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We study the transport properties of the Fano-Anderson model with non-Markovian effects, which are
introduced by making one tunneling-rate energy dependent. We show that the non-Markovian master equation
may fail if these effects are strong. We evaluate the stationary current, the zero-frequency current noise, and the
occupation dynamics of the resonant level by means of a quantum master-equation approach within different
approximation schemes and compare the results to the exact solution obtained by the scattering theory and
Green’s functions.
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I. INTRODUCTION

The ongoing progress in measuring tiny fluctuations of
charge currents through nanoscale conductors1–3 has led to
an increased theoretical interest in non-Markovian effects re-
vealed in such experiments.4,5 Of particular interest are the
non-Markovian dynamics induced by the coupling to
fermionic6,7 and/or bosonic8–10 environments and their influ-
ence on steady-state transport observables such as the cumu-
lants of the stochastic charge-transfer process.11 Our present
work focuses on such effects due to the coupling to elec-
tronic reservoirs.

There exist various techniques for describing open quan-
tum systems coupled to fermionic reservoirs, e.g., the scat-
tering theory and Green’s functions,12–14 or quantum master
equations starting from the von Neumann equation for the
total density operator15 or the Wigner-Boltzmann
approach.16–18 Master equations are widely considered with a
conductor-lead coupling in Born-Markov approximation
�see, e.g., Refs. 19–21�, which is only strictly valid for weak
coupling and constant contact density of states in the energy
range of interest. Consequently, to explore effects beyond the
common Born-Markov approximation, one would study
higher-order perturbation theory in the contact coupling �e.g.,
Refs. 22–24� and/or allow for energy-dependent tunneling
rates, i.e., go beyond the wideband approximation.14,25–29 In
this work, we choose the latter while analyzing perturbative
approaches in lowest-order tunnel coupling only. In particu-
lar, we address the question in which limits it is possible to
describe non-Markovian physics with master equations.

A conceptionally simple model for this purpose consists
of a single resonant level �e.g., the ground state of a quantum
dot or a molecule� weakly coupled to two electronic leads in
equilibrium and a Lorentzian-shaped density of states for one
of the leads. This model is equivalent to two serially coupled
quantum dots9 and can be interpreted as a quantum dot
coupled to a reservoir with finite electron relaxation time.

To enable an exact solution and for the sake of simplicity,
we neglect Coulomb interaction and, consequently, promi-
nent effects such as Coulomb blockade or Kondo correla-
tions. This, of course, constrains the use of our results for
quantitative understandings of transport experiments. Our
aim, however, is a comparison of different approximation
schemes for master equations in an electronic transport prob-
lem that has an exact solution.

We will show that the non-Markovian master equation
�NMME� in the wideband limit produces reasonable results
for the current and noise. However, reducing the bandwidth
yields qualitative and quantitative deviations—even the
emergence of unphysical results such as negative Fano fac-
tors. The exact time evolution of the resonant-level occupa-
tion can only be obtained by the NMME in the wideband
limit where even a Markovian master equation covers the
exact dynamics. In the short-time limit, the NMME result
well approximates the exact evolution regardless of the
bandwith. However, for very small bandwidths, the NMME
generates negative unphysical probabilities. We demonstrate
how this can be avoided by a dynamical-coarse-graining
method.

The paper is organized as follows. In Secs. II A and II B,
we introduce the model and provide the known exact solu-
tion obtained by the scattering theory and Green’s functions.
In Sec. II C, the equivalence to the double-dot model is dis-
cussed. In Sec. III A, we introduce the non-Markovian mas-
ter equation and, in Sec. III B, the dynamical-coarse-graining
approach. In Sec. IV, the steady-state current and the Fano
factor are compared to the exact and NMME solution. Fi-
nally, the occupation dynamics of the resonant level is dis-
cussed.

II. MODEL

A. Hamiltonian

We start from the well-known single resonant-level
model,14,30–34 that is described by a Hamiltonian where tun-
neling between two leads can be realized via a localized
quantum-dot state,

H = �dd†d + �
k,a

�kacka
† cka + �

k,a
�tkad†cka + H.c.� . �1�

The fermionic operators d /d† annihilate/create an electron on
the dot and cka /cka

† annihilate/create an electron in lead a
� �R ,L� with momentum k. We choose a Lorentzian-shaped
right tunneling rate, such as in Refs. 25 and 26,

�R��� =
�R,0

2

�

�R

�� − �R�2 + �R
2 , �2�
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and a flat left tunneling rate �L, both related to the micro-
scopic parameters via �a���=2��k�tka�2���−�ka�. A sketch
of the model is given in Fig. 1. We work in the infinite-bias
limit, where we couple the left and right leads to two particle
reservoirs in a way that the left lead is completely occupied
and the right lead is completely empty, i.e., �L→� and �R
→−�, such that the left Fermi function takes the value 1 and
the right one takes the value 0.

The retarded and advanced self-energies of our model are
evaluated exactly14,32,34 as

	R/A��� = �
k,a

�tka�2

� − �ka 
 i0+ = ���� � i
����

2
. �3�

The imaginary part ����=�L���+�R��� is connected to the
inverse lifetime whereas the real part

���� =
1

2�
P�

−�

�

d��
�����
� − ��

�4�

�where P denotes the principal value� induces a level shift
which is fully determined by the tunneling rate �Kramers-
Kronig relation�. It will turn out that all quantities concern-
ing transport statistics and the occupation of the quantum dot
can be expressed in terms of �a��� and �d only.

B. Exact solution

To evaluate transport quantities, we need the transmission
coefficient,35

T��� =
�L����R���

�� − �d − 	R����2
, �5�

which is related to the dot-spectral function A���
ª i�GR���−GA���	 via T���=

�L����R���
���� A���. Scattering

theory1 then yields the current I and the zero-frequency noise
S which at infinite bias are

I = e�
−�

� d�

2�
T��� ,

S = e2�
−�

� d�

2�
T����1 − T���	 , �6�

where e is the elementary charge �chosen negative�. The
time-dependent occupation probability nd�t� can be ex-
pressed with the Green’s functions.36,37 We use that at infinite
bias, the left Fermi function is unity and the right is zero. For
simplicity, we assume nd�0�=0 and thus

nd�t� = − i�
k

Gd,kL
R �t�iGkL,d

A �− t� = �
k

�Gd,kL
R �t��2, �7�

where we have used Gka,d
A �−t�= �Gd,ka

R �t�	�.
The required Green’s functions are obtained using equa-

tions of motion14,32–34 and read as

Gd,kL
R �t� = tkL�

−�

� d�

2�

1

� − �kL + i0+

e−i�t

� − �d − 	R���
, �8�

which, upon inserting 1=
−�
� ���−�kL�d�, yields the explicit

result

nd�t� = �
−�

� d�

2�
�L��

−�

� d��

2�

1

�� − � + i0+

e−i��t

�� − �d − 	R�����2

.

�9�

This can alternatively be obtained from a direct calculation
without the Green’s functions.38

For the Lorentzian-shaped right tunneling rate �2�, the
Kramers-Kronig relation �4� yields the level-shift function,

���� =
�R,0

2

2�

� − �R

�� − �R�2 + �R
2 , �10�

and the self energy �3� can be simplified to

	R/A��� = � i
�L

2
+

�R,0
2

2�

1

� − �R 
 i�R
. �11�

With Lorentzian-shaped tunneling rates, we can analytically
integrate the expressions for current and noise �6� and, with

the abbreviations �̄ª�L+2�R and �ª�d−�R, we obtain

I = e
2�L�R�̄�R,0

2 /�

��L�R + �R,0
2 /���̄2 + 4�2�L�R

,

S = Ie�1 −
2�L�R�R,0

2

��̄

4�2��L
3 + 8�R

3� + �̄3��̄2 + 2�L�R + 2�R,0
2 /��

���L�R + �R,0
2 /���̄2 + 4�2�L�R	2

 . �12�

ΓL
Γ2

R0
πδR

2δR εR
�d

µL

µR

FIG. 1. �Color online� Single resonant level coupled to two
leads with one constant and one Lorentzian tunneling rate. In the
infinite-bias limit, �L→� and �R→−�.
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C. Comparison with double-dot model

Our model has an exact correspondence with an effective
wideband two-level Fano-Anderson model25 with Hamil-
tonian

H̄ = �̄LdL
†dL + �̄RdR

†dR + T̄CdL
†dR + T̄C

� dR
†dL + �

k,a
�̄kacka

† cka

+ �
k,a

�t̄kada
†cka + H.c.� , �13�

with a left and a right dot state dL and dR and a coupling T̄C
between them. Each lead couples only to its adjacent dot.
The transmission probability is39

T̄��� =
�̄L�̄R�T̄C�2

��� − �̄L + i�̄L/2��� − �̄R + i�̄R/2� − �T̄C�2�2
. �14�

Comparison to Eq. �5�, with appropriate �R��� and ����,
reveals the exact mapping T̄���=T��� by the correspon-
dence

�̄L ↔ �L,

�T̄C�2 ↔ �R,0
2 /�2�� ,

�̄R ↔ 2�R,

�̄L ↔ �d,

�̄R ↔ �R. �15�

Since the cumulant generating function can be expressed
solely in terms of the transmission probabilities,1,40,41 not
only the first two cumulants42 but all current cumulants of
the two models coincide.

When we plot current and Fano factor F=S / �Ie� as a
function of the detuning �d−�R in Fig. 2, we find the typical
structures of the corresponding quantities for the noninteract-
ing double quantum dot:42,43 the current exhibits a maximum
when the detuning vanishes. For the noise, we find a mini-
mum in resonance for broad tunneling rates, when �R be-
comes sufficiently small a new maximum in the Fano factor
at resonance grows out of the minimum.

III. NON-MARKOVIAN DYNAMICS

A. Non-Markovian master equation

To treat non-Markovian effects in a transport master-
equation framework, one writes the master equation as an
integro-differential equation for the n-resolved reduced den-
sity matrix

̇n�t� = �
n�
�

0

t

Wn−n��t − t��n��t��dt�, �16�

where n denotes the number of charges that have crossed the
considered system. In Appendix A, we show how our system
can be described with such an equation using the Born ap-
proximation. All Wn�t� vanish except when n=0 or n=1,
where we find

W0�t� = �− �L�t� 0

�L�t� − �R�t�
 ,

W1�t� = �0 �R�t�
0 0

 �17�

with

�R�t� = 2� d�

2�
�R���cos��� − �d�t	

=
�R,0

2

�
e−�Rt cos���R − �d�t	 ,

�L�t� = 2� d�

2�
�L cos��� − �d�t	 = 2�L��t� . �18�

We proceed with performing a Fourier summation and a
Laplace transform via

Ŵ��,z� � �
n

ein��
0

�

e−ztWn�t�dt

= Ŵ0�z� + Ŵ1�z�ei� = �− �̂L�z� ei��̂R�z�
�̂L�z� − �̂R�z�

 ,

�19�

where
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FIG. 2. �Color online� The left plot shows the right tunneling rate �R��� as a function of the energy �. We further show how the current
I and Fano factor F behave as a function of the detuning �d−�R. The bandwidth �R takes the three values shown on the right. For all curves,
we have �L=�R,0. Results from the exact Green’s functions.
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�̂R�z� =
�R,0

2

�

z + �R

�z + �R�2 + ��R − �d�2 ,

�̂L�z� = �L. �20�

We will use the abbreviation �̂�z�= �̂L�z�+ �̂R�z�. In order to
avoid the tedious inverse Laplace transform, we can use a
recently developed elegant method to evaluate current and
noise.11,44 As it has only applied a few times until now,11,44–46

we show the explicit calculation for our model in Appendix
B and obtain the following formulae:

I = e
�̂L�0��̂R�0�

�̂�0�
,

S = Ie� �̂R
2�0�

�̂2�0�
�1 + 2�̂L��0�	 +

�̂L
2�0�

�̂2�0�
�1 + 2�̂R��0�	� . �21�

We easily obtain the occupation of the dot by evaluating

the density matrix in Laplace space ̂�z�= �z−Ŵ�z�	−1

�t=0�. To obtain the time-resolved dynamics, one has to
perform the inverse Laplace transform �Bromwich integral�
by collecting all the corresponding residues.

B. Markovian master equation

A Markovian master equation �MME� follows from Eq.

�16� by the integration Ln=
0
�Wn�t�dt=Ŵn�z=0� and leads

to

L0 = �− �L 0

�L − �R��d�
, L1 = �0 �R��d�

0 0
 . �22�

When we use this to evaluate noise, we end up with the
same result as in Eq. �21� but without the derivatives �̂L��0�
and �̂R��0�. For the equilibrium density matrix, we find
00�t=��=�R��d� / ��L+�R��d�	, which is identical with the
NMME result. The advantage of the additional Markov ap-
proximation is that the positivity of the density matrix will
be conserved as one obtains a Lindblad-type master
equation.47 The disadvantage is that some information about
the shape of the tunneling rates is lost.

C. Dynamical coarse graining

A second approach to quantum transport is the recently
developed dynamical-coarse-graining �DCG� method.48 The
coarse-graining method is also a second-order weak-
coupling approximation, although it can be extended to
higher orders. Instead of solving a single master equation, it
solves a continuous set ̇��t�=L���t� and then interpolates
through the solutions ��t�=eL�·t0 at t=�. The coarse-
grained Liouvillian can be derived48 by matching the
second-order expansion of the formal solution in the

interaction picture �̃�t�= Ũ�t���0�Ũ†�t� �where Ũ�t�
=T exp�−i
0

t HSB�t��dt�� with the time-ordering operator T	
with the second-order expansion of ��t�=eL�t��0� at time
t=�. For our specific model, following Ref. 38, we obtain

L� = �
−�

� d�

2�
� sinc2� �� − �d��

2
�− �L��� �R���

�L��� − �R���
 ,

�23�

where sinc x� sin x
x . The coarse-graining method combines

the two advantages of the Born and the Born-Markov ap-
proximation. For finite times, it is sensitive to the shape of
the tunneling rates and at the same time it preserves positiv-
ity since the L� are of Lindblad form. Due to the identity
lim�→� �sinc2�

��−�d��
2 	=2����−�d�, we see that for large

times the coarse-graining method yields the same steady-
state density matrix as the two other approximations. Also
for the current and Fano factor, we have reproduced the re-
sults of the MME. In contrast to fixed graining-time deriva-
tions of master equations,7,49 DCG dynamically adapts the
coarse-graining time with the physical time, which in the
long-time limit yields the Born-Markov secular approxima-
tion. Both approaches yield completely positive maps but
may lead to different stationary states.

IV. DISCUSSION

A. Current

To get a first idea of the difference between the exact
solution and the NMME, it is instructive to take a look at the
stationary current I. The stationary current is not sensitive to
non-Markovian effects11 since it only depends on the steady-
state occupation, and thus all three presented approximations
coincide. The two plots in Fig. 3 show the current as a func-
tion of the width of the right tunneling rate �R. We observe
that for large �R �Markovian limit�, the master equations
meet the exact solution very well while for small �R enor-
mous deviations occur. In the absence of detuning �d−�R
=0, the master equations overestimate the current, but they
underestimate it for sufficiently large detuning. As an inset in
Fig. 3, we choose the value �R /�R,0=0.1 and show how the
spectral function of the dot state A���, the right tunneling
rate �R��� and the transmission coefficient T��� behave
there.

Without detuning, the spectral function exhibits a mini-
mum at energies where the tunneling rate is maximal. Thus,
the true quantum-mechanical transmission is smaller than the
master-equation result, which depends exclusively on the
value of the tunneling rate at the dot level �R��d�. This leads
to the underestimation of the current by the master equations
when detuning is present because �R��d� is very small then.
The exact result, by contrast, takes into account that the
spectral function exhibits a small side peak near the maxi-
mum of �R��� that enhances the probability for tunneling.

B. Fano factor

In Fig. 4, we show results for the Fano factor F=S / �Ie�
�exact, with NMME and with MME or DCG�. When the
condition
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�R

�R,0
� 1 �24�

is fulfilled, all formalisms agree. Furthermore, for constant
tunneling rates, the NMME yields the Markovian result

F=
�L

2+�R
2��d�

��L+�R��d�	2 .

The exact Fano factor shows one minimum for small de-
tuning and two minima for large detuning, which originates
from the double-peak structure of the spectral function
shown in Fig. 3. However, there is no simple quantitative
connection between the locations of the extrema in the Fano
factor and in the spectral function. This is similar to the Fano
factor as a function of the detuning in Fig. 2, where for small
width �R a second minimum appears, that is, again not con-
nected to the spectral function’s properties in a simple way.

The NMME reproduces one of the two minima, but not
both, and it produces super-Poissonian noise, where it should
not appear. If the detuning �d−�R becomes very small, the
NMME even overestimates the minimum so strongly that it
yields an unphysical negative Fano factor.

The MME is not everywhere close to the exact result but
it is, on average, closer than the NMME result and per con-
struction yields physical results �Lindblad form�. For the
DCG method, we have found that it yields the same result as
the MME.

C. Time-resolved occupation probabilities

One key advantage of the DCG approach results from its
ability to preserve positivity and at the same time to be more
sensitive to the shape of the tunneling rates than the MME.48

We therefore evaluate the time-dependent occupation prob-
ability of the localized level with four different methods:
exact, with the NMME, with the MME, and with DCG. In
Fig. 5, we find that at sufficiently wide bands, i.e.,
�R��R,0, all three approximations meet the exact result very
well.

For smaller �R, one recognizes that in the stationary limit,
the three approximations coincide with each other but not

FIG. 3. �Color online� Current I as a function of the width �R on
a logarithmic scale in absence �upper part� and presence �lower
part� of detuning, exact �red and solid� and with the NMME
�MME�DCG �green and dashed� with the parameters �L=�R,0.
Inset: for the marked points at �R /�R,0=0.1, we plot as functions of
� the left tunneling rate �L, the dot-spectral function A���, and the
right tunneling rate �R���, with a density plot of the transmission
probability T��� in the background. The dashed green line marks
the level of the dot state. The master equations depend only on
�R��d� while the exact solution is sensitive to the detailed shape of
A��� and T���.

FIG. 4. �Color online� Fano factor F as a function of the width
�R on a logarithmic scale. Parameters are �L=�R,0 and the detun-
ings �d−�R indicated in each plot.

FIG. 5. �Color online� Time-dependent occupation probability
nd�t�, exact solution, and solution in the three presented approxima-
tions parameters are �d=�R,0 and �d−�R=�L=0.1�R,0. The width �R

takes the values denoted in each plot.
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with the exact solution. The most prominent features of the
exact occupation nd�t� are oscillations as a function of time t.
The NMME approximation captures the oscillations as non-
Markovian features of the reservoirs, as it should but it
strongly overestimates them. If the steady state is sufficiently
close to zero, the NMME can lead to negative occupation
probabilities, such as in the third plot.

In order to better understand the exact result, we explicitly
perform the two integrations in Eq. �9�, which leads to

nd�t� = �L

�R��̄2 + 4�2� + �̄�R,0
2 /�

�R��̄2 + 4�2� + �̄2�R,0
2 /�

+ i�L

��1 − �R + i�R���1
� − �R − i�R�

��1 − �2���1
� − �2

����1 − �1
��

ei��1
�−�1�t

+ i�L

��2 − �R + i�R���1
� − �R − i�R�

��1 − �2���1
� − �2

����2 − �2
��

ei��2
�−�2�t

+ 2�L Im� ��1
� − �R − i�R���2 − �R + i�R�

��1 − �2���1
� − �2

����2 − �1
��

e�i�0−�̄/2�t ,

�25�

with the abbreviations �̄ª�L+2�R and �ª�d−�R. The fre-
quencies �1 and �2 are the poles of the spectral function
A��� with negative imaginary part and �1

� and �2
� are its

other two poles. The first part of n�t� in Eq. �25� corresponds
to the steady state. The next two lines describe how the sys-
tem performs exponential decay toward this steady state be-
cause the exponents are real and negative. The last line of
Eq. �25� is responsible for the oscillations because its expo-
nent contains the imaginary part i�0t, which is given by

�0 = Re����d + �R − i�̄/2�2

− 4��R − i�R���d − i�L/2� + 4
�R,0

2

2�
�1/2� . �26�

If we switch off the coupling to the left side and the width on
the right, i.e., �L→0 and �R→0, we recover the frequency

�0=��2+4
�R,0

2

2� of coherent oscillations in an isolated two-
level system �remember the mapping to the double-dot

model in Eq. �15�	. In Fig. 6, one recognizes that in the
absence of the detuning �d−�R, the frequency �0 completely
vanishes with a nonanalyticity where �R /�R,0 is of the order
of 1. This nonanalyticity appears when the radicand in Eq.
�26� changes sign �at �d=�R it is purely real�. When detuning
is present, the frequency �0 does not completely vanish for
�R→�, but the oscillations of nd�t� are damped with the rate

�̄ /2=�R+�L /2, such that in the Markovian limit �R→�, no
oscillations survive.

V. CONCLUSIONS

The main message of this paper is that one must be care-
ful with NMMEs. We know that what we have here called
MMEs may lead to incorrect results when non-Markovian
effects are strong. However, we have found that in the non-
Markovian regime NMMEs can be worse than MMEs. On
one hand, NMMEs can give quantitative errors such as what
occur in Fig. 4. On the other hand, the positivity of the den-
sity matrix is not in general conserved, which can lead to
unphysical results such as a negative Fano factor and occu-
pation probability, as in Figs. 4 and 5. We emphasize that the
failure of the NMME does not result from the evaluation
techniques we have used11 but instead from the way the Born
approximation is performed in the derivation of Eq. �16�. We
do not want to discourage using of NMMEs in general, but
each time they are applied one should reason carefully why
one expects them to yield better results than MMEs.

We have tried the dynamical-coarse-graining method as
an alternative approach, that is more sophisticated than the
MME but still in Lindblad form. For the time-independent
quantities I, F, and n�t→��, we have found no improvement
in comparison to the MME. For the time-dependent occupa-
tion probability, however, DCG does yield better results, at
least for small times. We expect a similar improvement for
the frequency-dependent Fano factor.

For the model considered here, the condition
�R,0

�R
�1 must

be fulfilled to ensure a good quality of the three presented
weak-coupling approximations. It is certainly interesting to
explore higher-order corrections to the presented perturbative
approximations. However, such extensions should be treated
with caution since nice features, such as positivity, may be
lost when higher orders are included.
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APPENDIX A: DERIVATION OF THE KERNEL

We decompose our Hamiltonian into the free part H0
=�dd†d+�k,a�kacka

† cka and the coupling V=�k,a�tkad†cka
+ tka

� cka
† d�. This enables us to define the density matrix in the

interaction picture �̃�t�. It obeys the Liouville–von Neumann
equation

0
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0.6
0.7
0.8
0.9

0 0.5 1 1.5 2 2.5 3
δR/ΓR,0

�d − �R = 0
�d − �R = 0.1 ΓR,0

�d − �R = 0.2 ΓR,0

ω
0/

Γ
R

,0

FIG. 6. �Color online� Frequency �0 as a function of the detun-
ing �d−�R for the parameters �L=0.1�R,0 and �d=�R,0.

ZEDLER et al. PHYSICAL REVIEW B 80, 045309 �2009�

045309-6



�̇̃�t� = − i�Ṽ�t�,�̃�t�	 , �A1�

where Ṽ�t�=eiH0tVe−iH0t is the interaction-picture version of
the coupling. A tilde will mark the interaction picture in all
following text. By iterating Eq. �A1� twice, we obtain

�̇̃�t� = − i�Ṽ�t�,�̃�0�	 − �
0

t

dt��Ṽ�t�,�Ṽ�t��,�̃�t��		 . �A2�

At this point, we perform the second-order weak-coupling
approximation by replacing the full density matrix �̃�t�� by a
tensor product of the reduced density matrix ̃�t� and the
bath density matrix R0, which we assume to be constant in
time �Born approximation�. The partial trace over the first
commutator in Eq. �A2� vanishes. To proceed, we resolve the
coupling into system operators Si and bath operators Bi such
that

Ṽ�t� = S̃1�t�B̃1�t� + B̃2�t�S̃2�t� , �A3�

where

S̃1�t� = d̃†�t�, B̃1�t� = �
k,a

tkac̃ka�t� ,

S̃2�t� = d̃�t�, B̃2�t� = �
k,a

tka
� c̃ka

† �t� . �A4�

In the calculation that follows, we find that the off-diagonal
elements of ̃�t� decouple from the diagonal ones. With this
knowledge, we can choose the off diagonals to be zero and
neglect them in the density matrix, which we can therefore
consider as a vector with two entries:

̃�t� = ̃00�t�dd† + ̃11�t�d†d = �̃00�t�
̃11�t�

 . �A5�

To evaluate the double commutator in Eq. �A2� is lengthy
but straight forward and yields

̇̃�t� = �
0

t

dt�W�t − t��̃�t�� �A6�

with

W�t� = �− �L�t� �R�t�
�L�t� − �R�t�

 . �A7�

For the entries of W�t�, we need to explicitly perform traces
over the reservoirs

�L�t� = ei�dt Tr�B̃2�0�B̃1�t�R0� + e−i�dt Tr�B̃2�t�B̃1�0�R0� .

�A8�

With infinite bias, i.e., R0=�kckL
† ckL, this becomes

�L�t� = �
k

�tkL�22 cos���kL − �d�t	

= 2�
−�

� d�

2�
�L���cos��� − �d�t	 . �A9�

In the same manner, we get

�R�t� = 2�
−�

� d�

2�
�R���cos��� − �d�t	 . �A10�

Physically, the upper right matrix element of W�t� describes
a jump from the dot to the right lead. Thus, we can say that
it increases the number of passed electrons by one while all
other matrix elements leave it unchanged. Thus, we distin-
guish

W0�t� = �− �L�t� 0

�L�t� − �R�t�
 , �A11�

W1�t� = �0 �R�t�
0 0

 . �A12�

APPENDIX B: EVALUATION OF CURRENT AND
NOISE

We use a bra-ket-type notation, where the equilibrium
state is represented by the ket

��0�� = lim
t→�

�t� =
1

�̂�0�
��̂R�0�

�̂L�0�
 , �B1�

that we obtain by setting ̇=0 in Eq. �16�. We define the bra

��0̃�� = �1,1� , �B2�

and construct the projector

P = P2 = ��0����0̃�� =
1

�̂�0�
��̂R�0� �̂R�0�

�̂L�0� �̂L�0�
 , �B3�

and the projector Q=Q2= 1̂−P. The resolvent of the
Laplace-transformed kernel from Eq. �19� is R�� ,� ,z�
ªQ�W�� ,z�−� ·1	−1Q. We only need its value at zero, R
ªR�0,0 ,0�, which is

R =
1

��̂L�0� + �̂R�0�	2�− �̂L�0� �̂R�0�
�̂L�0� − �̂R�0�

 . �B4�

We introduce the coefficients of the kernel’s Taylor series via

W��,z� = W + W�� + Ẇz +
1

2
�W��2 + 2Ẇ��z + Ẅz2� + ¯ .

�B5�

The expressions for current and the zero-frequency noise11,44

are now obtained as

I = e��0̃�W��0��/i ,

S = e2���0̃�W��0�� − 2��0̃�W�RW��0��	/i2

− 2iIe���0̃�Ẇ��0�� − ��0̃�W�RẆ�0��	 . �B6�

Performing the derivatives and matrix multiplications leads
to the results of Eq. �21�.
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