parameter � as a figure of merit for
the SDS effect. Equation �2� forms the basis of the SDS
mechanism of EDMR detection, which only occurs when the
carrier spin polarization pc is nonzero. At thermal equilib-
rium, and in the low-temperature “degenerate limit” �kBT
	Minl�
F−
sb,l	�, pc arises due to Pauli paramagnetism,

pc =
n↑ − n↓

n↑ + n↓
=

g�B

2�
F − 1
2 �
sb,1 + 
sb,2�� . �3�

Here n�, �= ↑ ,↓ is the electron density for spin species �, B
is the external magnetic field, g� /
=�e=1.8�107 �sG�−1 is
the free electron-spin gyromagnetic ratio, and 
sb,1 and 
sb,2
are the 2DEG subband ground-state energies.

FIG. 2. �Color online� Band diagram along the z direction per-
pendicular to the 2DEG plane, as shown in Fig. 1. Here Ec is the
conduction-band edge, 
F is the 2DEG Fermi energy, 
sb,l is the
ground-state energy for the lth subband, and 
1 is the ground-state
energy of a neutral donor �singly occupied�. We also show the do-
nor impurity ground-state wave function �1 and the conduction-
electron wave function �k,l with its characteristic length z0. As we
show below, only donors located at R�z0 can be detected by
EDMR.

FIG. 3. �Color online� Contributions to neutral impurity scatter-
ing. �a� The largest individual contribution to singlet scattering is a
virtual transition to a negatively ionized donor level, where two
electrons occupy the same �ground� orbital donor level 
1. Such a
transition is symmetry forbidden for triplets due to Pauli exclusion.
�b� Triplet scattering occurs due to virtual transitions into negatively
ionized donor levels where one electron occupies the level 
1, and
the other electron occupies an excited orbital state 
i�
1. These
same transitions into excited orbital states are also allowed for
singlets.
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Under microwave irradiation, the donor spin transition
rates are given by W
W↑=W↓ �the subscript refers to the
initial state of the transition�,

W��� = 2���eB��2
1

�T2
�

1

�� − �m�2 + � 1
T2

��2 , �4�

where B� is the amplitude of the microwave field, �m
=�e�B+hm� is the resonance frequency of the donor with
nuclear-spin state m=−I ,−I+1, . . . ,+I �hm is a hyperfine
shift�, and 1

T2
� is the inhomogeneous linewidth. The micro-

wave rate W competes with the donor spin-flip rate 1
T1

=�↑
+�↓ in order to determine a steady-state impurity spin polar-
ization,

pi =
pi0

1 + 2T1W
, �5�

where pi0=tanh� g�B
2kBT � is the equilibrium donor spin polariza-

tion.
When donor atoms are at resonance ��=�m� and satisfy

the saturation condition ��eB��2�1 / �T1T2
��, their spin polar-

ization vanishes, pi�0, effectively reducing the device cur-
rent by �I / I0��pcpi0. In the “clean limit,” when no other
scattering sources are competing with donor impurity scat-
tering, the figure of merit � is given by

� =

l��T,l − �S,l�


l�3�T,l + �S,l�
, �6�

where we added a subscript l to account for different sub-
bands. Note that the saturation condition depends critically
on the microwave amplitude B�, donor spin-flip rate 1

T1
, and

resonance linewidth 1
T2

� .
In transport measurements, SDS is always in competition

with other scattering sources, such as surface roughness and
lattice defects. We describe these phenomenologically by
adding a rate 1

�0
: 1

�S/T
→ 1

�0
+ 1

�S/T
. Usually, transport is domi-

nated by scattering sources other than neutral donors � 1
�0

�
1

�S/T
�, leading to a reduced figure of merit ��

�0

4 
l�
1

�S,l

− 1
�T,l

�	1.
The scattering amplitudes to second order in the Born

approximation are given by

Akl,k�l�
S/T = ��kl

S/T�H��k�l�
S/T � + 


i

��kl
S/T�H�iS/T��iS/T�H��k�l�

S/T �

�
1 + 
kl� − �
1 + 
i + U�
,

�7�

and the scattering rates due to a single donor impurity are

1

�S/T,l
=

2�





k�,l�

�Akl,k�l�
S/T �2�1 − cos �kk����
kl − 
k�l��

=
2�



�


l�

��Akl,k�l�
S/T �2�1 − cos �kk��� , �8�

where �kk� is the angle between incoming �k� and outgoing
�k�� conduction-electron wave vectors, with �k��=k averaged
over the Fermi distribution. In the degenerate limit we may

set k equal to the Fermi wave vector kF, but a more general
averaging procedure will be considered below. Here �

= m�A
2�
2 is the 2DEG energy density, with A as the 2DEG area.

The energy of the conduction electrons is assumed to be


kl=
sb,l+

2k�

2

2m� , with k�= �kx ,ky�, m� is the effective mass,
and 
sb,l is the ground-state energy of the lth subband. Equa-
tions �7� and �8� do not depend explicitly on electron Zee-
man energy because we assumed that the g factor of the
donor is the same as the g factor of the electrons �while it is
essential to consider different g factors for EDMR detection,
e.g., in Eq. �4�, the g-factor differences give only a negligible
effect in the calculation of transport properties, provided that
the external field B is not too large�.

The second-order contribution in Eq. �7� is a sum over
virtual �intermediate� states and is generally much larger than
the first-order contribution. Figure 3 illustrates the most im-
portant channels for neutral impurity scattering. These de-
pend on the two-particle Hamiltonian H only through the
donor single-particle orbital energies 
i, the donor “on-site”
Coulomb repulsion U, and the overlap between conduction
and impurity wave functions. The largest individual contri-
bution is a virtual transition to �
1+U�, which is a negatively
ionized donor level with two electrons in the ground orbital
state �Fig. 3�a��. This transition is only allowed for singlets
due to Pauli exclusion. Since singlet scattering also has the
channels for excited orbital states available, it is always
stronger than triplet scattering �which has access only to the
excited states� and in general ��0.

In these neutral-donor scattering events, the total spin of
conduction and donor electrons is always conserved, but
their respective spin states may be exchanged.23,24 In our
notation, �� is the rate for a donor with spin � to exchange
spin with a conduction electron having spin −�; using
�=+,− to denote the spin state, the rates can be written as

�� =
2�






kl,k�l�

�Jkl,k�l��
2��
kl − 
k�l��f�
kl + �

g�B

2
�

��1 − f�
k�l� − �
g�B

2
�� . �9�

Here Jkl,k�l�=Akl,k�l�
T −Akl,k�l�

S are exchange-scattering ampli-
tudes, and

f�
� =
1

e
−
F/kBT + 1
�10�

are Fermi functions. After converting the sums into integrals
over k space, the donor spin-flip scattering rate becomes

1

T1
= �↑ + �↓ =

2�



�2��Jk,k��

2�g�B coth� g�B

2kBT
� . �11�

As a check, note that the equilibrium donor spin polarization
is given by pi0= ��↓−�↑� / ��↑+�↓�=tanh� g�B

2kBT �. When kBT
�g�B, 1

T1
scales linearly with the temperature, while in the

opposite regime it scales linearly with B.
When other donor spin-flip mechanisms are active, we

must add their rate to Eq. �9�. Nevertheless, we will see
below that exchange scattering is the dominant contribution

SPIN-DEPENDENT SCATTERING IN A SILICON TRANSISTOR PHYSICAL REVIEW B 80, 045320 �2009�

045320-3



for donors in silicon in a wide parameter range.

III. MODEL CALCULATIONS AND COMPARISON TO
EXPERIMENT

A. Model Hamiltonian and virtual two-particle donor states

The two-particle Hamiltonian H that models the coupling
between a conduction plus a donor impurity electron can be
written explicitly as

H = H0�1� + H0�2� + CR�1� + CR�2� + Cee�1,2� − 2
F,

�12�

where for notational simplicity �1� denotes coordinate r1 and

�2� denotes coordinate r2. Here H0= T̂+Vz�z� is the transla-

tional invariant single-particle Hamiltonian, with T̂ as the
kinetic energy and Vz�z� as the 2DEG confinement �triangu-
lar at low z but flattens out at high z �see Fig. 2��. CR is the
attractive Coulomb potential of the impurity, and Cee is the
Coulomb electron-electron repulsion,

CR�i� = −
e2

�

e−qTF�ri−R�

�ri − R�
, �13a�

Cee�1,2� =
e2

�

e−qTF�r1−r2�

�r1 − r2�
, �13b�

where R=Rẑ is the location of the donor impurity and �
�12 is the dielectric constant for silicon. Since we are in the
degenerate limit, it is important to account for screening; we
use Thomas-Fermi screening with wave vector,

qTF =� 6�e2n2D���z��2


F − 1
2 �
sb,1 + 
sb,2�

, �14�

where n2D is the 2DEG density and ��z� is the subband wave
function defined below. Note that the last term in Eq. �12� is
the chemical potential times the number of particles.

In order to compute the scattering amplitudes �Eq. �7��,
we need to choose a set of virtual states �iS/T� that forms a
complete basis for the two-particle Hilbert space. An impor-
tant insight is that the conduction electron may hop into the
impurity site, form a negatively ionized virtual donor state,
and then hop back into the Fermi sea. This motivates the
choice of a molecular-orbital basis of negatively ionized do-
nor states,

�iS/T� =
1
�2

���1�i� � ��i�1��, i = 1,2,3, . . . , �15�

where �i�r� is a donor orbital state with single-particle en-
ergy 
i, satisfying �H0+CR���i�=
i��i�. Note that i=1 refers
to the ground orbital state and i=2,3 , . . . refers to other ex-
cited donor single-electron orbitals. From Eq. �15� we see
that the state �1� only exists as a singlet, �1T�=0.

The simplest molecular-orbital approximation is to as-
sume

H�iS/T� � �
1 + 
i + U − 2
F��iS/T� . �16�

Using this relation, we see that the second-order contribution
in Eq. �7� depends only on the energies 
i and U and on the

overlap integral Skl,i= ��kl ��i�. Note also that states of the
type ��i� j�� �� j�i� with i , j�1 do not contribute to Eq. �7�
�they are orthogonal to Eq. �1��.

B. Microscopic model for single-particle states and overlap
integral

Bulk silicon has a sixfold degenerate conduction band,
with energy minima located at k0=0.85�2� / �5.43 Å�
along the set of �100� directions in the Brillouin zone. Its
effective mass is anisotropic. Each valley has a heavy mass
equal to 0.98me along the valley direction and a much lighter
mass m�=0.19me in the perpendicular plane �me is the free
electron mass�. In the presence of a �001� interface, electrons
in the valleys along ��001� will have considerably lower
energy, a consequence of the heavy longitudinal mass.25 This
leads to the following two-subband model for the
conduction-electron wave functions: �kl�r�=�l�z�eik·r� /�A,
with A as the 2DEG area and l=1,2 as a subband label. The
subband wave functions are given by �1�z�
=��z��2cos�k0z� and �2�z�=��z��2sin�k0z�. For z�0, we
use the Takada-Uemura envelope function,

��z� =� 3

2z0
� z

z0
�e−1/2�z/z0�3/2

, �17�

that is known to be an excellent analytic approximation to
the self-consistent 2DEG ground state �see p. 468 of Ref.
25�. We assume that ��z�=0 for z�0. The characteristic
length scale z0 models the 2DEG width, which can be con-
trolled electrically by the gate voltage. Our choice of �l cor-
responds to pure imaginary intervalley scattering at the inter-
face �other choices of intervalley scattering phase simply
give a phase shift to the cosine and sine functions, which is
equivalent to changing the position of the interface�.26 The
conduction-electron states are assumed to satisfy H0��k,l�
=
kl��k,l�, where 
kl=


2

2m� k�
2 +
sb,l. Each subband has energy


sb,l at k=0, with valley splitting �
sb,2−
sb,1� /kB=0–100 K
depending on interface quality and device geometry.27,28

We now discuss model wave functions for the donor im-
purity. We expect that donors located too close to the inter-
face will have quite high 1

T1
, and the EDMR saturation con-

dition ��eB��2�1 / �T1T2
�� will not be satisfied. For this

reason, we expect that only donors located far enough from
the interface �at depths R�z0� can contribute to EDMR.
Therefore it is sufficient to use donor wave functions that are
good approximations in the bulk. Those are the Kohn-
Luttinger wave functions,29

�i�r − R� = Fi�r − R�

j=1

6

�ije
ikj·�r−R�. �18�

For simplicity, we used an isotropic envelope Fi�r−R�
�e−r�/ai

�

/��ai
�3, with r�2=x2+y2+ �z−R�2. The Bohr radius

depends on the hydrogenic principal quantum number n ac-
cording to ai

��n2a1
� �we used a1

�=18.6 Å�. The principal
quantum number n relates to the subscript i according to n
= �i div 6�+1. Below we will list the donor energy levels
with the zero of energy chosen at flat band �the bulk
conduction-band edge�.
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The valley vectors k j are given by k1=+k0x̂, k2=−k0x̂,
k3=+k0ŷ, k4=−k0ŷ, k5=+k0ẑ, and k6=−k0ẑ. The correspond-
ing �ij are conveniently written as six-dimensional vectors.
Each hydrogenic envelope has six different valley-split
states, classified by symmetry. The lowest energy state for Sb
has 
1=−45 meV with A1 symmetry, �A1

= 1
�6

�1,1 ,1 ,1 ,1 ,1�.30 This is followed by a threefold degen-
erate T1 symmetry level, with energy 
2=−33 meV and
�T1= 1

�2
�1,−1,0 ,0 ,0 ,0�, 1

�2
�0,0 ,1 ,−1 ,0 ,0�, and

1
�2

�0,0 ,0 ,0 ,1 ,−1�. Note that only the last state couples to
the �001� subbands. The highest energy level has E symme-
try with energy 
3=−31 meV and is twofold degenerate,
�E= 1

2 �1,1 ,−1 ,−1,0 ,0� or 1
2 �1,1 ,0 ,0 ,−1 ,−1�. Again, only

one of these couples to electrons in the lowest energy sub-
band. For principal quantum number n�2 we assumed that

n=
1 /n2 with degeneracies 6n2. Finally, we used U
=43 meV for the on-site Coulomb repulsion. This corre-
sponds to a binding energy of ED−=−�
1+U�=2 meV; this
is quite similar to the binding energy of 1.6 meV measured
for phosphorous �P� in silicon31 and calculated by Oliveira
and Falicov.32 We are not aware of measurements of ED− for
Sb impurities.

One important point is that the overlap integral between
conduction electrons in the lth valley and the impurity elec-
tron Skl,i= ��kl ��i� is strongly oscillatory on R. For nota-
tional convenience, define s1=cos�k0R� and s2=sin�k0R�, and
set s3
s1. After a simple calculation we see that Skl,i�sl
apart from a smooth envelope whenever the valley symmetry
of donor orbital i is “even” �� cos�k0�z−R��	, and Skl,i
�sl+1 when the valley symmetry of orbital i is “odd”
�� sin�k0�z−R��	. These oscillations occur due to valley in-
terference in a similar fashion as the exchange oscillations
between two donor impurities in silicon.33–35

C. Contributions to the scattering amplitude

We start by evaluating explicitly the first-order contribu-
tions to Eq. �7�. To get an idea of the order of magnitude of
each contribution, we will quote numerical values for a
single donor located at R=6z0, with parameters A
= �1 �m�2, 
F=−9.32 meV, 
sb,1=
sb,2=−10 meV, and z0
=40 Å. In this case the overlap integral between conduction
electron at 
F and donor ground state was Sk,1s1, with Sk,1
=1.31�10−4.

Let us consider the first-order contribution to Eq. �7�. Us-
ing H0��kl�=
kl��kl� and �H0+CR����=
1���, we get

��kl
S/T�H��k�l�

S/T � = ��kl�CR��k�l�� + ��kl��Cee��k�l���

� ��
1 − 
F�Sk,1Sk�,1
� slsl�

+ ���CR��k�l��Sk,1sl� + ���kl�C12��k�l���� .

�19�

The first contribution on the right-hand side is attractive
Coulomb potential scattering �always negative�, and the sec-
ond contribution is repulsive scattering from the donor-
electron cloud. This has the same order of magnitude as the
first term but the opposite sign. Assuming sl=sl�=1 �maxi-
mum value� these terms are, respectively, −8.1, and

+8.5 neV. The first term inside the brackets equals
−0.61 neV, the second −0.3 neV, and the third +0.2 neV.
Hence we have ��kl

S �H��k�l�
S �=−0.3 neV and ��kl

T �H��k�l�
T �

=+1.1 neV. Interestingly, in this particular case the first-
order contribution to Eq. (7) favors triplet scattering. Actu-
ally, computations for different donor positions R show that
the first-order contribution changes sign several times as the
donor position R is varied.

We now turn to second-order contributions to Eq. �7�. We
remark that these are always negative for singlets and for
triplets because 
1�
F�
1+U�
i+U for i=2,3 , . . .. The
largest individual contribution is a virtual transition to a
negatively ionized donor state with two electrons occupying
the donor ground state. This contributes exclusively to sin-
glet scattering. Using Eq. �16� we get

��kl
S �H�1S��1S�H��k�l�

S �


kl − 
1 − U
=

− 2�2
1 + U − 2
F�2�Sk,1�2slsl�


1 + U − 
F
,

�20�

which equals −3.7 neV for the particular case considered.
This is more than three times larger than the first-order con-
tribution mentioned above. We checked several other param-
eter regimes and found Eq. �20� to be two to ten times larger
than the first-order contribution �singlet or triplet�.

All the other second-order terms contribute equally to sin-
glet and triplet. The largest of these involve virtual excited
states to the n=1 state with T1 or E symmetry. The T1 state
contribution is

− 3
�
1 + 
4 + U − 2
F�2�Sk,1�2sl+1sl�+1


4 + U − 
F
= − 0.95 neV,

�21�

and the E contribution is

−
3

2

�
1 + 
6 + U − 2
F�2�Sk,1�2slsl�


6 + U − 
F
= − 0.47 neV. �22�

The contributions with principal quantum number n�2
may be lumped together in a sum,

− 

n=2

 

!n = − 

n=2

 

n2 �
1 + 
n + U − 2
F�2


n + U − 
F
�Sk,n�2

��5

2
slsl� + 3sl+1sl�+1� � − 1.3 � 104 neV,

�23�

since there are 3n2 orbital couplings to the 2DEG valleys,
each with energy 
n=
1 /n2. The envelope of the overlap in-
tegrals is defined as

Sk,n =
1
�3
� d3r��z�

eik·r�

�A
Fn�r − R� . �24�

We get !2=390 neV, !3=6170 neV, !4=4164 neV, !5
=1367 neV, !6=425 neV, and !8=50 neV. The !n reach
a maximum for n=3 and then decrease appreciably with in-
creasing n because the Sk,n’s become exponentially small. As
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a result, we get a good approximation by evaluating the sum
up to nmax=4. We found that the contributions for n�5 pro-
duce negligible changes to our final result.

Hence the sum of the second-order contributions in Eq.
�7� can be as much as 104 times larger than the first-order
contributions. It is interesting to note that the difference be-
tween singlet and triplet rates is determined by the difference
between squared amplitudes: 1

�S
− 1

�T
� �Akl,k�l�

S �2− �Akl,k�l�
T �2,

which is on the order of 104 neV2. This is several orders of
magnitude larger than the square of the exchange-scattering
amplitude, which determines exchange scattering: 1

T1

� �Akl,k�l�
T −Akl,k�l�

S �2 is only �10 neV2. Therefore, we see
that exchange scattering is quite different than SDS in the
sense that the latter benefits from a large number of addi-
tional electronic transitions.

D. Dependence of EDMR parameters on donor depth

We now show explicit numerical calculations of the pa-
rameters determining EDMR detection and discuss their de-
pendence with donor depth R. The figure of merit � is shown
in Fig. 4, and the donor spin-flip rate 1

T1
due to the exchange-

scattering mechanism is shown in Fig. 5. Both � and 1
T1

decrease appreciably as R increases relative to the 2DEG
thickness z0 and are quite sensitive to 
F−
sb,l �or, equiva-
lently, the 2DEG area density�. We used 
F−
sb,1
=0.68 meV and considered two different cases: valley de-
generate with 
sb,1=
sb,2=−25 meV and valley split with

sb,2=−15 meV and 
sb,1=−25 meV. Both � and 1

T1
are in-

dependent of the 2DEG area A; � depends sensitively on the

scattering time due to other sources; and we used �0
=0.4 ps, which is equivalent to a typical transistor mobility
of 4�103 cm2 / �Vs� � 1

T1
is independent of �0�. We assumed

that T=5 K and B=0.36 T �� does not depend on B and is
nearly independent of T in the valley-degenerate case�.

Figure 5 shows that exchange scattering is several orders
of magnitude stronger than conventional spin-phonon cou-
pling of isolated donor impurities. For example, Feher and
Gere36 measured 1

T1
�10−1 s−1 for phosphorous donors in

bulk silicon at T=5 K and B=0.36 T.
Interestingly, the EDMR amplitude depends on whether

the device temperature is larger than the valley-splitting en-
ergy or not. At large temperatures �or small valley splittings�,
� and 1

T1
are smooth functions of R �apart from tiny oscilla-

tions� because contributions from the two subbands comple-
ment each other �dark curves�. For the opposite regime of
temperature lower than valley splitting, the parameters are
strongly oscillatory on R �gray curves�. In this case 1

T1
be-

comes quite small for some donor positions close to the in-
terface, suggesting that a fraction of the donors located at
“lucky sites” might be detectable by EDMR. In Figs. 4 and 5
we used filled circles to denote the actual silicon lattice sites
that may be occupied by substitutional donors.

E. Comparison to experiment

Our theory can be directly compared to experiments.
Ghosh and Silsbee9 measured �I / I0= �Ioff res.− Iat res.� / I0�
−10−5 at high power �the current increased upon resonance�,
while at lower power they found that �I changed sign. In this
study, a silicon transistor bulk doped with phosphorous im-
purities was used. Lo et al.10 measured much lower ampli-
tudes ��I� / I0=10−8–10−7, with antimony donors implanted
only into the transistor channel. Unfortunately the use of
derivative detection did not allow the determination of the
sign of �I.

Our theory disagrees in sign with the measurements of
Ref. 9, suggesting that their high power signal was not due to
the SDS mechanism. Instead it was likely due to the 2DEG
heating mechanism.37

We now compare our explicit numerical results with the
experimental data of Lo et al.10 Our theory allows the pre-
diction of the device current for a given donor distribution
without any fitting parameters. Denote Nj =A�z nd�zj� as the
number of donor impurities located in the interval �z=zj+1
−zj, with nd�zj� as the volume density of donors in the
�z-thick layer. The EDMR signal averaged over the donor
profile is simply given by

I − I0

I0
= pc


j

Nj��zj�pi�zj� . �25�

We obtained the depth-dependent donor density nd�z� from
secondary ion mass spectroscopy �SIMS� measurements. Our
explicit model calculations of the EDMR current are shown
in Table I for all measurements made in Ref. 10. The EDMR
response predicted by theory is in reasonable agreement with
experiment.

D o n o r d e p t h R / z 0

α

3 4 5 6 7
1 0 - 7

1 0 - 6

1 0 - 5

1 0 - 4

1 0 - 3

1 0 - 2

FIG. 4. Figure of merit � as a function of donor depth R divided
by the 2DEG thickness z0. Dark curve: valley-degenerate case.
Grey curve: valley split case, with 
sb,2−
sb,1�kBT. Filled circles
denote actual sites of the diamond lattice, which may be occupied
by donors.

D o n o r d e p t h R / z 0

1
/T

1
(s

-1
)

3 4 5 6 7
1 0 2

1 0 3
1 0 4
1 0 5

1 0 6
1 0 7
1 0 8

1 0 9
1 0 1 0
1 0 1 1

FIG. 5. Donor impurity exchange-scattering rate 1
T1

as a function
of donor depth R /z0 �same parameters as in Fig. 4�.
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F. Physical optimization of EDMR

Table I shows that the SDS contribution to EDMR is
much weaker than anticipated on the basis of previous
measurements.9 We now describe a physical optimization
that aims at maximizing ��I� / I0 for the minimal number of
donor impurities.

The SDS parameters � and 1
T1

decrease rapidly with in-
creasing donor depth R, an effect that has important implica-
tions for the optimization of the EDMR amplitude. Notably,
for given B�, the EDMR signal will be maximal for donors
satisfying 1

T1
�R���T2

���eB��2. The location R� is the closest
one to the interface that satisfies the saturation condition
��eB��2�1 / �T1T2

��.
Figure 6 shows the EDMR amplitude as a function of

donor location for a single donor implanted in the center of a

transistor of area 0.1 ��m�2. We assumed microwave am-
plitude B�=0.3 G, 2DEG density 1.1�1011 cm2, with
other parameters as in Table I.

Interestingly, the EDMR amplitude depends on whether
the device temperature is larger than the valley-splitting en-
ergy or not. At large temperatures, ��I� / I0 is a smooth func-
tion of R because contributions from the two subbands
complement each other. In this case a single donor placed at
the sweet spot R��5.5z0 is optimally detected by EDMR
�dark curve in Fig. 6, with 
sb1=
sb2=−25 meV�. For the
opposite regime of temperature lower than valley splitting,
��I� / I0 is strongly oscillatory on R, and donors closer to the
interface can be detected as well �oscillating gray curve in
Fig. 6, with 
sb1=−25 meV and 
sb2=−15 meV�.

Figure 6 shows that EDMR is able to detect a single do-
nor spin implanted in a transistor of area 0.1 ��m�2. For
typical I0�5 �A, current modulations �I�0.1 pA are de-
tectable with standard techniques provided that the donor is
placed at the sweet spot R�. A single donor resonance may be
identified by the presence of only one hyperfine satellite line
out of the full satellite spectrum with 2I+1 lines �for donor
nuclear spin I� for measurements within the nuclear-spin-flip
time.16

The EDMR amplitude is directly proportional to the do-
nor area density per monolayer. Therefore, if 6�106 Sb do-
nors were to be placed exactly at the sweet spot R� in a large
transistor of area �103 ��m�2, the signal would be ��I� / I0
�10−5, 2 orders of magnitude higher than in Ref. 10.

IV. KONDO TEMPERATURE AND VALIDITY OF
PERTURBATION THEORY

Our approach is based on perturbation theory �Eq. �7��.
This is known to be a good approximation only when the
temperature is larger than the characteristic Kondo tempera-
ture TKondo. For our problem, the Kondo temperature may be
written as38

kBTKondo = ��
1 + U − 
F��
F − 
sb��J��e−�1/�J���, �26�

where J= �Jkl,k�l�� is an average exchange energy at the Fermi
level �averaged over subbands� and 
sb is taken as the lowest
subband energy. Equation �26� applies when 
1+U�
F and

1�
sb�
F. The first term in the square root is a character-
istic particle excitation bandwidth for electrons tunneling
into the donor, while the second term is a hole excitation
bandwidth.

Figure 7 shows our calculated Kondo temperature as a
function of donor depth. Here we see that for R�3z0, we
have TKondo	0.1 K. Hence, even at the lowest temperatures
achievable experimentally, there is no Kondo effect for do-
nors located at R�3z0�T�TKondo�.

In the valley-degenerate regime, only donors around R
�5.5z0 can be detected by EDMR, as shown in Fig. 6 �do-
nors closer to the interface can be detected at higher power�.
Hence we see that donors located in this region satisfy T
�TKondo for the lowest temperatures achievable in the labo-
ratory, and our perturbation-theory approach is justified. In
the valley-degenerate case, both the EDMR current as well
as the Kondo temperature are strongly oscillatory with donor

TABLE I. Comparison between theory and experiment �Ref. 10�
at T=5 K and B=0.36 T with an inhomogeneously broadened
linewidth of 1

�eT2
� =2 G. Our theoretical calculations of �I / I0 were

obtained by multiplying the donor density by the scattering rate due
to a single donor and integrating over donor depth. We used 2DEG
thickness z0=50 Å, valley-degenerate subband energy 
sb,1=
sb,2

=−25 meV�zero energy is at flat band�, and transistor mobility 4
�103 cm2 /Vs �corresponds to �0=0.4 ps�.

n2DEG

�1011 cm−2�
B�

�G�

Experiment Theory
��I�
I0

�10−8�

��I�
I0

�10−8�

1.1 0.3 10 5.6

2.2 0.3 4.0 2.2

3.8 0.3 2.0 0.5

2.2 0.07 1.0 0.5

2.2 0.14 2.5 1.0

2.2 0.19 3.5 1.4

2.2 0.28 4.0 2.1

2.2 0.55 5.0 3.8

D o n o r d e p t h R / z 0

|∆
I|
/I
0

(1
0
-8
)

2 3 4 5 6 7
0

1

2

3

4
S w e e t s p o t R *

FIG. 6. EDMR amplitude at T=5 K as a function of donor
placement, for zero valley splitting �dark curve� and for valley split-
ting equal to 100 K �oscillating gray curve, with filled circles de-
noting actual donor sites of the diamond lattice�.
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depth, and again it can be seen that all donors that are de-
tectable by EDMR have extremely low TKondo. Note that the
behavior of TKondo as a function of donor depth is qualita-
tively similar to exchange scattering; as a consequence, all
donors with 1

T1
low enough to be detectable by EDMR have

a corresponding quite small TKondo.

V. SPIN INJECTION

We now discuss the spin injection regime. Under spin
injection, each spin species has different quasi-Fermi ener-
gies, 
F↑�
F↓.

1 For kBT	Min�
F�−
sb,l	, the carrier polar-
ization is well approximated by

pc =
n↑ − n↓

n↑ + n↓
�

2�
F↑ − 
F↓ + g�B�

l�
F↑ + 
F↓ − 2
sb,l�

. �27�

Here n�=��d
f��
� is the 2DEG area density for each spin
subband.

The impurity scattering times �S/T must now be calculated
for each spin subband,

��S/T,l�� =
��d
�
 − 
sb,l + �

g�B
2 ��−

�f�

�
 ��S/T,kl

� �d
�
 − 
sb,l + �
g�B

2 ��−
�f�

�
 �
, �28�

where we added a spin subscript to the scattering times
and the Fermi functions. The energy integrals are from
�
sb,l−�

g�B
2 � to  . The current is now calculated as in

Eq. �2�, using pS= �1− pi� /4 for the spin-up subband and pS
= �1+ pi� /4 for the spin-down subband, with pT=1− pS in
each case. In addition, each ��S/T�� must be multiplied by its
corresponding density n�. The source-drain current becomes

I − I0

I0
=


ln↑���Tl�↑ − ��Sl�↑� − n↓���Tl�↓ − ��Sl�↓�

ln↑�3��Tl�↑ + ��Sl�↑� + n↓�3��Tl�↓ + ��Sl�↓�

pi.

�29�

Interestingly, under spin injection the scattering times are
intertwined with the densities n�, and a figure of merit �
independent of pc cannot be defined. Note that when ��S/T�↑
= ��S/T�↓, Eq. �29� becomes �I / I0=�pcpi, as obtained previ-
ously.

The donor spin transition rates are also modified. Follow-
ing from Eq. �9�, ����d
f−��
��1− f��
−�

g�B
2 ��, leading to

1

T1
=

2�



�2��Jkl,k�l��

2��
F↑ − 
F↓

+ g�B�coth� 
F↑ − 
F↓ + g�B

2kBT
� . �30�

The steady-state impurity polarization becomes

pi0 = tanh� 
F↑ − 
F↓ + g�B

2kBT
� . �31�

Figure 8 shows EDMR line shapes under spin injection,
using T=5 K, B�=0.3 G, and doping profile and other pa-
rameters similar to Ref. 10. The 2DEG density is fixed at 2
�1011 cm−2, and the conduction electron-spin polarization
is varied between 2% and 75%. At low pc, the EDMR am-
plitude scales as pcpi0� pc

2 since � remains unchanged and
pi0 scales proportional to pc due to exchange scattering �Eq.
�31��. In this regime, EDMR can be used as a local probe of
carrier spin polarization.

However, as pc is increased beyond the threshold

pT =
Max�2kBT,g�B	

�
F↑ + 
F↓� − �
sb1 + 
sb2�
, �32�

the spin-flip rate starts increasing as 1
T1

� pc because any do-
nor spin antiparallel to the 2DEG spins will relax rapidly
�note that Eq. �30� becomes proportional to pc when pc

� pT�. By virtue of these larger 1
T1

’s, EDMR will excite do-
nors further away from the interface, tending to decrease
�I / I0. Remarkably, this effect competes against the pc

2 scal-
ing, saturating �I / I0 for pc� pT. While this limits EDMR as
a probe of carrier spin for pc" pT, it also demonstrates that
EDMR detection is optimal at pc� pT.

VI. CONCLUSIONS

In conclusion, we presented a microscopic theory of spin-
dependent scattering in the interaction of conduction elec-
trons with neutral-donor atoms. Our results are based on an
effective-mass approximation. More sophisticated ap-
proaches are likely to reduce the valley oscillations,35 with
no modification to our conclusions. The considered mecha-
nism requires temperatures lower than the impurity binding

D o n o r d e p t h R / z 0

T
K
o
n
d
o

(K
)

1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0
0

1

2

3

4

5

FIG. 7. Kondo temperature as a function of donor depth R /z0

�same parameters as in Fig. 4�. Note that the Kondo temperature is
exponentially small for R�3z0; this justifies our perturbative
approach.

B ( 1 0 3 G )

|∆
I|
/I
0

3 . 5 8 3 . 5 9 3 . 6 0 3 . 6 1 3 . 6 2

1 0 - 8

1 0 - 7

1 0 - 6

1 0 - 5

1 0 - 4

p c

|∆
I|
/I
0

0 0 . 2 0 . 4 0 . 6 0 . 8
1 0 - 7

1 0 - 6

1 0 - 5

p c = 2 %

p c = 3 0 %

FIG. 8. EDMR line shape under spin injection, for carrier spin
polarization pc=2,6 ,10,20,30%. Inset: EDMR amplitude at reso-
nance, as a function of pc.
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energy �T�100 K�, but even higher temperatures may be
achieved using deep level magnetic atoms or clusters.

We showed that SDS is determined by virtual transitions
into doubly occupied donor states. As a result, SDS always
leads to a reduced current upon EDMR saturation since �
�0.

A recent experiment39 demonstrates that the EDMR cur-
rent due to SDS is indeed reduced upon donor spin saturation
�Fig. 2�c� in Ref. 39�, in agreement with our proposed virtual
transition mechanism.

Spin-dependent scattering detection is challenging due to
competing heating effects,9 which are directly proportional
to the number of donors present. Our finding that SDS arises
solely from impurity spins located within a narrow depth
window with respect to the 2DEG shows a path to significant
optimization of spin signal intensity for a minimal number of
donors placed into this depth window and underpins the de-
velopment of single spin readout devices.

Our theory shows how the EDMR amplitude will scale
with carrier spin polarization in the regime of spin
injection.3,7,8 Therefore, the monitoring of donor-electron-
spin resonances can be utilized for the spatially resolved
characterization of conduction electron-spin polarization,
providing a sensitive probe for optimization of spin injection
and spin transport in semiconductors with indirect band gap
and weak spin-orbit coupling.
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