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Exchange energies and charge densities for a few electrons in electrically tunable triangular and collinear
triple quantum dot �TQD� systems are investigated by using the variational Monte Carlo method in the
presence of magnetic fields. For N=2 electrons we observe a discontinuity in the J derivative with detuning
voltage �dJ /dVT� in triangular triple QDs at B=0 T as crossing of the eigenenergy levels leads to abrupt
spatial symmetry change in the singlet and the triplet densities �density rotation� and relocalization. For B
�0 T, the angular momentum provided to the electrons quenches this effect. The density rotation is absent in
the collinear TQD for all magnetic fields as the lowest excited state remains the px state and as such, no change
in symmetry is possible. By varying the triangular TQD configuration, we show the discontinuity in dJ /dVT

persists for the top angle comprised between �20° and �70°. For three electrons in the symmetric triangular
TQD, the monotonicity of the quadruplet-doublet energy difference from B=0 to 4 T remains intact for
decoupled QDs but not for coupled QDs. Finally, addition energy for the triangular TQD system is computed
for up to N=3 electrons.
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I. INTRODUCTION

In the last decade there has been extensive experimental
work on man-made semiconductor quantum dots �QD�.1,2

Existence of shell structure, demonstration of Hund’s rule,
and the ability to control the number of electrons in both the
single and the double QDs have prompted proposals on
building various devices based on electron spins and charge
states.3 As an example, electron spins in QDs can be used as
quantum bits �qubits�, which are the basic unit of informa-
tion for quantum information processing.4 Hence, the en-
tanglement between the spins of two electrons can be quan-
tified by the value of exchange energy J, which is the energy
difference between the lowest triplet �S=1� and the singlet
�S=0� states.5 Recently, the coherent manipulation of the
two-electron spin state in coupled quantum dots has been
demonstrated, which is an important milestone toward the
realization of a quantum gate with solid-state systems.6

As the natural conceptual extension of single and double
QDs, the triple quantum dot �TQD� presents a fundamental
interest as an artificial triatomic molecule, where the inter-
play between geometrical-confinement, interdot-coupling,
and many-body effects offers a rich variety of phenomena.
The addition of the third dot is a logical step toward building
a scalable multiqubit system used for quantum computing.7

In the past, various devices utilizing the TQD structure have
been proposed �e.g., solid-state entangler,8 TQD charging
rectifier,9,10 and devices based on quantum cellular automat
processes11�. In this context, the electronic properties and the
stability diagrams of collinear TQDs with a few electrons
have been investigated experimentally12 and theoretically
with the density functional theory �DFT�.7 Recently, spin
configuration in triangular TQDs with up to six electrons
have been obtained and interpreted by using the Hubbard
model.13

In this work we investigate theoretically the variations in
the exchange energy between two and three electrons in
TQDs by biasing one of the dot with respect to the other two
QDs in the presence of magnetic fields. We use variational
Monte Carlo methods �VMC� with s and p orbitals of the
Fock-Darwin states as trial wave functions, which have been
shown to be reliable to calculate many-body effects in
coupled QDs.14 We specifically show that the exchange in-
teraction between the electrons can be nonmonotonically ma-
nipulated by QD detuning. In particular, for N=2 electrons
the difference between the relocalization of the singlet- and
triplet-electron densities in the QDs induced by detuning
manifests as a “cusp” in the exchange energy, due to a sym-
metry change between the px and py single-particle states
with little sensitivity to the detuned QD size. We also show
that the presence of magnetic fields quenches this effect by
mixing the px and py states. The abrupt variation in the ex-
change energy in TQDs and its dependence on magnetic
fields is novel for artificial systems and, as such, it is of
central importance for the manipulation of spin qubits in
coupled QDs as quantum gates for quantum information
processing.2

For N=3 electrons, the ground state at zero magnetic field
is always the S=1 /2 �frustrated antiferromagnetic state� state
and the excited state S=3 /2 �spin-polarized state�.13 For a
simple TQD with one electron per dot, the Heisenberg
Hamiltonian is described by three exchange constants

HS = J12
1

4
�� 1�� 2 + J13

1

4
�� 1�� 3 + J23

1

4
�� 2�� 3, �1�

where � is the Pauli matrix and Jij is the exchange coupling
constants.15 For purposes of quantum computing, the ex-
change coupling J can be manipulated by each of the Jij
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coupling constants. In symmetric TQDs, each of the ex-
change coupling constants are equal to one another �J=J12
=J13=J23� and as a result, the exchange can be derived from
the gap between the doublet �S=1 /2� and the quadruplet
�S=3 /2� states, i.e., �QD=E�S=3/2�−E�S=1/2�=3J /2. In asym-
metric TQDs such as in the detuning of the top QD �Fig. 10�,
one cannot assume the exchange coupling constants are
equal since J12=J13�J23.

The paper is divided into five different sections. In Sec. II,
we describe the TQD structure and in Sec. III, the computa-
tional approach used to solve the many-body Schrödinger
Equation. In Sec. IV, we provide results of our simulations
for the TQD structure and analyze the effect of adding de-
formation, applying an external magnetic field, and changing
the relative positions of the QDs. Finally, in Sec. V, we sum-
marize the important issues mentioned in the paper.

II. TQD STRUCTURE: MODEL POTENTIAL

A schematic of a triangular TQD is shown in Fig. 1,
which we model with the two-dimensional �2D� external po-
tential

Vext�x,y� = − VLe−��x + dx/2�2+�y + dyL�2�/rL
2

− VTe−�x2+�y − dyT�2�/rT
2

− VRe−��x − dx/2�2+�y + dyR�2�/rR
2
, �2�

where �−dx /2,−dyL�, �0,dyT�, and �dx /2,−dyR� are the re-
spective locations of the potential minima of the left, the top,
and the right dots. VL, VT, and VR determine the potential
depths of the QDs and rL, rT, and rR specify the extensions
of the Gaussian potentials from the centers of the dots. The
interdot separation between the top and the other two dots is
set at D=50 nm in all of our simulations for N=2 electrons.
For N=3 electrons, the distance is varied from D=30 to 60
nm. Initially we set dx=50 nm, dyL=dyR=dx /�3, and dyT
=2dyL, making the size of the three QDs equal and the tri-
angle formed by connecting the coordinates of the three po-
tential minima equilateral. We fix VL=VR=25 meV and vary
VT from 0 to 40 meV to detune the top QD from the two
lower ones. We keep rL and rR constant and also vary rT to
break the symmetry among the three QDs.

III. VARIATIONAL MONTE CARLO TECHNIQUE

The model Hamiltonian for N conduction-band electrons
confined in the TQDs can be written as follows:

H = �
j=1

N �	− i��� j −
e

c
A� j
2

2m�
+ Vext�r� j�� + �

j�k

N
e2

��r� j − r�k�
, �3�

where we use the effective-mass approximation to describe
the motion among electrons in the xy plane and neglect the
extension of the wave function along the z direction in a first
approximation.16 Here the external 2D potential, Vext, is
given by Eq. �2� and the last term of Eq. �3� describes the
Coulomb interaction among electrons. We assume the mate-
rial system is GaAs for which the conduction-band effective
mass is m�=0.067m0, with m0 being the free-electron mass,
and the dielectric constant �=12.7�0. A� is the vector poten-
tial experienced by each electron, which is expressed as

A� =
B

2
�y,− x� �4�

in the 2D symmetric gauge, where B is the magnetic field
oriented along the z direction. r� j denotes the coordinates of
the jth electron. We use VMC to obtain for the singlet and
the triplet energies17,18 extending previous works on single
and double QDs.14,19 The validity of our variational Monte
Carlo method was shown previously upon calculating the
two-electron exchange energy, J, in a model double QD po-
tential comprised of two Gaussian functions.14 In the double
QD case, the J values agreed very well �within few �eV�
with the results obtained from the exact diagonalization
method for all magnetic fields �B�6 T�. For the TQD simu-
lations, we again use a trial wave function that has a Slater-
Jastrow form, which is a product of Slater determinants con-
sisting of single-particle orbitals for spin-up and spin-down
electrons �D↑ and D↓, respectively� combined with a Jastrow
term I�rij� to account for electron correlations

�T = D↑D↓
i�j

N

I�rij� , �5�

where rij = �r�i−r� j�.
In our simulations, we set the two-body Jastrow term to

be I�rij�=ea1rij/1+b1rij where a1 is fixed by the cusp condition
to be 0.5 for singlet and 0.25 for triplet and neglect three-
body and higher correlation terms in the Jastrow term. For
the single-particle orbitals located inside the Slater determi-
nants, we use the two lowest states of circular single-dot
eigenstates �Fock-Darwin states� localized in individual
quantum dots,20 given by the following expressions for the s
orbitals

	 j�x,y� = e−
x
2�x + dxs,j�

2/2e−
y
2�y + dys,j�

2/2e−i
bx,jxke−i
by,jyk

j = 1,2,3 �6�

and for the p orbitals

	 j�x,y� = ��xk + dxp,j� + i�yk + dyp,j��e−
x
2�x + dxs,j�

2/2

�e−
y
2�y + dys,j�

2/2e−i
bx,jxke−i
by,jyk

j = 4,5,6,7,8,9 �7�

L R

T
rT

D

x

y
θ

FIG. 1. �Color online� Two-dimensional schematic of the trian-
gular TQD structure. T, L, and R denotes the top, left, and the right
QDs. The separation between the dots is D=50 nm. rT is the ex-
tension of the Gaussian potential from the centers of the dots.
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where 
x, 
y, dxs, dys, dxp, dyp, 
bx, and 
by are treated as
variational parameters. We ignore Zeeman splitting in the
current analysis as it only introduces a small constant shift
��25 �eV /T� in the exchange energy for each magnetic
field. To numerically optimize the expectation value of the
energy, we use the steepest descent method in which varia-
tional parameters 
k are updated as 
k→
k+�tfk at each
iteration14 where fk is the partial derivative of energy with
respect to 
k. �t is chosen such that after an adequate num-
ber of changes in the sign of fk, it becomes inversely propor-
tional to the total number of iterations, allowing the varia-
tional parameters to converge numerically. By using a
sufficiently large number of random walkers Nw ��10 mil-
lions�, we solve for the expectation values of observables by
utilizing the Metropolis algorithm. Upon running the numeri-
cal simulation repeatedly by using different random seeds,
all final results differ by less than 20 �eV from one another.

IV. RESULTS

Figure 2 displays the single-particle ground state of the
symmetric triangular TQD system �D=50 nm� as a function
of VT that controls the depth of the top dot. The bottom of
the TQD potential is indicated by the dotted line and at VT
=0 meV, VL=VR=25 meV, the ground state is located at
5.65 meV. By approximating the Gaussian potential of each
dot by a parabola, the confinement energy is around 8 meV,
which is above the energy barrier separating the double dots
and explains the lower ground-state energy. For larger values
of VT, the ground state increases above the bottom of the top
dot as confinement increases with bias.

Figure 3�a� illustrates the evolution of the singlet-electron
�triplet-electron� densities in a symmetric triangular TQD
�rL=rR=rT=30 nm� in the first column �second column� as
VT is varied. We keep other external parameters of the model
potential constant. For VT�VL=VR �Fig. 3�a�, row�i��, the
electrons predominantly localize in the left and the right
dots. As expected, the overlap between the electrons is
greater for the singlet than the triplet electrons due to the
Pauli exclusion principle. For VT=VL=VR �Fig. 3�a�,
row�ii��, the singlet and the triplet electron density is spread
evenly over all three dots �at this point, due to the potential
symmetry, the triplet is actually a linear combination of s and

p orbitals with left-top and right-top occupations�. For VT
slightly larger than VL=VR �Fig. 3�a�, row�iii��, the singlet
state made essentially of s states has moved slightly to the
top dot. However, the triplet state is now mostly and sud-
denly located in the top dot, aligned along the y direction
picking up py-orbital components �i.e., the py single-particle
state has dropped below the px state�. This abrupt triplet tran-
sition is reminiscent of the density rotation predicted in el-
liptical double QDs,21 where with interdot detuning, triplet
energy levels ET cross, while singlet energy levels ES anti-
cross, as dictated by the symmetry of the constituent single-
particle states, in agreement with the von Neumann-Wigner
theorem in molecular physics.22 Therefore, the exchange en-
ergy J�=ET−ES� exhibits a cusp in its dependence on detun-
ing. For VT�VL=VR �Fig. 3�a�, row�iv��, the electrons are
effectively in a single QD as the potential energy of the top
dot is much lower than that of the left and the right dots.
Accordingly, the density plot �Fig. 3�a�, row�iv�� shows both
the singlet and the triplet electrons predominantly occupying
the top dot. The exchange energy is largest in this region
since triplet electrons occupy a higher-energy p orbital to
form a sp pair due to the Pauli exclusion principle, whereas
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FIG. 2. �Color online� Ground-state energy as a function of the
top-dot detuning in the triangular TQD structure. The dotted line
indicates the bottom of the TQD system potential.
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FIG. 3. �Color online� �a� Two-dimensional density plots for
rT=30 nm. The singlet �triplet� densities are plotted in the first
�second� column under S=0 �S=1�. White �dark� represents high-
density �low-density� values. The circles indicate the location of the
three dots. Rows �i�, �ii�, �iii�, and �iv� correspond to VT=20, 25,
25.625, and 30 meV, respectively. �b� Exchange energy J as a func-
tion of VT for rT=20, 25, 30, and 35 nm at zero magnetic field. VL

and VR are fixed at 25 meV and rL=rR=30 nm. The arrows corre-
spond to the density plots in Fig. 3�a� at four VT values.
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singlet electrons remain for the most part on the low-energy
s orbital. We observe that the triplet densities look more
elliptical than the singlet densities because of the increased
effective separation between parallel spins due to their ex-
change interactions.

In Fig. 3�b�, we plot the exchange energies as functions of
VT for four different values of rT �20, 25, 30, and 35 nm�,
while keeping VL and VR set at 25 meV and rL=rR
=30 nm. At VT=0 meV, all four exchange curves converge
to a same energy value ��0.27 meV� since the model po-
tential is independent of rT at this bias �Eq. �2��. For values
close to VT=0 meV, the exchange energy is relatively small
for all rT because the effective elimination of the top dot
spatially decouples the two electrons into the left and the
right QDs. For larger values of VT, the exchange energy ini-
tially increases monotonically as the fraction of the total
electron density occupying the top dot increases. Thus, the
gates controlling the top-dot potential can be utilized to ma-
nipulate the system exchange energy. At values near VT
=25 meV, the potential depth of the three local minima are
close to one another, resulting in a symmetric TQD system
for rT=30 nm and VT=25 meV. We observe discontinuities
in dJ /dVT, which changes sign �from positive to negative�
for all values of rT, and is caused by the different localization
of singlet and triplet electrons as mentioned above. For large
�small� values of rT, the depth of the top-dot potential well
and the energy barrier between the top and the side dots
decrease �increase�, and as a result, the electron system ef-
fectively becomes a single dot �triple QD�. Because the sys-
tem coalesces into a single dot for larger values of rT, a
positive correlation between rT and exchange energy is ex-
pected. Accordingly, we observe the J values at the cusp
increase with rT. We also notice the J cusp occurs at higher
VT for rT=35 nm �VT=28.125 meV� than for other values
of rT �VT=25, 24.375, and 25 meV for rT=20, 25, and 30
nm, respectively�. This can be explained by noting that at
larger rT values, the top dot becomes shallower, inducing
electron transfer from the side to the top dots at larger VT
values. For smaller rT values, the confinement in the top dot
is stronger; consequently the single-particle energy spacing
increases. Since the dominant components of the triplet in a
single QD are the spx and the spy orbitals,14 larger differ-
ences between the s- and the p-orbital energy states results in
higher triplet energies, leading to larger exchange energy for
potentials with small rT as illustrated in Fig. 3�b� for VT
�50 meV.

Figure 4�a� shows the electron densities for B=0, 1, 2,
and 3 T for the singlet �VT=25 meV� and the triplet �VT
=25 and 25.625 meV� states. The singlet densities remain
relatively unchanged with varying magnetic fields, while the
abrupt change in the triplet charge-density configurations be-
tween VT=25 and 25.265 meV is quenched by the presence
of the magnetic fields that redistribute the density among the
three dots. Here the magnetic field modifies the symmetry of
the system by adding angular momentum in the electron mo-
tion. Specifically, upon applying magnetic fields, the px and
the py parities mix forcing the electron wave functions to
take a cylindrical symmetry.21 As a result, the triplet density
transition from the side QDs to the top dot evolves more
smoothly with VT.

Figure 4�b� shows the dependence of the exchange energy
on magnetic fields for rT=30 nm in the detuning range cor-
responding to 0VT40 meV. Comparing the exchange-
energy curves for B=0 and 0.5 T, the most notable differ-
ences are for 24VT28 meV, where the abrupt triplet
density transition occurs at B=0 T. We see that at B=1 T,
the J cusp evolves into an inflection point at around VT
=26 meV as a result of momentum redistribution caused by
the magnetic field �Fig. 4�a��. At B=3 T, a local minimum
arises around VT=25 meV: however, unlike for B=0 T, the
behavior is the manifestation of a smooth transition in local-
ization of both the singlet and the triplet electrons. Moving
from VT=0 to 40 meV at B=3 T, the ground state evolves
from S=0 �0VT15.6 meV� to S=1 �15.6VT
29 meV� to S=0 �29VT meV� states.

Next, we consider three quantum dots collinearly along a
line.7 The distances between the top and the left dots as well
as the top and the right dots remain at 50 nm, while the
distance between the left and the right dots doubles to 100
nm. All other parameters remain the same as in the triangular
TQD. Figure 5�a� shows the singlet and the triple densities
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FIG. 4. �Color online� �a� Two-dimensional density plots for
rows �i� B=0 T, �ii� B=1 T, �iii� B=2 T, and �iv� B=3 T. The
circles indicate the location of the three dots. Columns I, II, and III
correspond to the singlet density at VT=25 meV, the triplet density
at VT=25 meV, and the triplet density at VT=25.625 meV, respec-
tively. �b� Exchange energy J as a function of VT for magnetic field
B=0, 0.5, 1, 2, and 3 T in a triangular TQD system. VL and VR are
fixed at 25 meV and rL, rT, and rR are set at 30 nm. The arrows
correspond to density plots in Fig. 4�a� at four VT values and the
dotted line correspond to the Fermi-energy level. For B=3 T, the
triplet becomes the lowest ground state when J�0 meV �15.6
�VT�29 meV�. At the minimum, J=−0.1482 meV, which occurs
at VT=24 meV.
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for four different values of VT �10, 26, 30, and 40 meV; here
VT is the potential in the central dot� for B=0 T. Density
plots for nonzero magnetic fields are qualitatively similar
due to gradual electron relocalization to the center QD. For
VT�25 meV, there are strong localizations in the left and
right dots for both the singlet and the triplet densities �Fig.
5�a�, rows �i� and �ii��. Figure 5�b� shows the exchange-
energy curves for B=0, 1, 2, and 3 T. The general behavior
of the exchange curves for all four magnetic-field values is
similar for all magnetic fields with the exchange energy be-
ing close to zero at smaller VT and increasing quasilinearly
for VT�26 meV. Comparison of exchange-energy values at
VT=0 meV �0.0023 meV for collinear TQD and 0.2671
meV for triangular TQD� reflects the different interdot sepa-
ration values and charge densities. At VT=26 meV, the two
electrons are spread over all three dots, and as a result, the
exchange energy increases �Fig. 5�b��. For higher VT, the
electrons primarily occupy the central dot for both the singlet
and the triplet �Fig. 5�a� row�iii��, while the densities evolve

accordingly. Unlike in the triangular configuration, the
dJ /dVT for all values of VT remains continuous in the col-
linear TQD �Fig. 5�b��. Indeed the lowest excited state al-
ways remains the px state and as such, there is no symmetry
change in the electronic states during the detuning change.
So energy levels do not cross one another,20 and as a result,
no cusp in the J curves is observed.21 Finally, at VT
=40 meV, electrons occupy only the central dot �Fig. 5�a�
row�iv��. As in the triangular TQD, we observe two maxima
peaks for the triplet densities. These peaks are aligned along
the coupling direction of the dots �x direction� due to the
collinear alignment of the QDs along this direction and re-
sulting ellipticity of the central QD �Ref. 19�.

Next, we investigated the J dependence on the angle �
between the two segments connecting the centers of the top
and left/right QDs. We vary the angle from 0 to 180° while
keeping the distance between the top and the left/right QDs
constant at D=50 nm. Effectively, the distance between the
left and the right QD changes as a function of the angle. In
Fig. 6, we plot the exchange-energy curves for TQD systems
for different angles. At small angles and at VT=0 meV, the
left and the right dot overlap, forming a single circular dot
that is twice as deep as the top dot. For small VT, the two
electrons predominantly localize in the deeper dot and, as a
result, the exchange energy is large ��5 meV�. For larger
values of VT, the exchange interaction decreases as electrons
leak into the top dot, lowering the Coulomb energy. Due to
the circular symmetry of the dot system, no charge-density
rotation occurs,21 and as a result, the exchange-energy curves
are smooth. For VT�50 meV, the top dot becomes deeper
than the combination of left and right dots and thus, the
exchange interaction increases again as the system become
effectively a single dot �not shown in the figure�. For larger
angles, the left-right dot coupling becomes more elliptical as
the aspect ratio increases with large angles.21 Thus, for �
�20°, we observe the J cusp due to the density rotation.
Because the aspect ratio of the coupled dots increases with
larger angles, the Coulomb energy decreases and the transi-
tion to the top dot occurs later at larger VT values. As a
result, the VT values corresponding to the cusp increase
monotonically from 20 to 60°. At angles larger than 70°, the
kink in J curves disappears again as TQDs approach collin-
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FIG. 5. �Color online� �a� Two-dimensional density plots in a
collinear TQDs for rT=30 nm. The circles indicate the location of
the three dots. Rows �i�, �ii�, �iii�, and �iv� correspond to VT=10, 26,
30, and 40 meV, respectively. The first column �second column�
shows the singlet �triplet� electron densities. Light �dark� color cor-
responds to high �low� density. �b� Exchange energy J as a function
of VT for magnetic field B=0, 0.5, 1, 2, and 3 T for a collinear
TQDs. VL and VR are fixed at 25 meV and rL, rT, and rR are set at
30 nm. The separation between the center-left and center-right QDs
is 50 nm, while the separation between the left-right QDs is 100
nm. The arrows correspond to density plots in Fig. 5�a� at four VT

values.
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FIG. 6. J as a function of VT �from 0 to 46 meV� for angles
=0 �“o” symbol�, 20° �“x” symbol�, 30° �“+” symbol�, 40° �“�”
symbol�, 50° �“�” symbol�, 60° �“�” symbol�, 70° �“�” symbol�,
90° �“�” symbol�, and 180° �“�” symbol�.
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ear geometries. Since the shapes of the QDs do not interfere
with one another at larger angles, the qualitative behavior of
the exchange curves is similar for all angles larger than 90°.

For N=3 electrons, we use four different interdot separa-
tion values: D=30, 40, 50, and 60 nm. The contour potential
profile can be seen in Fig. 7, in which the location of the
QDs is indicated by the confined white spaces near the center
of the respective subplots. It is seen that the potential profile
gradually changes from a single QD �D=30,40 nm� to a
coupled �D=50 nm� and decoupled �D=60 nm� TQD for
different values of D.

In Fig. 8, we plot the doublet �S=1 /2� and the quadruplet
�S=3 /2� energies with their difference, ��QD=3 /2J�, in inset
for the four different values of D �30, 40, 50, and 60 nm�.
For D=30 nm �Fig. 8�a��, the behavior of the curves look
very much alike in the single QD case, which is expected
since the potential profile is similar to a circular single QD
�Fig. 7�a��. The exchange energy among electrons is rela-
tively high accordingly, due to the close physical proximity
of the electrons. For D=40 nm �Fig. 8�b��, the system is still
a single QD, but its shape is more triangular �Fig. 7�b��. In
Fig. 8�b�, we observe the change of the kink in the quadru-
plet �S=3 /2� energy curve into an inflection point at B
�2.5 T. Also, the doublet �S=1 /2� energy now increases
monotonically with the magnetic field, unlike the behavior
observed in the D=30 nm case. Accordingly, the exchange
energy becomes smoother near the local maximum point at
B�2 T. At around B=4 T, the system undergoes a doublet-
quadruplet transition with the S=3 /2 becoming the ground
state �similar to the ones found for N=2 electrons between
the singlet and triplet states�. For D=50 and 60 nm �Figs.
8�c� and 8�d��, the three dots become more distinctive. Both
the doublet and the quadruplet energies increase monotoni-
cally versus magnetic fields, and as a result, the local maxi-
mum in the exchange energy disappears. However, the

doublet-quadruplet transition occurs at lower magnetic fields
�B=2.7 T for D=50 nm and B=2.0 T for D=60 nm, re-
spectively�, while the exchange energy at B=0 T decreases
as D increases. For the coupled TQD �Fig. 8�c��, the �QD
value at B=0 T is 0.289 meV while for the decoupled TQD
�Fig. 8�d��, it is 0.1168 meV. The higher �QD value at B
=0 T for the coupled QD case is expected due to the closer
proximity of the dots, leading to greater sp-orbital occupa-
tion for the S=3 /2 state. As mentioned in Sec. I, the ground
state for zero magnetic field is always the S=1 /2 state re-
sulting in J�0 for all device parameters. Oscillating behav-
iors found in the exchange energy at low magnetic fields are
due to numerical fluctuations in the Monte Carlo method.

Figure 9�a� displays the two-dimensional plot of the
quadruplet-doublet energy difference �QD with respect to D
and magnetic fields. Upon evolving from single to triple QD
with increasing D in the investigated magnetic-field range
�from B=0 to 4 T�, �QD decreases in magnitude and the kink
at B�2.7 T develops into a smooth maximum to finally
disappear at large D. One also observes the onset of the
doublet-quadruplet transitions that for increasing D=40, 45,
50, 55, and 60 nm moves from 4, 3.27, 2.7, 2.29, and 2 T. In
Fig. 9�b� we show the spin phase diagram as a function of B
and D. It is seen that with the decoupling of the QDs, the
magnetic field at the transition is less sensitive to the dis-
tance separating the QDs.

Next, we investigate the effect of electrical detuning on
the N=3 TQD system. Specifically, we vary one of the gate
biases �VT in this case� and analyze its effect on �QD. We
plot �QD as function of VT for both D=50 nm �i.e., coupled�
and D=60 nm �i.e., decoupled� TQDs in Fig. 10�a�, while
keeping other parameters in the model potential constant
�VL=VR=25 meV and rL=rT=rR=30 nm�. For VT
�12 meV, the electrons occupy the left and the right QDs,
leaving the top QD vacant. Accordingly, �QD is insensitive to
changes in VT in this detuning range, which is reflected by
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the flatness of the two curves �D=50 and 60 nm�. For D
=50 nm, the three dots are more coupled compared to the
D=60 nm case, which increases the sensitivity of �QD for
VT�12 meV. At VT�12 meV, �QD abruptly drops as one
of the electrons moves into the initially empty top dot and
the system lowers its energy to reach equilibrium with one
electron per dot. Accordingly, the electrons predominantly
occupy the single-particle s-orbital states in the three respec-
tive dots, and as a result, the energy difference between the
doublet and the quadruplet becomes relatively small com-
pared to the three electrons in the double-dot configuration.
In the limiting case of D→�, the S=1 /2 and S=3 /2 ener-
gies become equal. In Figs. 10�b� and 10�c�, we plot the total
energies of the S=3 /2 and S=1 /2. As we can see, more
noticeable for D=60 nm �Fig. 10�c��, the slope of the S
=3 /2 curve is steeper at smaller VT values compared to the
S=1 /2 curve, with the change in slope indicating electron
relocalization. This can be explained by the Pauli exclusion
principle since the parallel spins in the S=3 /2 state entails
that electrons would spread themselves out over a wider re-
gion. With an electron now occupying the top QD, the abso-
lute value of the �S=3 /2� slope increases �from 0.1378 to
0.885 meV/V at VT=15.5 meV� as VT exerts more influence
on the total system energy due to the physical proximity of
the top gate to the electron. For D=50 nm, the �QD curve is

smoother than for D=60 nm in the transition region �12
�VT�20 meV� because of the overall coupling between
the QDs, which prevents abrupt density transitions as dis-
cussed in the double QD case.21 Also, even when the system
configures itself to one electron per QD �22�VT
�32 meV�, �QD is still higher for the D=50 nm TQD be-
cause of closer physical proximity among electrons.

Around VT�32 meV, there is another abrupt transition in
�QD, which is caused by the relocalization of the second
electron into the top QD. We plot the total energies of the
S=3 /2 to 1/2 states in Figs. 10�d� and 10�e�; in this case the
S=1 /2 slope is steeper at smaller VT values than the S
=3 /2 curve. Again this is attributed to the Pauli exclusion
principle: the double occupancy of the top QD for antiparal-
lel electrons �corresponding to the S=1 /2 configuration� be-
comes more favorable than for parallel electrons �corre-
sponding to the S=3 /2 configuration�. For D=60 nm, the
�QD slope changes from 0.885 to 1.696 meV/V around VT
=32 meV and accordingly the change in the exchange inter-
action is greater here than at VT=16 meV. After this transi-
tion, the third electron spreads equally across the left and the
right QDs. For higher VT, the top QD eventually is triply
occupied as in a single QD system.

In Fig. 11, we display the chemical potentials of the TQD
structure at D=50 nm, ��N�=ET�N�−ET�N−1�, where N is
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the number of electrons in the system for N=1, 2, and 3 as a
function of VT. The chemical potentials were computed using
the data for N=2 electrons and N=3 electrons as well as a
new set of simulation results for N=1 electrons �note that
ET�0��0�. There is a monotonic decrease in chemical poten-
tials with respect to detuning voltage VT as separation be-
tween ET�N� and ET�N−1� increases for all N, as the TQD
approaches the single dot configuration. In order to find the
addition energy, we choose a constant reference value for the
chemical potential of −22.5 meV in the source/drain of the
QD device. At this value, the chemical potential in the
source/drain region is just above the minima of the model
potential along the left and the right QDs �−25 meV�. From
the figure, we can calculate the additional energy by taking
the difference in the VT values where the chemical-potential
curves cross the horizontal-reference curve. The first two ad-
ditional energies are computed to be around 22 and 16 meV.

V. SUMMARY

We have shown the electrical tunability of exchange en-
ergies and charge densities for two and three electrons in

both the triangular and collinear TQD systems using the
variational Monte Carlo method. We observed a nonmono-
tonic variation in the exchange energy J, which is character-
ized by a discontinuity in the dJ /dVT as a function of the
detuning voltage in QDs with triangular configurations. This
phenomenon is attributed to the abrupt relocalization of the
triplet density in the top QD, which persists as long as the
top angle of the QD isosceles triangle varies between �20°
and �70°. Unlike the double QD system, the presence of the
third dot provides another degree of freedom that allows the
cusp to manifest itself without directly disturbing the other
two QDs. We have also shown that this effect is quenched by
the presence of a perpendicular magnetic field that smoothes
out the triplet transition from the side dots to the top dot
under detuning. For three electrons, nonmonotonic variation
in exchange energy persists in low magnetic-field regime in
coupled triangular TQDs, but not in the more decoupled tri-
angular TQDs. In detuned triangular TQDs, the quadruplet
and doublet states localize at different VT values, causing an
abrupt change in the difference between the two ground
states. Finally, the addition energy in the triangular TQD
system is calculated by fixing the drain/source chemical po-
tential at a reference value just above the potential minima of
the symmetric TQD system.
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