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Based on general symmetry considerations, we investigate how the dependence of the tunneling anisotropic
magnetoresistance �TAMR� on the magnetization direction is determined by the specific form of the spin-orbit
coupling field. By extending a phenomenological model, previously proposed for explaining the main trends of
the TAMR in �001� ferromagnet/semiconductor/normal-metal magnetic tunnel junctions �MTJs� �J. Moser et
al., Phys. Rev. Lett. 99, 056601 �2007��, we provide a unified qualitative description of the TAMR in MTJs
with different growth directions. In particular, we predict the forms of angular dependences of the TAMR in
�001�, �110�, and �111� MTJs with structure inversion asymmetries and/or bulk inversion asymmetries. The
effects of in-plane uniaxial strain on the TAMR are also investigated.
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I. INTRODUCTION

The tunneling anisotropic magnetoresistance �TAMR� ef-
fect refers to the dependence of the magnetoresistance of
magnetic tunnel junctions �MTJs� on the absolute orienta-
tion�s� of the magnetization�s� in the ferromagnetic lead�s�
with respect to the crystallographic axes.1–4 Unlike the con-
ventional tunneling magnetoresistance �TMR� effect, the
TAMR is not only present in MTJs in which both electrodes
are ferromagnetic but may also appear in tunneling structures
with a single magnetic electrode.1,5 Because of this remark-
able property, if the major challenge of increasing the size of
the effect at room temperature is solved, the TAMR could be
an attractive candidate for applications in the design of new
spin-valve-based devices whose components could operate
with a single magnetic lead. In what follows we focus our
discussion on the case of MTJs in which only one of the
electrodes is ferromagnetic.

The TAMR has been experimentally and theoretically in-
vestigated in a variety of systems under different
configurations.1–19 This diversity has made it difficult to
build a unified theory of the TAMR. In fact, although there
exists a general consensus in identifying the spin-orbit cou-
pling �SOC� as the mechanism responsible for the TAMR, it
has been recognized that the way the SOC influences the
TAMR may depend on the considered system and configu-
ration.

Two different configurations, the in-plane and out-of-
plane configurations, have been considered for investigating
the TAMR �for an extensive discussion see Ref. 19 and ref-
erences therein�. The in-plane TAMR refers to the changes in
the tunneling magnetoresistance when the magnetization di-
rection, defined with respect to a fixed reference axis �x�, is
rotated in the plane of the ferromagnetic layer. The in-plane
TAMR ratio is defined as19

TAMR�x�
in ��� =

R�� = 90 ° ,�� − R�� = 90 ° , � = 0�
R�� = 90 ° , � = 0�

, �1�

where R�� ,�� denotes the tunneling magnetoresistance for
the magnetization oriented along the direction defined by the
unit vector m̂= �sin � cos � , sin � sin � , cos �� �see Fig. 1�.

In the out-of-plane configuration, the TAMR measures the
changes in the tunneling magnetoresistance, when the mag-
netization is rotated within the plane defined by the reference
axis �x� and the direction normal to the ferromagnetic layer.
The out-of-plane TAMR is given by19

TAMR�x�
out��� =

R��,� = 0� − R�� = 0, � = 0�
R�� = 0, � = 0�

. �2�

An important property of the TAMR is the form of its
angular dependence. It has been experimentally shown that
both the in-plane and out-of-plane TAMR exhibit a rather
regular and relatively simple angular dependence with a
well-defined symmetry, in spite of the highly complicated
band structure of the considered systems.4,5,11,17 This sug-
gests that although the size of the TAMR may depend on the
detailed band structure of the system, its angular dependence
is essentially determined by the symmetry properties of the
SOC field. Here we investigate how the specific form of the
TAMR angular dependence emerges from the properties of
the SOC field.

A phenomenological model, which incorporates the ef-
fects of the interference of Bychkov-Rashba and Dresselhaus
SOCs was recently developed to explain the in-plane TAMR
in �001� ferromagnet/semiconductor/normal-metal
MTJs.5,12,19 In particular, it was shown that, in spite of its
relative simplicity, the model was able to reproduce the two-
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FIG. 1. �Color online� Schematic of a MTJ composed of a
normal-metal lead �bottom layer�, a semiconductor or insulator bar-
rier �central layer�, and a ferromagnetic electrode �top layer�. The
vector m̂ indicates the magnetization orientation, while �x� denotes
a reference crystallographic axis.
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fold symmetric angular dependence of the in-plane TAMR
experimentally observed in �001� Fe/GaAs/Au MTJs.5,12 In
such heterojunctions all the involved materials are cubic in
their bulk forms. Therefore, the twofold anisotropy of the
in-plane TAMR must originate from the interfaces. Here we
generalize the model and provide a unified qualitative de-
scription of the angular dependence of both the in-plane and
out-of-plane TAMRs in �001�, �110�, and �111� MTJs. We
consider systems in which the SOC originates from structure
inversion asymmetry �SIA� �Bychkov-Rashba-type SOC�
and/or bulk inversion asymmetry �BIA� �Dresselhaus-type
SOC� and predict different forms of the TAMR angular de-
pendence which could be tested in future experiments. The
effects of uniaxial strain are also discussed.

II. THEORETICAL MODEL

We consider a MTJ composed of a ferromagnetic elec-
trode and a normal-metal counter electrode separated by an
insulator or a semiconductor barrier. However, our conclu-
sions are also valid for the case of MTJs with two ferromag-
netic electrodes, whose magnetizations are parallel to each
other, since such systems are qualitatively similar to the case
of MTJs with a single ferromagnetic lead.

The z direction is fixed along the normal to the ferromag-
netic layer �i.e., parallel to the growth direction�. The effec-
tive spin-orbit interaction corresponding to the nth band can
be written as

HSO = wn�k� · � , �3�

where wn�k�= �wnx�k� ,wny�k� ,wnz�k�� is the effective SOC
field associated to the nth band, k is the wave vector, and �
is the vector whose components are the Pauli matrices. Equa-
tion �3� is quite general, since by now we have not consid-
ered any specific form for the SOC field. The detailed form
of the SOC field can be quite complicated as one goes away
from the center of the Brillouin zone and quite different from
band to band, as recently demonstrated by first-principles
calculations.20

Due to the presence of the spin-orbit interaction, the trans-
missivity Tn�k ,m̂� corresponding to the nth band becomes
dependent on the magnetization direction m̂. Assuming that
the strength of the SOC field is small relative to both the
Fermi energy and the exchange splitting, one can expand the
transmissivity in powers of wn�k�. For a given n and k there
are only two preferential directions in the system, defined by
m̂ and wn. Since the transmissivity is a scalar function, it can
be written, to second order in the SOC field strength, in the
form5,12,19

Tn�k,m̂� � a1n
�0��k� + a1n

�1��k��m̂ · wn�k�� + a1n
�2��k��wn�k��2

+ a2n
�2��k��m̂ · wn�k��2, �4�

which represents the most general expansion �up to second
order� of a scalar function �the transmissivity� in terms of
two vectors �m̂ and wn�. Note that the arguments used for
obtaining Eq. �4� are also valid for MTJs with two ferromag-
netic electrodes, whose magnetizations are parallel to each
other along the direction m̂. The expansion coefficients,

ain
�j��i=1,2 ; j=0,1 ,2�, refer to the system in the absence of

the SOC field, and therefore, do not depend on m̂. Since
these coefficients reflect the cubic symmetry of the involved
bulk materials, they obey the relations ain

�j��kx ,ky�=ain
�j��−kx ,

−ky�, ain
�j��kx ,ky�=ain

�j��−kx ,ky�, and ain
�j��kx ,ky�=ain

�j��ky ,kx�.
Cases in which the involved materials have other than cubic
symmetries in their bulk form can be treated analogously.

Within linear-response theory, the conductance G through
the MTJ is determined by the states at the Fermi energy EF.
In such a case kz=kz�EF ,k�� and the k dependence of the
transmissivity reduces to the in-plane k� dependence at E
=EF. One can then write

G�m̂� =
e2

�2��3h
�

n
	 d2k�Tn�k�,m̂� =

g0

8�2�
n


Tn�k�,m̂�� ,

�5�

where Tn�k� ,m̂� is the transmissivity at E=EF and g0
=2e2 /h is the conductance quantum. In Eq. �5� and in what
follows, we use the simplified notation 
¯ � for the integra-
tion over k� on the Fermi surface.

The time-reversal symmetry implies that Tn�k ,m̂�=Tn�
−k ,−m̂� and wn�k�=−wn�−k�. It follows then from Eq. �4�
that the first-order term in the expansion must be an odd
function of k and will, therefore, vanish after integration
over k�. As a result the conductance can be rewritten as

G�m̂� = G�0� + Giso
�2� + Ganiso

�2� �m̂� , �6�

where G�0� is the conductance in the absence of SOC, Giso
�2�

� 
a1n
�2��k���wn�k���2� and

Ganiso
�2� �m̂� =

g0

8�2�
n


a2n
�2��k���m̂ · wn�k���2� �7�

are the isotropic and anisotropic SOC contributions, respec-
tively. In terms of the components of m̂ and the SOC field,
Eq. �7� reduces to

Ganiso
�2� ��,�� =

g0

8�2Tr�AM��,��� , �8�

where A and M�� ,�� are matrices whose elements are given
by

Aij = �
n


a2n
�2��k��wniwnj� �i, j = x,y,z� �9�

and

Mij��,�� = mi��,��mj��,�� �i, j = x,y,z� , �10�

respectively.
Equations �8�–�10� are quite general and reveal how the

symmetry of the SOC field can lead to the anisotropy of the
conductance. Further simplifications of these expressions can
be realized by taking into account the properties of the spe-
cific form of the SOC field. From the time-reversal symme-
try it follows that the SOC field has to be an odd function of
the wave vector. Thus in the lowest-order approximation
with respect to k�, the SOC field is linear in kx and ky. In this
case, the most general form of the SOC field components is
wni=dni

x kx+dni
y ky =dni ·k��i=x ,y ,z�. As shown below, many
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relevant physical situations correspond to such a case. The
matrix elements in Eq. �9� then reduce to

Aij = �
n

cn�dni · dnj� . �11�

In obtaining Eq. �11� we took into account the fourfold sym-
metry of the expansion coefficients a2n

�2��k�� from which fol-
lows that the only nonvanishing averages are of the form
cn= 
a2n

�2��k��kx
2�= 
a2n

�2��k��ky
2�. By using the Eqs. �8�, �10�, and

�11� the anisotropic part of the conductance can be rewritten
as

Ganiso
�2� =

g0

8�2 �
i,j,n

cnmi��,��mj��,���dni · dnj� . �12�

The dependence of the TAMR ratio on the magnetization
direction is determined by the anisotropic part of the conduc-
tance. Thus, Eq. �12� is our starting formula for discussing
important particular cases.

III. RESULTS

We first neglect the effects of strain and focus on the
particularly relevant case in which the SOC field results from
the interference of the Bychkov-Rashba and Dresselhaus
SOCs. Later on we shall consider also MTJs with SOC in-
duced by uniaxial strain.

The Bychkov-Rashba SOC originates from the structure
inversion asymmetry of the junction and is basically deter-
mined by the strong electric fields at the interfaces of the
tunneling barrier. It is present, for example, in MTJs with the
left and right electrodes made of different materials, and
therefore, with broken inversion symmetry. Since the inter-
face electric field points along the growth �z� direction of the
MTJ, the Bychkov-Rashba SOC has the form21

HBR = ��kx�y − ky�x� , �13�

where the SOC parameter � is proportional to the average
electric field. The Hamiltonian HBR is invariant under rota-
tions around the z axis. Therefore, as long as the z axis is
chosen to point in the growth direction, the Bychkov-Rashba
SOC has always the form given in Eq. �13�, irrespective of
the specific orientation of the crystallographic axes.

The Dresselhaus SOC results from the bulk inversion
asymmetry of one or more of the constituent materials. Typi-
cal materials with BIA are the zinc-blende semiconductors.
Thus, the Dresselhaus SOC can be relevant for MTJs with
noncentrosymmetric semiconductor barriers. Unlike the
Bychkov-Rashba SOC, the form of the Dresselhaus SOC
�which emerges from the BIA of the crystal itself� depends
on the orientation of the crystallographic axes. Therefore the
specific form of the total SOC field depends on the growth
direction of the heterostructure. The SOC Hamiltonians can
be found from the theory of invariants22,23 by constructing
the most general Hamiltonian compatible with the crystal
symmetries. Below we focus in the study of the most rel-
evant cases, corresponding to MTJs grown in the �001�,
�110�, and �111� crystallographic directions.

A. (001) MTJs with axes x̂ ¸ [110], ŷ ¸ [1̄10], and ẑ ¸ [001]

For a �001� noncentrosymmetric barrier with zinc-blende
structure, the corresponding point group is D2d. In such a
case the Dresselhaus SOC which is compatible with this
symmetry has the form �after linearization�24,25

HD = − ��kx�y + ky�x� , �14�

where � is a material parameter characterizing the SOC
strength. At the interfaces, however, the different orientations
of the bonds may lower the symmetry to C2v with the two-
fold rotation axis C2 along the growth direction �this is, for
example, the case of an epitaxial �001� Fe/GaAs interface�.12

The C2v symmetry accounts for the presence of both BIA and
SIA. In such a case the SOC corresponding to the nth band
contains both Bychkov-Rashba and Dresselhaus terms �see
Eqs. �13� and �14�, respectively� and is given by12,21,24

HSO = ��n − �n�kx�y − ��n + �n�ky�x, �15�

where �n and �n are the corresponding Bychkov-Rashba and
Dresselhaus parameters, respectively.

One can extract the components of the SOC field by com-
paring Eqs. �3� and �15�. It follows then from Eq. �12� that
the angular dependence of the anisotropic conductance is
given by

Ganiso
�2� =

g0 sin2 �

8�2 �
n

cn���n
2 + �n

2� + 2�n�n cos�2��� .

�16�

The expression above together with Eqs. �1� and �2� lead
to the relations corresponding to case A in Table I.26 The
obtained TAMR coefficients, which are valid up to second
order in the SOC field, reveal a clear distinction between the
in-plane and out-of-plane configurations in �001� MTJs:
while for a finite out-of-plane TAMR the presence of only
one of the SOCs suffices �i.e., it is sufficient to have �n�0
or �n�0�, the twofold symmetric in-plane TAMR appears
because of the interference of nonvanishing Bychkov-
Rashba and Dresselhaus SOCs �i.e., both �n and �n have to
be finite�.27 This explains why a finite out-of-plane TAMR
appears in MTJs such as Fe�001�/vacuum/Cu�001� in which
only the Bychkov-Rashba SOC is present.10 It is also in
agreement with the recent observation of the in-plane TAMR
in epitaxial �001� Fe/GaAs/Au MTJs,5 where, due to the
presence of the noncentrosymmetric zinc-blende semicon-
ductor �GaAs�, not only the Bychkov-Rashba but also the
Dresselhaus SOC become relevant. In both the in-plane and
out-of-plane configurations, angular dependencies of the
form TAMR�110�

in ���� �1−cos�2��� and TAMR�110�
out ���

� �cos�2��−1� �see Table I� have been experimentally
measured.4,5,11,17

The results displayed in Table I suggest the possibility of
using different configurations and reference axes as comple-
mentary setups for TAMR measurements. In particular, our
theoretical model predicts that in the regime �n��n the out-

of-plane TAMR with reference axis in the �1̄10� is sup-
pressed, while it remains finite if the complementary axis
�110� is used as a reference.28 The opposite behavior, i.e.,
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TAMR�1̄10�
out

�0 and TAMR�110�
out =0, is expected when �n�

−�n. Another relevant regime occurs when �n�0, for which
the in-plane TAMR is expected to vanish �see case A in Table
I�. The existence of such a regime was previously invoked in
Refs. 5 and 12 for explaining the suppression of the in-plane
TAMR experimentally observed in �001� Fe/GaAs/Au
MTJs.5 Our theory predicts that although the in-plane TAMR
vanishes, the out-of-plane TAMR should remain finite in
such a regime. In fact, in the regime �n�0 the amplitude of
the out-of-plane TAMR constitutes a direct measurement of
the effects of BIA in the noncentrosymmetric barrier.

By combining the results shown in Table I one can find
expressions such as

TAMR�110�
in �90°� = TAMR�1̄10�

out �90°� − TAMR�110�
out �90°� ,

�17�

which correlates the in-plane and out-of-plane TAMR coef-
ficients and can be experimentally tested.

B. (110) MTJs with axes x̂ ¸ [1̄10], ŷ ¸ [001], and ẑ ¸ [110]

In the case of a �110� zinc-blende barrier the symmetry
group is C2v with the twofold rotation axis lying in the plane
perpendicular to the growth direction. The BIA-like SOC has
the form23

HBIA
�110� = �kx�z. �18�

The presence of interfaces may result in SIA and can lower
the symmetry to a single reflection plane. The SOC in the nth
band can be written as23,29

HSO = 	nkx�y − �nky�x + �nkx�z. �19�

Here �n and 	n are the parameters related to the SIA-induced
SOC, while �n characterizes the strength of the SOC result-
ing from the BIA �see Eq. �18��. Note that because of the
reduced symmetry of the �110� structures with respect to the
�001� MTJs, in the present case the usual SIA-induced SOC
acquires, in addition to the usual Bychkov-Rashba SOC �see
Eq. �13��, an extra contribution, which leads to �n�	n in
Eq. �19�.23,29 Proceeding in the same way as in Sec. III A we
obtain the following relation for the anisotropic contribution
to the conductance

Giso
�2� =

g0

8�2�
n

cn���n
2 cos2 � + 	n

2 sin2 ��sin2 � + �n
2 cos2 �

+ 	n�n sin � sin�2��� . �20�

The corresponding TAMR coefficients are given in Table
I �case B�. They show that the angular dependences of the
TAMR in both the in-plane and out-of-plane configurations
are similar to the ones obtained for the �001� MTJs �compare
the cases A and B in Table I�. However, their physical origin
is now different. In the present case the in-plane TAMR
originates from the SIA-induced SOC while the out-of-plane
TAMR has contributions arising from both SIA-like and
BIA-like SOCs. Thus, our model predicts that in �110� MTJs
it could be possible to observe the TAMR in the two con-
figurations even if the tunneling barrier is composed of a
centrosymmetric material. Another observation is that the

out-of-plane TAMR with reference axis along the �1̄10� di-
rection could be suppressed if under some given conditions
the regime �n= 
�n �for the relevant transport bands� is re-
alized �see the out-of-plane TAMR in case B of Table I�. In
such a case, however, the out-of-plane TAMR with �001� as
the reference axis should remain finite.

C. (111) MTJs with axes x̂ ¸ [112̄], ŷ ¸ [1̄10], and ẑ ¸ [111]

The symmetry corresponding to the zinc-blende barrier
grown in the �111� direction is given by the C3v point group.
In such a case the BIA-like SOC in the linear in k� approxi-
mation has the same form as the Bychkov-Rashba SOC �see
Eq. �13��. Therefore, the SIA due to the presence of inter-
faces does not lower the symmetry and the total SOC includ-
ing both SIA-like and BIA-like terms reduces to the simple
form23

HSO = ��n + �n��kx�y − ky�x� , �21�

where �n and �n are the parameters characterizing the
strengths of the SIA-like and BIA-like SOCs, respectively.

After computing the anisotropic part of the conductance
we obtain

TABLE I. TAMR coefficients in units of g0 / �16�2�G�0�+Giso
�2��� for different structures, reference axes �x�,

and configurations.

Case Structure �x� In-plane TAMR�x�
in ��� Out-of-plane TAMR�x�

out���

A �001� MTJ �110� 4�1−cos�2����ncn�n�n �cos�2��−1��ncn��n+�n�2

�1̄10� 4�cos�2��−1��ncn�n�n �cos�2��−1��ncn��n−�n�2

B �110� MTJ �1̄10� �1−cos�2����ncn��n
2−	n

2� �cos�2��−1��ncn��n
2−�n

2�
�001� �cos�2��−1��ncn��n

2−	n
2� 2�ncn��n

2− �	n sin �+�n cos ��2�

C �111� MTJ �112̄� 0 �cos�2��−1��ncn��n+�n�2

�1̄10� 0 �cos�2��−1��ncn��n+�n�2

D strained �001� MTJ �110� 4�1−cos�2����ncn�n�n �cos�2��−1��ncn��n+�n�2

�1̄10� 4�cos�2��−1��ncn�n�n �cos�2��−1��ncn��n−�n�2
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Ganiso
�2� =

g0 sin2 �

8�2 �
n

cn��n + �n�2. �22�

This relation leads to the TAMR coefficients given in Table I
for the case C.

In the present case the prediction of a vanishing in-plane
TAMR is remarkable. We have checked that even if the cubic
in k terms are included in the SOC field, the in-plane TAMR
still vanishes. This could be used for experimentally explor-
ing the origin of the TAMR. If a suppression of the in-plane
TAMR is experimentally observed in �111� MTJs, it will be a
strong indication that indeed the mechanism behind the
TAMR is the SIA-like and/or the BIA-like SOCs. On the
contrary, if no suppression of the in-plane TAMR is ob-
served, the role of these spin-orbit interactions as the origin
of the TAMR can be questioned.

Another interesting issue is the possibility of reaching the
condition �n=−�n �for the bands relevant to transport�,
which leads to a vanishing out-of-plane TAMR �if only the
linear in k terms in the SOC field are relevant�, in addition to
the above-discussed suppression of the TAMR in the in-
plane configuration.

D. Uniaxial strain in (001) MTJs with axes x̂ ¸ [100], ŷ ¸ [010],
and ẑ ¸ [001]

In our previous analysis we have disregarded the effects
of the strain-induced SOC, which could be relevant for struc-
tures whose constituent materials have a sizable mismatch in
their lattice constants. For a �001� MTJ, the SOC induced by
strain is, in general, given by30

HSO = �n��uzxkz − uxyky��x + �uxykx − uyzkz��y

+ �uyzky − uzxkx��z� + �n�kx�uyy − uzz��x

+ ky�uzz − uxx��y + kz�uxx − uyy��z� , �23�

where uij are the components of the strain tensor and �n and
�n are material parameters. The SOC in Eq. �23� is quite rich
and suggests the possibility of engineering the strain �see, for
example, Ref. 31� in order to manipulate the behavior of the
TAMR. Here we do not consider all the possibilities but
focus, for the sake of illustration, on the case of an in-plane
uniaxial strain such that the only nonvanishing components
of the strain tensor are uxx=uyy �uxy =uyx. The existence of a
similar strain was initially assumed for explaining TAMR
experiments in �Ga,Mn�As/AlOx/Au MTJs.1,3 For the in-
plane uniaxial strain Eq. �23� reduces to

HSO = �n�kx�y − ky�x� + �n�kx�x − ky�y� , �24�

where we have introduced the strain-renormalized SIA and
BIA parameters �n=�nuxy and �n=�nuxx, respectively. The
corresponding anisotropic contribution to the conductance is
then given by

Ganiso
�2� =

g0 sin2 �

8�2 �
n

cn���n
2 + �n

2� + 2�n�n sin�2��� .

�25�

We note that Eq. �24� has the form of interfering Bychkov-
Rashba and Dresselhaus SOCs in �001� structures with

x̂ � �100�.12,23 Therefore, Eqs. �16� and �25� are similar. The
angle � in Eq. �16� is measured with respect to the crystal-
lographic direction �110� while in Eq. �25� it is defined with
respect to the �100� axis. Thus, by making the transformation
�→�+� /4 in Eq. �25� one recovers a relation similar to Eq.
�16�. Consequently, assuming the direction �110� as the ref-
erence axis for measuring the magnetization direction the
results for the in-plane and out-of-plane TAMR coefficients
in �001� MTJs with in-plane uniaxial strain �see case D in
Table I� are essentially the same as in the case discussed in A
but with renormalized spin-orbit parameters, which now ac-
count for the strain effects.

E. Other possible effects on the TAMR

In our investigation we have assumed specific well-
known forms for the SOC field. For some systems, however,
the form of the SOC field may not be a priori known. In
such a case one could use Eqs. �8�–�10� �which are general�
and contrast them with complementary TAMR measure-
ments in both the in-plane and out-of-plane configurations in
order to deduce the symmetry properties of the SOC fields.

All the calculated TAMR coefficients, if not zero, show a
twofold symmetry in the �� ,�� space, which is the symmetry
that has been observed in the experiments.4,5,9,11,17 Our re-
sults are valid up to the second order in the SOC field. In
particular, our predictions for vanishing TAMR under certain
conditions may change when higher orders in the SOC field
become relevant. The next higher-order contributions in the
expansion in Eq. �4� which do not vanish after averaging are
those containing the fourth order in the SOC field terms and
terms of the fourth order in the cosine directions of m̂, which
describe the fourfold symmetry inherent to the involved bulk
ferromagnet. These fourth-order terms lead to fourfold sym-
metric corrections to the TAMR, which may be finite even
for �001� MTJs with centrosymmetric barriers for which the
second-order in-plane TAMR calculated here vanishes. Al-
though the twofold character of the TAMR is, in general
unchanged by these corrections, they may influence the
shape of its angular dependence. Additionally, in some het-
erostructures the SOC field itself may become magnetization
dependent due to changes in the electronic band structure
when the magnetization orientation is varied. This effect,
which is not included in our approximation, may also influ-
ence both the size and the polar shape of the TAMR. Thus,
for the kind of systems considered here �see Table I� any
deviation from the 8-like polar shape of the TAMR �see, for
example, Fig. 2 in Ref. 5� is interpreted in our theory as a
manifestation of higher-order contributions �in k� and/or m̂�
and/or strain effects.32 Deviations from the 8-like polar shape
of the TAMR have been experimentally observed.9,11 In fact,
it has been shown that these deviations may appear by in-
creasing the bias voltage,11 which within the present ap-
proach can be seen as an indication of higher order in the
SOC field terms turning relevant at sufficiently high bias.

In all the above discussions small magnetic fields with
negligible orbital effects were assumed. It has recently been
observed in Fe/GaAs/Au MTJs that for high magnetic fields
the orbital effects do influence the in-plane TAMR.33 A ver-
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sion of the phenomenological model presented here, which
incorporates the orbital effects, has recently been developed
to qualitatively explain the magnetic field dependence of the
in-plane TAMR experimentally observed in �001� Fe/
GaAs/Au MTJs.33

IV. SUMMARY

We formulated a theoretical model in which the way the
TAMR depends on the magnetization orientation of the fer-
romagnetic electrode in MTJs is determined by the specific

form and symmetry properties of the interface-induced SOC
field. By using the proposed model, we deduced the angular
dependence of the TAMR for various systems in dependence
of their symmetries under spatial inversion and their growth
directions. The effects of in-plane uniaxial strain were also
investigated.
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